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ABSTRACT

Prostate cancer is generally graded by pathologists based on hematoxylin and eosin (H&E) stained slides. Because
of the large size of the tumor areas in radical prostatectomies (RP), this task can be tedious and error prone
with known high interobserver variability. Recent advancements in deep learning have enabled development
of automated systems that may assist pathologists in prostate diagnostics. As prostate cancer originates from
glandular tissue, an important prerequisite for development of such algorithms is the possibility to automatically
differentiate between glandular tissue and other tissues. In this paper, we propose a method for automatically
segmenting epithelial tissue in digitally scanned prostatectomy slides based on deep learning. We collected 30
single-center whole mount tissue sections, with reported Gleason growth patterns ranging from 3 to 5, from 27
patients that underwent RP. Two different network architectures, U-Net and regular fully convolutional networks
with varying depths, were trained using a set of sparsely annotated slides. We evaluated the trained networks
on exhaustively annotated regions from a separate test set. The test set contained both healthy and cancerous
epithelium with different Gleason growth patterns. The results show the effectiveness of our approach given
a pixel-based AUC score of 0.97. Our method contains no prior assumptions on glandular morphology, does
not directly rely on the presence of lumina, and all features are learned by the network itself. The generated
segmentation can be used to highlight regions of interest for pathologists and to improve cancer annotations to
further enhance an automatic cancer grading system.
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1. INTRODUCTION

Prostate cancer (PCa) is the most common cancer in men in developed countries.1 PCa develops from genetically
damaged glandular epithelium, resulting in altered cellular proliferation patterns. In the case of high-grade
tumors, the glandular structure is eventually lost.2 Treatment planning is generally based on histological grading
of prostate biopsies (preoperative) or full radical prostatectomy (RP) slides (postoperative). The Gleason score
is the most important marker for patient prognosis and is determined by pathologists on H&E stained specimens.
As PCa originates from epithelial cells, glandular structures within prostate specimens are regions of interest
for finding malignant tissue. For a pathologist, assessing all epithelial regions can be a time-consuming task,
especially when considering the gigapixel-sized RP slides, the poorly differentiated structure of high-grade PCa
and the heterogeneity in prostate cancer growth patterns. An automated method to highlight these regions can
help speed up this task.

Moreover, automatically differentiating between glandular tissue and other tissues is an important prerequisite
for the development of automated methods for detecting PCa. Typically, deep learning methods that try to detect
cancer from scanned tissue specimens use a set of annotated cancer regions as the reference standard for training.
As these algorithms learn from their training data, the quality of the annotations directly influences the quality
of the output. Outlining all individual tumor cells within PCa is practically infeasible due to the mixture of
glandular, stromal and inflammatory components (Figure 1). Therefore, tumor annotations made by pathologists
often contain large amounts of non-relevant tissue, which adds noise to the reference standard and, subsequently,
limits the potential of these deep learning methods. By automatically removing all non-relevant tissue, these
coarse tumor annotations can be refined and the ability of these networks to detect cancer could be improved.
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Figure 1: Different types of glands: normal glandular structure (1a); poorly differentiated, high-grade Gleason
5 PCa (1b); non-tumor epithelium surrounded by inflammation (1c); Gleason 3 PCa showing color variation
between slides (1d).

Given a set of labels, in this case epithelial and non-epithelial tissue, we trained a system to automatically
divide digitized tissue into relevant and non-relevant tissue on a pixel-by-pixel basis. Existing research shows
promise in this task for PCa: Gertych et al.3 use texture and intensity based features in combination with
an SVM; Naik et al.4 apply a Bayesian classifier, relying on the detection of lumina; Singh et al.5 propose a
multi-step solution including nuclei segmentation to create a final segmentation map of glandular regions. While
these approaches achieve a good performance, they are often only trained or tested on low grade PCa or rely on
the morphological structure of the glands. The wide-ranging glandular structures in PCa, such as the cribriform
growth pattern of Gleason 4, limit the applicability of these methods. By applying deep learning we can try to
overcome this problem by not imposing any predefined features on the model. Instead, we rely on the network
itself to learn the relevant features directly from data. Previous research shows that this task is possible on other
tissue types, e.g. in breast and colorectal cancer.6

In this research we propose an automated method for segmentation of epithelial tissue within prostatectomy
slides using deep convolutional neural networks (CNN). Using CNNs we remove the need for predefined features.
We compare two different architectures: regular fully-convolutional networks7 and U-Net.8 Our automated
segmentation is not only useful as a tool for pathologists, we also envision this segmentation as the first part of
a fully automated prostate cancer detection and grading pipeline.

