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a b s t r a c t 

Variation between stains in histopathology is commonplace across different medical centers. This can 

have a significant effect on the reliability of machine learning algorithms. In this paper, we propose to re- 

duce performance variability by using -consistent generative adversarial (CycleGAN) networks to remove 

staining variation. We improve upon the regular CycleGAN by incorporating residual learning. We com- 

prehensively evaluate the performance of our stain transformation method and compare its usefulness 

in addition to extensive data augmentation to enhance the robustness of tissue segmentation algorithms. 

Our steps are as follows: first, we train a model to perform segmentation on tissue slides from a single 

source center, while heavily applying augmentations to increase robustness to unseen data. Second, we 

evaluate and compare the segmentation performance on data from other centers, both with and without 

applying our CycleGAN stain transformation. We compare segmentation performances in a colon tissue 

segmentation and kidney tissue segmentation task, covering data from 6 different centers. We show that 

our transformation method improves the overall Dice coefficient by 9% over the non-normalized target 

data and by 4% over traditional stain transformation in our colon tissue segmentation task. For kidney 

segmentation, our residual CycleGAN increases performance by 10% over no transformation and around 

2% compared to the non-residual CycleGAN. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Central to histopathology is the fixation and staining of tissue 

lides, highlighting relevant structures. Diagnosis relies on care- 

ul examination of these tissue slides under the microscope by a 

athologist. Differences in staining are common and can, for ex- 

mple, occur from tissue fixation and processing, staining proto- 

ols, and section thickness ( Bancroft and Gamble, 2008 ). With in- 

reasing affordability of whole slide scanners and popularity of 

omputer-aided diagnosis systems, more pathology labs are ’going 

igital’ ( Stathonikos et al., 2019 ). Digitization of tissue into whole 

lide images (WSIs) introduces new sources of variation, such as 

he age of the slide during scanning, and more directly due to the 

canner: differences in digital post-processing (e.g. sharpening fil- 
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ers), scanning resolutions and storage formats ( Weinstein et al., 

009 ). The net effect of all factors (tissue processing, staining and 

canning) may result in drastically differing digital tissue slides 

cross centers, even when using routine staining protocols ( Fig. 3 

 4 ) and staining consecutive tissue sections Bejnordi et al. (2016) . 

Deep learning has recently gained a lot of traction in the med- 

cal imaging domain ( Litjens et al., 2017 ), for a large part due 

o the use of fully convolutional neural networks ( Long et al., 

015 ). Applications are seen in all fields of medical imaging and 

n different organs, such as breast ( Bejnordi et al., 2017 ), kidney 

 Hermsen et al., 2019 ) and prostate ( Bulten et al., 2020 ). Before

eep learning algorithms can be introduced in the workflow of the 

athologist, they need to achieve reliable performance and be able 

o deal with all types of dissimilarities, induced by scanners, pro- 

ocols and labs. While pathologists are generally highly capable of 

ealing with variety in stainings, deep learning systems have been 

hown to be dramatically affected in performance ( Ciompi et al., 

017 ). The performance and robustness of a network is difficult to 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. The generator learns the difference mapping or residual between a source 

and target domain. The original image is summed with this residual to acquire the 

mapped image. The discriminator and components are omitted in this example. 

Fig. 2. A sample region of interest in our segmentation datasets. Within the box, 

all pixels are assigned to a relevant structure. Structures partially outside the ROI 

are fully annotated. Pixels outside of the tissue are not annotated. 
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hange once deployed at a medical centre. If algorithms would be 

ptimized or tuned for a specific center, newly introduced staining 

rotocols or whole-slide scanners could result in algorithm perfor- 

ance degradation. This can be resolved by retraining the algo- 

ithm to deal with the changes, but this may be cumbersome and 

ime-consuming. 

To a large extent, dissimilarities between and within centers 

an be accounted for by training deep neural networks with 

olor/stain augmentations or by using training data from multi- 

le centers ( Tellez et al., 2018 ). Augmentation techniques are stan- 

ard practice in deep learning and of particular importance in 

he medical domain, since datasets are commonly small due to 

he scarce nature of the data and requirement of expert knowl- 

dge to annotate and provide a ground truth ( Janowczyk and 

adabhushi, 2016 ). Geometric operations like elastic distortions 

 Simard et al., 2003 ) have previously been shown to be benefi- 

ial in histopathology applications when dealing with data scarcity 

 Ronneberger et al. (2015) ; Cui et al. (2019) ). Other morphological 

perations such as image scaling, adding Gaussian noise and blur- 

ing are commonly used augmentations. The effect of color aug- 

entation on deep learning network performances has recently 

een studied in ( Tellez et al., 2019; 2018; Liu et al., 2017b ). How-

ver, due to the often linear alterations introduced by these aug- 

entations, it is unclear whether they are able to capture all varia- 

ions that may occur ’in the wild’. Considering that variation is de- 

ived from color as well as high-frequency (i.e. fluctuations in adja- 

ent pixels of the image) differences in texture, artificial augmenta- 

ion may oversimplify the variability that occurs in real-world tis- 

ue stainings. 

An alternate strategy to augmentation is to normalize whole- 

lide images to mimic the data that a network was trained on, alle- 

iating the need for algorithm re-training. A large field of research 

n medical imaging deals with stain standardization or transfor- 

ation Tschuchnig et al. (2020) . Traditional approaches are often 

ased on stain-specific color matrix deconvolution, using a refer- 

nce slide to normalize the data to ( Macenko et al., 2009; Bejnordi 

t al., 2016; Reinhard et al., 2001; Vahadane et al., 2016 ). A draw-

ack of these methods is that they are often specifically tailored to 

ork with the most commonly used H&E staining. 

Generative adversarial networks were introduced in 

oodfellow et al. (2014) . The objective of these networks is 

o learn the distribution of training data to generate new samples 

hat realistically resemble the original data. This is accomplished 

y introducing two different network components with opposing 

oals. A generator component is tasked with creating realistic 

mages in a target domain, either from noise input or from some 

ource database. A second component, the discriminator, is tasked 

ith discerning between the generated images and original im- 

ges. While the generator is trained to fool the discriminator 

ith realistic images, the discriminator is fed with synthetic and 

riginal images. In adversarial training, the optimal outcome is a 

enerator that has converged to the data distribution, with the 

iscriminator confused between real and fake images. Recently, 

dversarial based approaches for paired image-to-image transla- 

ion such as UNIT ( Liu et al., 2017a ), Pix2Pix ( Isola et al., 2017 )

ave made their way into the medical domain ( Welander et al., 

018; Nie et al., 2018 ). Cycle-consistent generative adversarial 

etworks (CycleGANs) are another popular stain transformation 

ethod in histopathology that have enjoyed a lot of recent inter- 

st, reaching state of the art results in a lot of transformation tasks 

 Shaban et al., 2019; de Bel et al., 2019; Mahmood et al., 2019;

adermayr et al., 2018; Mercan et al., 2020 ). CycleGANs allow for 

argeted unsupervised domain transformation with unpaired data 

 Zhu et al., 2017 ), by utilizing the so-called cycle-consistency. This 

akes them particularly useful in histopathology, where paired 

ata, i.e. the same slide in two different stains, is hard to come 
2 
y. Moreover, this approach is stain-agnostic, i.e. the same method 

an be applied to all stains. Concerns on the use of unsupervised 

ransformation methods have been raised in Cohen et al. (2018) , 

ho have shown that CycleGANs can introduce a bias when 

atching source and target domains. 

In this paper we propose a simple yet effective adaptation to 

ycleGANs, where we move the task of the generator network 

owards learning the difference mapping, i.e. the residual of the 

ource and target domains. This allows the generator network to 

ocus solely on the domain adaptation, while the morphological in- 

egrity is kept in tact as a reference. We hypothesize that learning 

he residual improves the structural stability of CycleGANs, mak- 

ng them specifically suitable in the field of histopathology. Fig. 1 

hows schematically how the generator works in a residual Cycle- 

AN setup. 

Introducing stain color transformation into the digital pathol- 

gy workflow, calls for extensive research into the benefits and 

hallenges that are introduced with the involved techniques. Two 

on-trivial tasks are chosen for this purpose: kidney tissue seg- 

entation ( Hermsen et al., 2019 ) and colon tissue segmentation 

 Bokhorst et al., 2018 ). The two segmentation tasks span five cen- 

ers and pose a considerable challenge in terms of stain variation, 

s seen in Figs. 3 and 4 . We demonstrate the benefit of CycleGAN- 

ased transformation on top of color augmentations in these appli- 

ations. With our broad assessment, we hope to establish residual 

ycleGANs as a reliable technique for applying stain transformation 

n histopathology. 

Summarizing, the following contributions are made: 

• We qualitatively and quantitatively compare our approach with 

other methods, including traditional stain transformation and 

color augmentation techniques. 

• We include data spanning five centers and cover challenging 

segmentation tasks in two different domains. We trained seg- 
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Fig. 3. A sample of colon tissue from the five centers, illustrating the high variety in which H&E-stained slides can vary between centers. 

Fig. 4. A sample of PAS-stained kidney tissue from both datacenters. Top image: 

radboud_kidney . Bottom image: amsterdam . 
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Table 1 

Overview of the data that was used in this study. The uses for the 

different data sets are abbreviated with ’ s ’ and ’ t ’, for training the seg- 

mentation and the stain transformation, respectively. 

center slide count ROIs tissue type purpose 

radboud_kidney 40 80 kidney s, t 

amsterdam 10 20 kidney s, t 

radboud_colon 34 182 colon s 

radboud_c_test 5 20 colon t 

bayreuth 4 8 colon t 

maxima 5 16 colon t 

utrecht 5 14 colon t 

leiden 5 15 colon t 

total 100 355 / / 
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mentation network using data from a single center and applied 

the segmentation network on the other data centers for evalu- 

ation. 

• While most other work is evaluated solely on the H&E stain, 

we show that our method works on PAS-stained tissue as well. 

Arguably, this allows our method to be applied on a larger do- 

main of staining protocols. 

We organized the paper as follows. Section 2 details the data 

hat we used in our experiments. Sections 3 and 4 describe the 

ethods and experimental setup. In Section 5 we illustrate our re- 

ults. In Section 6 and 7 we discuss our results in the context of

revious and future work and conclude. 
3 
. Materials 

In this paper data from five different centers was used. Images 

f five centers were used for the colon tissue segmentation task 

nd two centers for the kidney tissue segmentation task. One cen- 

er provided data for both tasks. An overview of the data is shown 

n Table 1 . 