2. METHODOLOGY

2.1 Multi-resolution histopathology images

We collected 30 single-center whole mount tissue sections from 27 patients that underwent RP treatment. The
reported Gleason growth patterns in these sections ranged from 3 to 5. The specimens were prepared with a H&E
stain, subsequently digitized and randomly split into three sets: 15 slides for training, 5 for validation and 10 for
testing. Within the training and validation slides epithelial structures and stroma regions where delineated by a
non-expert under supervision of an experienced pathologist, specialized in uropathology. Lumina were removed
from the annotations using a color-based background filter and further refined by hand. An initial version of our
system was applied to the training slides and a second annotation round was used to annotate regions that were
initially misclassified by the network.

The total number of epithelium annotations per slides are low; in total 15-30 different regions were annotated
per slide which resulted in an average annotation coverage of approximately 0.03% per slide. We trained our
networks patch-by-patch and these patches were sampled from the slides at 10x magnification (pixel resolution
0.64 µm).

2.2 Network architecture

Two types of networks were trained: a regular fully convolutional network (FCN)7 and U-Net.8 FCNs are the
de-facto standard for deep learning on this type of data, whereas U-Nets have been specifically designed for
segmentation. We compare these methods to determine whether U-Net offers tangible benefit over FCNs for



Figure 2: Overview of the evaluation method using the output of the U-Net depth 4 as an example. For each
input image from the test set, ground truth annotations were made manually by hand. The network is applied to
the input image and the raw output of the network is thresholded to generate a binary segmentation map. The
segmentation map is then compared with the ground truth. The segmentation overlay shows the performance of
the network: green marked pixels show true positive, blue false negative and red false positive.

this specific problem. Besides the network architecture, we also vary the complexity of both models by testing
different settings for the network depth. Both networks were implemented using Theano9 and Lasagne.10

The FCN has an input size of (128× 128× 3) (width, height, channels) and an output of (1× 2) (one output
for each class). During training the FCN classifies the central pixel of each patch. Each FCN network consists of
a number of contraction blocks defined by the depth parameter, and two classification layers. Each contraction
block consists of two convolution layers and a max pooling layer. For the last contraction block the pool layer
is omitted. The classification layers consist of two (1 × 1) convolutional layers with respectively 2048 and 1024
filters that mimic the behavior of a fully connected layer. The depth of the network was varied from 2 to 4.
Given d the depth of the current layer and D the total depth of the network, the network structure is as follows:

Conv-3 × 3 2d+4

Conv-3 × 3 2d+4

MaxPool-2

× (D − 1)

[
Conv-3 × 3 2d+4

Conv-3 × 3 2d+4

] [
AvgPool

] [Conv-8 × 8 2048
Conv-1 × 1 1024

] [
Dropout

Conv-1 × 1 2

]

An average pool layer is used to match the output of the contraction layers to the input of the classification
layers (and omitted in the depth 4 network). Batch normalization was applied to all convolution layers.

For our U-Net implementation we followed the architecture by Ronneberger et al.8 The U-Net architecture
makes use of two paths, a contracting and expansive, and outputs a segmentation map (in contrast to the FCN).
Our U-Net networks uses input patches of (512 × 512 × 3). Three different depths were tested. The complexity
of the contracting path, in terms of number of parameters, was equal to the complexity of the FCN (see also
Table 1).

2.3 Evaluation method

For each test slide, the region of the primary tumor was delineated by a pathologist if the slide contained PCa.
From each test slide, we randomly selected two regions of (1250 × 1250) pixels each, one from a cancer and
a second from a non-cancer area, at 10x magnification. If no cancer was present in the slide, two non-cancer
regions were selected. A new random region was selected if there were major scanning artifacts present, or when
there was no epithelium or cancer tissue in the region (e.g when a primarily stromal area within a cancerous
region was selected).

In total we sampled 8 cancer and 12 non-cancer regions. After selection, all epithelial tissue within these
regions was annotated exhaustively. Lumina were removed with a background filter and further refined by hand.
See Figure 2 for an overview of the evaluation method.

After training, the optimal classification threshold was determined for each network individually based on
the validation set. The trained networks were then applied to the individual regions of the test set.



(a) (b)

(c) (d)

Figure 3: Best performing network, U-Net depth 4, applied to two regions from the test set. Green marked
pixels show true positive, blue false negative and red false positive. Most errors are present at the border of the
epithelium which are in some cases caused by errors in the reference standard. Figure 3a shows an example of an
artifact in the bottom left corner. The network does not rely on the presence of lumen as can be seen in Figure
3d.

3. RESULTS

The thresholded output of the networks was compared with the ground truth. For each network the pixel-based
performance was computed using accuracy, F1 and Jaccard score (Table 1). Examples of the final segmentation
output can be seen in Figure 3.