.1. Colon tissue segmentation & transformation 

To train the colon tissue segmentation network, we used 

ata solely from the Radboud University Medical Centre ( rad- 

oud_colon ). For the multi-class segmentation task, the following 

tructures were annotated: Tumor, Desmoplastic stroma, Necrosis, 

ranulocytes, Lymphocytes, Erythrocytes, Muscle, Healthy stroma, 

at, Mucus, Nerve, Healthy glands and Stroma lamina propria. For 

ach slide, up to ten ROIs were identified and annotated. The ROIs 

omprised an area of up to 1 mm 

2 and were fully annotated by an

xperienced technician using the open-source program ASAP (Au- 

omated Slide Analysis Platform). The radboud_colon slides were 
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Fig. 5. Architecture of the CycleGAN setup with its generator and discriminator 

components. The top generator performs the mapping from source to target dis- 

tribution, resulting in ˆ y ∈ p target and vice versa for the bottom generator. 

Fig. 6. Architecture of the generator in the residual CycleGAN, closely resembling 

the standard U-net. The output of the network is summed with the input. While 

the network can be of arbitrary depth, we used a depth of four convolution-leaky 

RelU-batch transformation blocks. 
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tained with H&E and digitized using a Panoramic P250 Flash II 

canner (3D-Histech) at a spatial resolution of 0 . 24 μm/px . A total

f 34 WSIs were included, 26 for training and 8 for validation. 

For tissue transformation and subsequent application of the 

egmentation network, we included up to five slides from four 

xternal centers, which are: Institute of Pathology, Bayreuth 

 bayreuth ), Mxima MC, Eindhoven ( maxima ), UMC, Utrecht ( utrecht ) 

nd LUMC, Leiden ( leiden ). The data from the four centers will col- 

ectively be referred to as external . Additionally, five slides from the 

adboud University Medical Centre radboud_c_test were included 

nd served as a baseline to compare with the other centers. Each 

lide contained up to four ROIs in which all relevant structures are 

nnotated. All slides were digitized at a resolution of 0 . 24 μm/px, 

xcept for the leiden dataset, which was captured at 0 . 5 μm/px . The

ariety of stains is demonstrated in Fig. 3 . 

.2. Kidney tissue segmentation & transformation 

For the kidney segmentation and tissue transformation we 

sed data from the Radboud University Medical Center, Nijmegen, 

he Netherlands ( radboud_kidney ) and from a single external cen- 

er: Academic Medical Center, Amsterdam, the Netherlands ( am- 

terdam ). The radboud_kidney dataset consisted of forty biopsies, 

tained with periodic acid-Schiff (PAS) according to routine stan- 

ard procedures. All slides were digitally scanned using the 3D 

istechs Panoramic 250 Flash II scanner. The external dataset ( ams- 

erdam ) consists of twenty-four PAS-stained biopsies, digitized with 

he Philips IntelliSite Ultra Fast Scanner. All slides were scanned 

t a spacial resolution of 0 . 25 μm per pixel. For the segmenta-

ion task, seven structure classes were included: glomeruli, empty 

lomeruli, sclerotic glomeruli, distal tubuli, proximal tubuli, at- 

ophic tubuli and arteries. In total, ten amsterdam WSIs and forty 

adboud_kidney WSIs were annotated for testing the effectiveness 

f stain transformation on segmentation performance. Per slide, 1–

 ROIs of an area of up to 2 mm 

2 were selected and exhaustively 

nnotated in ASAP. All pixels in the ROIs that were not part of any

f the structure classes were added to an eighth ’background’ class. 

ll annotations from both centers were produced by a technician 

ith experience in renal pathology and afterwards checked by an 

xperienced nephropathologist. An example of such an ROI is de- 

icted in Fig. 2 . 

. Methods 

First, we introduce the general building blocks of generative 

dversarial networks (GANs) and, specifically, CycleGANs. Subse- 

uently, we introduce the residual learning extension to Cycle- 

ANs, after which we introduce the architectures used to perform 

he segmentation tasks in colon and kidney tissue. Last, we intro- 

uce (traditional) baseline methods to compare against. 

.1. General concepts 

Generative adversarial networks In a basic GAN setup, a genera- 

or (G ) + discriminator D 1 pair together to produce some domain 

apping G : X → Y ( Goodfellow et al., 2014 ). Here, our source data

s usually sampled from some prior noise distribution x ∈ X noise (for 

xample a truncated normal distribution). The task of the genera- 

or is to resemble a target domain y ∈ Y as accurately as possible,

enerating G (x ) = ˆ y , where ˆ y ≈ y . The domain of Y can be any de-

ired domain, including but not limited to images, sound or tem- 

oral data. The discriminator has the binary task to distinguish be- 

ween data sampled from the generator ( ̂  y ) and the original dis- 

ribution y, with D ( ̂  y ) = 0 and D (y ) = 1 . Conversely, the generator
4 
ries to fool the discriminator, training for D ( ̂  y ) = 1 . This adversar-

al game is expressed in the loss function: 

 GAN (G, D, x, y ) = log D (y ) + 1 − log D (G (x )) (1) 

ANs are usually trained alternating between optimizing the gen- 

rator and discriminator ( Goodfellow et al., 2014 ). In practice, 

ANs are hard to optimize, due to mode collapse or convergence 

o local optima ( Brock et al., 2019; Mao et al., 2017 ). 

Cycle-consistency In theory, a GAN can learn an injective map- 

ing from a source to target domain, replacing x ∈ X noise with x ∈
 data . However, as long as the discriminator objective is satisfied, 

he generator can map the source image to any image in the target 

omain. When dealing with unpaired image-to-image translation, 

ycle-consistency is used to conserve structural image information 

 Zhu et al., 2017 ). This is accomplished by adding a second gen-

rator (F ) + discriminator D 2 pair and enforcing F (G (x )) ≈ x (see

ig. 5 ). The cycle-consistency loss is expressed with: 

 cycle (G, F , x, y ) = E x [ || G (F (x )) − x || 1 ] + E y [ || F (G (y )) − y || 1 ] , (2)

ere, x and y are sampled from a source and target image distri- 

ution, respectively. The cycle-consistency loss term allows Cycle- 

ANs to be trained without paired data, while still allowing for 

 targeted image translation. The original CycleGAN approach in- 

ludes a cycle-consistency loss term in both directions (as in Eq. 2 ), 
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hich was shown to result in better performance ( Zhu et al., 2017 ).

he architecture of the CycleGAN at a component level can be 

iewed in Fig. 5 . 