The networks with the highest depth setting achieved the highest accuracy. The best FCN and U-Net
achieve F1 scores of 0.83 and 0.82 with a total AUC of 0.96 (Fig. 5a) and 0.97 (Fig. 5b) respectively. While
the performance of both network architectures is comparable, the U-Net is more efficient in terms of parameter
complexity and performs slightly better on the cancer regions (AUC of 0.95 versus 0.92, see Figure 6 for an
example).

4. DISCUSSION

We tested two different deep learning architectures, a regular fully convolutional network and U-Net, to segment
epithelium from H&E stained prostatectomy slides. Our approach shows that it is possible to detect epithe-
lium/glandular structures without relying on any a priori defined features or domain knowledge embedded in the



Figure 4: Example of applied network on whole-slide level. Although the networks are trained patch-by-patch,
the goal is to apply the networks on a whole-slide level. The thresholded network output is shown in green.

Table 1: Network overview, complexity and pixel-based performance on the test set. The number of contraction
parameters is based on the layers from the downward path for the U-Net and the and the contraction blocks of
the FCN. The total number of parameters is based on all the layers of the network. F1, Jaccard and accuracy
scores are based on the whole test set. The cancer and non-cancer AUC were solely calculated on the test regions
that contained cancer or no cancer respectively. Highest scores are marked in bold.

# Network Depth Contraction
parameters

Total
parameters

F1 Jaccard Accuracy AUC
total

AUC
cancer

AUC
non-

cancer

1 U-Net 2 16,944 26,130 0.79 0.66 0.87 0.95 0.93 0.94
2 U-Net 3 72,752 118,162 0.82 0.70 0.90 0.96 0.95 0.96
3 U-Net 4 294,960 484,498 0.82 0.70 0.90 0.97 0.95 0.97
4 FCN 2 16,944 6,322,738 0.79 0.66 0.87 0.94 0.90 0.96
5 FCN 3 72,752 10,572,850 0.81 0.69 0.88 0.95 0.90 0.97
6 FCN 4 294,960 19,183,666 0.83 0.71 0.89 0.96 0.92 0.97

model. In terms of layer depth, the deepest version of both architectures perform best on our test set. Given
the metrics there is no clear winner in terms of segmentation performance as both models achieve high scores.
Though, taking parameter complexity in to account, the U-Net outperforms the FCN as it achieves a comparable
accuracy using only a fraction of the parameters.

It is hard to compare our results to existing methods due to the lack of a shared test set and varying
complexity in terms of Gleason growth patterns. Moreover, where we focus specifically on segmenting epithelial
tissue others include the lumen in the segmentation. Apart from these limitations in the comparison, our method
seems to outperform existing gland segmentation approaches; e.g. Singh et al.5 (F-score of 0.74) and Gertych
et al.3 (Jaccard score of 0.595).

Room for improvement lays with segmenting glands as a whole. Our models rarely miss complete cancer
regions, though with some high-grade PCa only parts of the glands are detected (Figure 6c). We suspect that
most of the errors are, first of all, caused by a lack of training examples and not due to a limitation of the models.
In our dataset, the occurrence of high grade PCa (growth patterns Gleason 4 and Gleason 5) was lower than the
more common low grade PCa (Gleason 3) or healthy epithelium. Moreover, these high grade tumors are often
poorly differentiated which makes manual annotating these glands difficult. Even for a trained expert it can
be hard to precisely outline epithelial cells in H&E, especially in regions with inflammation or when a gland is
deformed. The border of the epithelium, especially within the lumen, is also not always clearly defined.

We want to address the limitations of our dataset by collecting more slides that contain high grade PCa.
We expect that our models will perform better if we include more specimens of diverse and high grade tumors.
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Figure 5: ROC curves for best performing FCN (5a) and U-Net (5b), each network has a depth of 4. Both
networks perform less on the cancer regions in comparison to the non-cancer regions. The U-Net performs
slightly better on the cancer regions but this difference is very small.
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Figure 6: Example of failure cases where one of the networks outperforms the other. The top row contains PCa
(Gleason growth pattern 4) whereas the bottom row only contains benign epithelium. In the cancer example,
the U-Net outperforms the FCN by segmenting more of the Gleason 4 PCa whereas the FCN misses this almost
completely (right top, 6a). In the non-cancer example,tThe U-Net (6f) under-segments while the FCN (6e) finds
more of the epithelium at the cost of over-segmenting portions of the lumina.



Including more high grade PCa in our dataset has the downside that making annotations will be increasingly
difficult. Our current dataset suffers from this problem and any larger set will face the same problem. To
create a more precise ground truth we plan to use immunohistochemistry to assist in making annotations. By
using specific stains that highlight epithelial cells, we hope to generate precise and less erroneous annotations of
epithelial tissue.
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