.2. Residual cyclegan 

We made several changes to the standard CycleGAN setup. Most 

mportantly, we add a skip-connection from the original image to 

he output of the final layer. This changes the task of the generator 

etwork towards learning the residual between domains, instead 

f rebuilding the image from scratch. While most architectures 

sed in CycleGAN (e.g. U-net, ResNet) approaches already include 

 lot of skip-connections/shortcuts, the networks are not explic- 

tly forced to keep the structural information intact. We hypoth- 

size that by forcing the network to learn the residual/difference 

irectly, the network is more likely to preserve the structural com- 

onents, which is especially beneficial in pathology applications. 

e formulate the target of the residual generator as follows: 

ˆ 
 = 2 · G (x ) + x, (3) 

here G is the generator as in the standard version. As the final 

anh activation in our networks produces results in the range of 

−1 , 1) , we multiply the output of the network with a factor two.

his theoretically allows for transformation from the maximum (1) 

o minimum value (−1) and vice versa, if the source and target 

mage domains would require so. Values outside the range (−1 , 1) 

re clipped at inference, but not during training. 

We used L 1 -loss to minimize the cycle-consistency error and 

ean squared error for the discriminators, which was shown to be 

ore stable during training ( Mao et al., 2016; Zhu et al., 2017 ). The

iscriminator loss function from 3.1 then becomes: 

 GAN (G, D, x, y ) = D (y ) 2 + (1 − D (G (x ))) 2 (4)

ptimization was performed using stochastic gradient descent 

ith Adam, with B 1 set at 0.5 ( Kingma and Ba (2014) ;

hu et al. (2017) ). We empirically set the weight of the cycle- 

onsistency loss at 5.0 and the discriminator loss weight at 1.0. 

Generator architecture For our generator network, we adopted 

 fully convolutional encoder-decoder network inspired by the U- 

et ( Ronneberger et al., 2015 ). The main convolutional building 

lock consists a 3 x 3 convolution, followed by a leaky relu activa- 

ion function ( Bai et al., 2018 ) with leak set at 0.2 and finished

ith an instance normalization layer ( Johnson et al., 2016; Ulyanov 

t al., 2016 ). Reflection padding was used with every convolution. 

n the encoder part of the network, we perform 2 x 2 bilinear down- 

ampling after every two sets of convolutional blocks. In our im- 

lementation, we put 8 convolutional layers in the encoder. For the 

ecoder, we used nearest-neighbour upsampling instead of trans- 

osed convolutions, which has been shown to reduce the extent of 

heckerboard artefacts ( Odena et al., 2016 ). The amount of filters 

s set at 32 for the first convolution. This amount is doubled after 

ach downsampling layer and halved after each upsampling layer. 

s with the standard U-net, we put skip-connections between the 

ayers in the encoder and decoder that mirror each other. We hy- 

othesize that these skip-connections are especially important in 

tain transformation, as high-resolution information may get lost 

n the deeper layers of the network. All weights are initialized by 

ampling from a truncated normal distribution, with the standard 

eviation set at 0.01. Our generator architecture is illustrated in 

ig. 6 . 

The generators in the residual CycleGAN start off with perform- 

ng a near-identity mapping, due to layer initialisation with low 

alues and summation of input and output, which results in a 

ear-zero cycle-loss. This caused the network to sometimes be nu- 

erically unstable, producing nan s during back-propagation. To al- 

eviate this problem, we averaged the cycle-consistency loss only 

ver individual pixels with a loss in the 90th-percentile. 
5 
As training CycleGANs is unsupervised, there is no direct stop- 

ing criterion when training. We let the network converge by start- 

ng the learning rate at 0.0 0 01 and statically reducing it by a factor

f 2 after every 15 epochs until the learning rate is virtually zero. 

Discriminator architecture For the discriminators, we used 

n architecture inspired by the convolutional ”PatchGAN” setup 

 Isola et al., 2017 ). Based on a 256 × 256 input, this network net-

ork has a reduced receptive field and produces a 32 x 32 output, 

nstead of a single value of whether the image is real or not. The 

iscriminator is restricted to smaller parts of the image, which is 

ypothesized to result in more attention to high-frequency changes 

n the images ( Isola et al., 2017 ). The discriminator consists of four 

onvolutional layers with 64, 128, 256 and 256 filters, respectively 

nd with kernel size of 4 × 4 and stride 2. A final convolution is 

dded to reduce the output to a single filter map. All convolutions 

xcept for the final one were followed by an instance normaliza- 

ion layer and a leaky RelU, with the leak parameter set at 0.2. 

ilters were initialized with a truncated normal distribution with 

tandard deviation set at 0.02. We did not put a sigmoid layer af- 

er the final convolution to improve convergence speed ( Nair and 

inton, 2010 ). 

.3. Cyclegan variants 

We compared the residual setup with a few alternative setups. 

irstly, we added a ”baseline” comparison, which uses the exact 

ame setup as our residual approach, with the residual connection 

etween input and output removed from the generator. To stabilize 

raining of the baseline CycleGAN, we added an identity loss term: 

 ident it y (G, F , x, y ) = E x [ || G (x ) − x || 1 ] + E y [ || F (y ) − y || 1 ] , (5)

here G and F are the generator networks. This identity loss di- 

ectly forces the network to recreate the input image in the initial 

pochs, which reduced the chance of the network to get stuck in 

ocal optima ( de Bel et al., 2019 ). The weight of the identity loss

erm was initially set at 3.0 and reduced to zero after 20 epochs, 

s it directly works against the discriminator loss. The same learn- 

ng rate schedule was used as in the residual approach. 

Secondly, we compared our method with StainGAN, introduced 

y Shaban et al. (2019) . They achieved good results with CycleGAN 

n pathology data, beating several classical stain normalization ap- 

roaches ( Macenko et al., 2009; Vahadane et al., 2016; Reinhard 

t al., 2001; Khan et al., 2014 ). The main differences are that they 

sed ResNet instead of U-net for their generators and they applied 

1) instead of (4) for their adversarial loss term. Finally, we ex- 

erimented with adding spectral normalization, which has been 

hown to stabilize training of the discriminators ( Miyato et al., 

018 ). Spectral normalization has been shown to improve results in 

AN training ( Miyato et al., 2018; Brock et al., 2019 ), but is not yet

enerally used in CycleGAN applications. We experimented with 

pectral normalization in all CycleGAN setups (baseline, StainGAN 

nd residual). 

.4. Cyclegan inference 

We apply the transformation networks in a tile-by-tile fashion, 

s memory constraints prohibit application on the WSI in a single 

un. We used a method based on de Bel et al. (2019) , in which tiles

re sampled from the WSI with overlap between adjacent tiles. We 

ampled patches at a size of 1024 × 1024 , moving by 512 pixels 

er tile. Overlapping sections were blended together according to 

e Bel et al. (2019) to prevent artifacts at the edges of tiles, which

ay be introduced by padding in the network layers. 
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Fig. 7. Samples of color variations generated by the HED color augmentation. The 

original image is depicted at the top left. 
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.5. Segmentation networks 

For both segmentation tasks, we used a standard U-net setup 

 Ronneberger et al., 2015 ), using 4 max-pooling layers. The net- 

orks were individually optimized to improve segmentation per- 

ormance, through empirically determining the parameters (elabo- 

ated below). 

Colon tissue We trained the network with patches of 512 × 512 

nd a batch size of 5 for 500 epochs at 100 iterations per epoch. 

he initial learning rate was set at 0.0 0 01, decreased by a factor of

.5 after a plateau of 10 epochs. Patches were sampled at a resolu- 

ion of 0 . 96 μm/px . L2-regularization was applied with a weight of 

 · 10 −5 . The first convolutional layers contained 64 features, dou- 

ling after each max-pool in the encoder and halving after each 

ransposed convolution in the decoder. 

Kidney tissue The setup for the kidney segmentation network 

as largely the same as the colon tissue segmentation network. 

he initial convolutional layer was set at 32 features and increased 

ollowing the same scheme. Patches were sampled at 412 × 412 a 

atch size of 6 for 100 epochs at 100 iterations per epoch. The 

earning rate was initially set at 0.0 0 05 and decreased by a fac- 

or of 0.5 after a plateay of 10 epochs. Patches were sampled at 

 . 96 μm/px . L2-regularization was put at 1 · 10 −5 . 

.6. Traditional stain transformation 

Several color normalization methods based on template match- 

ng are applied as baseline comparisons, specifically those in- 

roduced by Vahadane et al. (2016) ; Macenko et al. (2009) ; 

einhard et al. (2001) . These methods require the WSIs to be 

tained in H&E, as opposed to the CycleGAN methods, which can 

e applied to any kind of stain. Furthermore, a template patch 

s required as a reference to fit the stain distributions. To get a 

ood template, we sampled multiple patches from the radboudumc 

ataset at a size of 2048 × 2048 , before settling on one that pro-

uced acceptable transformation based on visual inspection. This 

eference patch was used to transform all external datasets, for the 

hree normalization methods. 

Apart from the template matching methods, we implement the 

pproach by Bejnordi et al. (2016) , which uses a Lookup-table 

LUT) to perform color conversions. Cell nuclei are extracted from 

ampled patches, using Restricted Randomized Hough Transform, 

nd used to describe the hematoxylin and eosin chromatic dis- 

ributions. This is performed for both a source and target image. 

ext, the color distributions of source and target are matched and 

he color equivalence is stored in a look-up table (LUT). The LUT 

an be used to transform all colors of a source domain to a target

omain. This method has been shown to outperform other older 

raditional stain normalization methods that are based on template 

atching ( Bejnordi et al., 2016; Zanjani et al., 2018 ). We utilized 

he same hyper-parameters that were used in the original paper 

or generating the LUTs Bejnordi et al. (2016) . 

.7. Stain color augmentation 

Color augmentation techniques are a widely used alternative to 

ormalization for providing algorithm robustness to unseen stains. 

olor augmentations are often performed by perturbing the bright- 

ess, hue or contrast of the image. We will study if, while training 

ith extensive stain augmentation methods, there is still room for 

mprovement by using stain transformation techniques. 

We use a color augmentation method during the training of the 

egmentation networks specifically tailored to work well with H&E 

tained tissue ( Ruifrok et al., 2001 ), which was shown to be the

est performing augmentation in Tellez et al. (2019) . This method 

orks by separating the hematoxylin and eosin channels by means 
6 
f a standardized color matrix. Both channels are then indepen- 

ently shifted and scaled, and transformed back to the RGB space. 

his color augmentation was recently shown to work best for ro- 

ustness to stain variation in an extensive study on augmentations 

 Tellez et al., 2019 ). Fig. 7 demonstrates the variety introduced by 

his augmentation. 

Apart from extensive color augmentation, we used flip- 

ing/mirroring, scaling, blur and noise augmentations to make the 

egmentation networks as robust as possible to unseen variation. 

hese augmentations were allowed to happen in conjunction with 

ach other, resulting in heavily augmented patches. For the color 

ugmentation, we opted to use the HED-light variant, in which the 

ntensity ratio parameter is put between [ −0 . 05 , 0 . 05] for all chan-

els in the HED space ( Tellez et al., 2019 ). 

. Experimental setup 

.1. Colon tissue transformation: 

In the first application, we train to perform the transformation: 

 : external → radboud_colon. A separate CycleGAN setup was 

rained to perform transformation from each external centre to the 

adboud_colon centre. In this specific task we deal with little data 

n the external datasets. Moreover, we want to compare the Cycle- 

AN approach with the LUT-based approach, which uses a single 

lide as a template. For fair comparison between all normalization 

ethods, we used a single slide from both the source and target 

omains during training of all CycleGAN variants in the colon cen- 

res. A random slide was picked from each external dataset as well 

s from the radboud_colon dataset as a reference. This directly tests 

he CycleGAN’s capabilities to deal with small (in this case single 

lide) datasets. After training, all colon tissue slides from external 

enters were normalized to look like radboud_colon data. 

.2. Kidney tissue transformation: 

In our second application, we perform kidney tissue transfor- 

ation. We sampled from all slides of the amsterdam and rad- 

oud_kidney datasets for training the CycleGANs. In this instance, 

e can not compare our method to the template matching and 

UT-based transformation, which only work on H&E-stained tissue. 

his allowed us to use more data for the transformation. In this 

maller experiment, we mainly test the residual CycleGAN’s ability 

o perform better when data is abundant. As such, we only com- 

are the residual with the basic variant. Because we utilized both 

ource-to-target and target-to-source, a single CycleGAN setup was 
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Table 2 

Colon tissue Dice-coefficient score for all methods. Results for the individual external datacenters are shown, as well as the overall score. 

’base’ refers to non-normalized tissue. Standard deviations are shown between the parenthesis. 

base base CGAN res CGAN StainGAN babak vahadane macenko reinhard 

radboudumc 0.78 x x x x x x x 

utrecht 0.51 (0.15) 0.52 (0.16) 0.65 (0.12) 0.51 (0.15) 0.64 (0.05) 0.21 (0.10) 0.34 (0.01) 0.49 (0.04) 

leiden 0.59 (0.07) 0.24 (0.09) 0.74 (0.06) 0.64 (0.07) 0.55 (0.23) 0.24 (0.07) 0.41 (0.06) 0.37 (0.04) 

maxima 0.68 (0.07) 0.64 (0.11) 0.65 (0.13) 0.60 (0.12) 0.58 (0.16) 0.48 (0.09) 0.34 (0.13) 0.41 (0.19) 

bayreuth 0.50 (0.11) 0.58 (0.10) 0.59 (0.12) 0.50 (0.07) 0.59 (0.08) 0.34 (0.05) 0.39 (0.06) 0.43 (0.04) 

overall 0.57 (0.10) 0.50 (0.12) 0.66 (0.11) 0.56 (0.10) 0.59 (0.13) 0.32 (0.08) 0.37 (0.07) 0.43 (0.08) 

Table 3 

Dice coefficient score for all methods in both centers. ’base’ 

refers to non-normalized tissue. Standard deviations are shown 

between the parenthesis. 

trained on (x), 

applied to (y) base CGAN res CGAN 

radboudumc , 

amsterdam 0.78 (0.05) 0.85 (0.03) 0.85 (0.03) 

amsterdam , 

radboudumc 0.71 (0.08) 0.73 (0.09) 0.75 (0.07) 
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Table 4 

Comparison of different types of artifacts (discoloration, hallu- 

cination, contrast changes) that occur for the different normal- 

ization methods. The template matching methods consist of Ma- 

cenko, Reinhard and Vahadane. 

discoloration hallucination contrast 

Template-based + + −−
LUT-based + + −
CycleGAN ± −− + 

StainGAN ± − + 

res CycleGAN ± ± + 
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rained for transformation in both directions, thus using both gen- 

rators. 

Training process: In all applications, patches were sampled on 

he fly during training by sampling coordinates from a tissue 

ask generated using a tissue background segmentation algorithm 

 Bándi et al. (2017) ). 

.3. Segmentation networks 

Colon tissue segmentation A single segmentation network was 

rained on the radboud_colon dataset and used for application on 

ll external centers and the radboud_c_test set. We used 34 slides 

esignated for training the segmentation network ( Table 1 ). The 

ata was randomly split into 26 slides for training and 8 slides 

or validation, checkpointing after every epoch. We used the check- 

oint with the lowest loss on the validation set for evaluating the 

xternal set. 

Kidney tissue segmentation Two separate segmentation networks 

ere trained using 40 and 10 slides from the radboud_kidney 

nd the amsterdam data, respectively. The training/validation splits 

ere put at 32/8 and 9/1. Cases were randomly assigned to the 

raining or validation set. 

.4. Evaluation metrics 

We used the mean pixel Dice coefficient per center to evaluate 

he performance of the segmentation networks for each transfor- 

ation technique. We aggregated the Dice coefficients by calcu- 

ating the weighted average across the different classes. Standard 

eviations of the Dice coefficients were calculated on a per-slide 

asis. 

. Results 

The Dice-coefficient for each external colon dataset over the 

ourteen classes for all transformation techniques is shown in 

able 2 . The scores for the kidney tissue segmentation over all 

ight classes is shown in Table 3 . Samples of the transformation 

f kidney tissue using the residual CycleGAN are shown in Fig. 11 . 

A qualitative comparison of the colon segmentation perfor- 

ance between the non-normalized data and our Residual Cycle- 

AN approach for the individual external centers is shown in Fig. 8 . 

ualitative comparisons of the CycleGAN variant normalisation for 
7 
he colon are shown in Fig. 9 . The different classical approaches 

re compared in Fig. 10 , using the same the same patch samples 

s in Fig. 9 . Adding spectral normalization to the discriminator re- 

ulted in a 0, −0 . 01 and −0 . 03 difference for the average Dice co-

fficients, when applying it to the baseline, StainGAN and residual 

ethod, respectively. As such, we did not add it in our qualitative 

omparisons. 

In Table 4 we give some intuition as to what kind of artifacts 

an occur when using the different methods and the frequency 

ith which these artifacts occur. Here, we distinguish between dif- 

erent types of artifacts: discoloration (loss of information in the 

ransformed image by whitening of an area), hallucination, (in- 

roduction of structures in the transformed image) and contrast 

hanges (changes in contrast between different tissue structures, 

ot corresponding with target stain). In Table 4 , when an artifact 

ccurs often, i.e. approximately more than 50% of the inspected 

iews at 2 × 2 μm 

2 pixels, we use ’ −−’. At more than 25% we use

 −’, at more than 10% ’ ±’ and at less than 10% ’ + ’. To illustrate

ome of the artifacts that occur, we show some samples in Fig. 12 .

inally, we demonstrate that the cycle-consistency keeps up par- 

icularly well for our residual approach, compared to the baseline 

ycleGAN method, in Fig. 13 . 

. Discussion 

A major bottleneck in applying neural network applications in 

he medical field, is its fragility to stain variation ( Ciompi et al., 

017 ). Studying and improving robustness of neural networks is an 

mportant part of bringing deep learning applications to the clinic. 

n this study we extensively studied the interaction between seg- 

entation performance and stain normalization using data from 

ve different data centers. We demonstrated the effect of normal- 

zation on top of training with extensive augmentation. 

Our experiments show that CycleGAN-based stain transforma- 

ion improves the quality of segmentation algorithms. Using resid- 

al CycleGANs resulted in equal or better scores in most centers. 

e show that residual CycleGANs perform well with medical data. 

y learning the residual, the morphological/structural information 

ets passed on directly, leaving the network with only the task to 

earn the style information. Furthermore, the training process is 

ore stable over different runs, removing the need for the iden- 

ity loss term that was introduced in ( de Bel et al., 2019 ). Training
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Fig. 8. Samples of the tissue segmentation task with all methods. From left to right: the tissue patch to be segmented, application of the segmentation algorithm without 

any normalisation method, the base CycleGAN setup, the LUT setup, our residual CycleGAN approach and the ground truth. The top two images are taken from leiden dataset, 

the bottom one from maxima . Colors are mapped as follows: healthy glands (blue), healthy stroma (orange), stroma lamina propria (dark blue), muscle (pink), vessel (red), 

desmoplastic stroma (light green), tumor (dark green), mucus and debris (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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tability is often a problem in training of GANs ( Brock et al., 2019 ).

he residual approach seems to drastically improve on this stabil- 

ty. Adding a residual connection from input to output is a simple 

et effective addition for stain transformation of histopathological 

issue. 

In traditional CycleGANs, both the style and structural infor- 

ation need to be learned. This may be one of the reasons that 

he basic CycleGAN does not perform well in the colon tissue seg- 

entation case, where we used only a single slide for both the 

ource and target to learn from. The baseline CycleGAN and Stain- 

AN need to be able to both reproduce the structure and change 

he style domain, while sampling from very little data. The resid- 

al CycleGAN effectively retains the structure and is able to focus 

n stain, which we hypothesize to be the easier task of the two. 

ur results ( Table 2 ) suggest that the LUT-based approach produces 

nstable outcomes, producing segmentation performances of up to 

0% lower than the non-normalized tissue. The template matching 

pproaches scored lower than the other methods, which is likely 

ue to the lacking quality of the normalization. The wide variety of 

tains introduced in this paper (as shown in Fig. 3 ) appears to be

hallenging for these traditional methods. Table 2 shows that none 

f the stain transformation methods were capable of increasing the 

olon segmentation scores to the level of the radboud_c_test data, 

s opposed to the kidney data, where we do improve our results. 

e hypothesize that this may be due to the radboudumc colon 

lides having a less difficult ground truth. Experiments on paired 

ata, i.e. different stains on the same or consecutive slides, are 

equired to directly compare network performance between syn- 

hetic (normalized) stains and original stains. 

Interestingly, the non-normalized colon tissue segmentation on 

he maxima dataset performed best. Based on visual inspection 

e suggest that this is due to the high similarity between the 

axima images and the radboud_colon images used for training 

he segmentation algorithm ( Fig. 3 ). We hypothesize that adding 

tain transformation may not be beneficial to network performance 
8 
hen the stains are already similar. This confirms the result of 

 Tellez et al., 2019 ), which showed that solely color augmentation 

orked well without color transformation. Future work may focus 

n defining criteria to decide whether stain transformation is nec- 

ssary. 

According to Table 3 , both the traditional and residual CycleGAN 

etworks show a performance increase in the kidney when com- 

ared with using the original stains. The residual CycleGAN pro- 

ides a benefit on top of the traditional approach in case of the 

msterdam dataset. Additionally, the performance of the network 

rained on radboud_kidney data performs better. This is not surpris- 

ng since the amount of data available for training the segmenta- 

ion network was 4 times larger than the amsterdam dataset. We 

how that our technique can provide a benefit when used on top of 

tain augmentation. We omitted comparison with a segmentation 

etwork that was trained without augmentation. It was previously 

hown that segmentation does not work on unseen stains without 

ugmentation ( Tellez et al., 2019; de Bel et al., 2019 ). 

From Fig. 12 , we can clearly see that in the baseline CycleGAN 

ries to hallucinate new tissue. We see this effect more or less pro- 

ounced in both colon tissue and kidney tissue, while the sam- 

ling process is exactly the same for all CycleGAN variants. In all 

ases, masks were created to sample only from tissue locations, 

hich effectively reduces the amount of patches with background. 

e hypothesize from this that residual CycleGANs are more ro- 

ust to ”out-of-distribution” data. In StainGAN, we sometimes see 

checkerboard” patterns, which mainly becomes apparent in back- 

round locations, but might also be present in tissue. This may be 

he main cause for reduced performance, compared to the residual 

ethod. Finally, a type of artifact, which we call discoloration, is 

een in all CycleGAN approaches. This type of artifact mainly oc- 

urs in background locations. When ”hazy” textures are seen in 

he original, this texture is sometimes less pronounced in the con- 

erted tissue. This can be seen in Fig. 11 . We pose, however, that 

his type of artifact is the least harmful to segmentation quality. 
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Fig. 9. Samples of colon tissue before and after transformation with the CycleGAN approaches. One sample was picked from each external center. 

9 
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Fig. 10. Samples of colon tissue before and after transformation with the classical (template matching and lookup table) approaches. The top patch is put as a reference of 

the target radboudumc dataset, but was not necessarily used for normalization. One sample was picked from each external center. 

m

m

e

t  

r

v

a  

t

t

i

f

v

o

c

i

t

c

t

t

n

i

From Table 4 , there is a clear contrast between classic nor- 

alization methods and the CycleGANs. Due to the per-pixel nor- 

alization of classic methods, hallucinations are never seen. How- 

ver, the quality of the normalization is lacking, resulting in con- 

rast differences, which is also visible in Fig. 10 . This is the main

eason for the low normalization scores as seen in Table 2 . Con- 

ersely, the general quality of normalization in all CycleGAN vari- 

nts is higher (as seen in Fig. 9 ), while these methods are prone

o hallucinations. As shown in ( Cohen et al., 2018 ), the applica- 

ion of unsupervised domain transfer can introduce tissue artifacts 

n transformed images, specifically hallucinations, raising concerns 
10 
or when these techniques are applied in medical diagnosis. From 

isual inspection and examples ( Fig. 12 ), we demonstrated that 

ur residual CycleGAN is less susceptible to hallucinations when 

ompared to the other CycleGAN variants. This may allow for safe 

ntroduction of stain transformation techniques in medical prac- 

ice. Further work may be focused on testing this assumption, in 

ases when a large difference in distribution of morphological fea- 

ures exists between the two domains. This will be especially in- 

eresting in slide level classification tasks, where a single halluci- 

ation might change the classification from ’benign’ to ’tumor’, for 

nstance. 
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Fig. 11. Random samples of kidney tissue before and after transformation with the 

residual CycleGAN. Small border artifacts can be observed in the bottom right of 

the synthetic amsterdam images. This is the effect of padding during training. We 

remove these artifacts using our inference method (section 3.4). 

Fig. 12. Three samples of tissue conversions with artifacts. In first row we can ob- 

serve checkerboard pattern hallucinations in StainGAN. The second row shows the 

same checkerboard pattern for StainGAN and hallucinations in the base CycleGAN. 

The final row demonstrates contrast changes in the classic normalization methods 

(with low contrast between cell nuclei and surrounding tissue in Vahadane and in- 

accurate colorization in the LUT approach). 

l
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Fig. 13. Random samples from the colon dataset of the original images (left), with 

the transformed version (middle) and the cycled image (right), demonstrating the 

quality of the cycle-consistency. 
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The current challenge of normalization methods in histopatho- 

ogical tissue, is the reduction of artifacts. We think that the resid- 

al CycleGAN has shown to be a step in the right direction, re- 

ucing hallucinations, which is the most harmful type of artifacts. 

urthermore, the residual CycleGAN shares a beneficial property 

ith the classical methods: needing little data to perform well. 

n clinical settings, one might imagine the case of getting a sin- 

le slide from another hospital for evaluation. Residual CycleGAN 
11 
ould perform well in this case, providing high quality normaliza- 

ion. 

. Conclusion 

We presented a new residual CycleGAN approach for normaliz- 

ng tissue stainings. We comprehensively quantified the usefulness 

f different stain transformation and stain augmentation meth- 

ds using data from five different centers. We have shown that 

ur CycleGAN approach works comparatively well when challenged 

ith data scarcity and benefits segmentation performance when 

sed on top of extensive color augmentation. We recommend us- 

ng residual CycleGANs for color transformation in histopathologi- 

al tissue, as it has shown to be well suited for keeping structural 

ntegrity. 
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