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Gleason grading1 of biopsies yields important prognostic 
information for prostate cancer patients and is a key ele-
ment for treatment planning2. Pathologists characterize 

tumors into different Gleason growth patterns based on the histo-
logical architecture of the tumor tissue. Based on the distribution of 
Gleason patterns, biopsy specimens are categorized into one of five 
groups, commonly referred to as International Society of Urological 
Pathology (ISUP) grade groups, ISUP grade, Gleason grade groups 
or simply grade groups (GGs)3–6. This assessment is inherently sub-
jective with considerable inter- and intrapathologist variability7,8, 
leading to both undergrading and overgrading of prostate cancer8–10.

AI algorithms have shown promise for grading prostate can-
cer11,12, specifically in prostatectomy samples13,14 and biopsies15–18, 

and by assisting pathologists in the microscopic reviews19,20. 
However, AI algorithms are susceptible to various biases in their 
development and validation21,22. This can result in algorithms that 
perform poorly outside the cohorts used for their development. 
Moreover, shortcomings in validating the algorithms’ performance 
on additional cohorts may lead to such deficiencies in generaliza-
tion going unnoticed23,24. Algorithms are also often developed and 
validated in a siloed manner: the same researchers who develop 
the algorithms also validate them. This leads to risks of introduc-
ing positive bias, because the developing researchers have control 
over, for example, establishing the validation cohorts and selecting 
the pathologists providing the reference standard. There has yet to  
be an independent evaluation of algorithms for prostate cancer  
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diagnosis and grading to assess whether they generalize across 
different patient populations, pathology labs, digital pathology 
scanner providers and reference standards derived from intercon-
tinental panels of uropathologists. This represents a key barrier to 
implementation of algorithms in clinical practice.

AI competitions have been an effective approach to crowd source 
the development of performant algorithms25–27. Despite their effec-
tiveness in facilitating innovation, competitions still tend to suffer 
from a set of limitations. Validation of the resulting algorithms has 
typically not been performed independently of the algorithm devel-
opers. In a competitive setup, the incentive for conscious or subcon-
scious introduction of positive bias by the developers is arguably 
further increased, and a lack of independent validation also means 
that the technical reproducibility of the proposed solutions is not 
verified. Moreover, competitions have typically not been followed 
up by validation of the algorithms on additional international 
cohorts, casting doubt on whether the resulting solutions possess 
the generalization capability to truly answer the underlying clinical 
problem, as opposed to being fine-tuned for a particular competi-
tion design and dataset28.

Through the present study, we aimed to advance the method-
ology for the design and evaluation of medical imaging AI inno-
vations to develop and rigorously validate the next generation of 
algorithms for prostate cancer diagnostics. We organized a global 
AI competition, the Prostate cANcer graDe Assessment (PANDA) 
challenge, by compiling and publicly releasing a European (EU) 
cohort for AI development, the largest publicly available data-
set of prostate biopsies to date. Second, we fully reproduced 
top-performing algorithms and externally validated their gener-
alization to independent US and EU cohorts and compared them 
with the reviews of pathologists. The competition setup isolated the 
developers from the independent evaluation of the algorithms’ per-
formance, minimizing the potential for information leakage and 
offering a true assessment of the diagnostic power of these tech-
niques. Taken together, we show how the combination of AI and 
innovative study designs, together with prespecified and rigorous 
validation across diverse cohorts, can be utilized to solve challeng-
ing and important medical problems.

Results
Characteristics of the datasets. In total, 12,625 whole-slide images 
(WSIs) of prostate biopsies were retrospectively collected from 6 
different sites for algorithm development, tuning and independent 
validation (Table 1, Extended Data Fig. 1 and Supplementary Tables 
7 and 8). Of these, 10,616 biopsies were available for model develop-
ment (the development set), 393 for performance evaluation during 
the competition phase (the tuning set), 545 as the internal validation 
set in the postcompetition phase and 1,071 for external validation.

Cases for development, tuning and internal validation origi-
nated from Radboud University Medical Center, Nijmegen, 
the Netherlands and Karolinska Institutet, Stockholm, Sweden 
(Extended Data Fig. 1 and Supplementary Methods 1, 2 and 3). 
The external validation data consisted of a US and an EU set. The 
US set contained 741 cases and was obtained from two indepen-
dent medical laboratories and a tertiary teaching hospital. The EU 
external validation set contained 330 cases and was obtained from 
the Karolinska University Hospital, Stockholm, Sweden. The histo-
logical preparation and scanning of the external validation samples 
were performed by different laboratories to those responsible for 
the development, tuning and internal validation data.

Reference standards of the datasets. The reference standard for 
the Dutch part of the training set was determined based on the 
pathology reports from routine clinical practice. For the Swedish 
part of the training set, the reference standard was set by one uro-
pathologist (L.E.) following routine clinical workflow. The reference  

standard for the Dutch part of the internal validation set was  
determined through consensus of three uropathologists (C.H.v.d.K., 
R.V. and H.v.B.) from two institutions with 18–28 years of clinical 
experience after residency (mean of 22 years). For the Swedish sub-
set, four uropathologists (L.E., B.D., H.S. and T.T.) from four insti-
tutions, all with >25 years of clinical experience after residency, set 
the reference standard.

For the US external validation set, the reference standard was 
set by a panel of six US or Canadian uropathologists (M.A., A.E., 
T.v.d.K., M.Z., R.A. and P.H.) from six institutions with 18–34 years 
of clinical experience after residency (mean of 25 years). Each speci-
men was first reviewed by two uropathologists from the panel. A 
third uropathologist reviewed discordant cases to arrive at a major-
ity opinion. For this external dataset, immunohistochemistry was 
available to aid in tumor identification. The EU external validation 
set was reviewed by a single uropathologist (L.E.). For details on the 
uropathologist review protocol, see Supplementary Methods 2. On 
validation sets, the pathologists who contributed to the reference 
standards showed high pairwise agreement (0.926 on a subset of the 
EU internal validation set and 0.907 on the US external validation 
set, Supplementary Table 6). To ensure consistency across differ-
ent reference standards, we additionally investigated the agreement 
between reference standards across continents (Supplementary 
Table 9). We found high agreement between pathologists across the 
regions when EU uropathologists reviewed US data and vice versa. 
Moreover, majority votes of the panels were highly consistent with 
the reference standard of the other region (quadratically weighted 
κ 0.939 and 0.943 for, respectively, the EU and US pathologists, 
Supplementary Table 9).

Overview of the competition. The study design of the PANDA 
challenge was preregistered29 and consisted of a competition and a 
validation phase. The competition was open to participants from 
21 April until 23 July 2020 and was hosted on the Kaggle platform 
(Supplementary Methods 5). During the competition phase, 1,010 
teams, consisting of 1,290 developers from 65 countries, partici-
pated and submitted at least one algorithm (Fig. 1). Throughout the 
competition, teams could request evaluations of their algorithm on 
the tuning set (Supplementary Methods 2). The algorithms were 
then simultaneously blindly validated on the internal validation 
set (Fig. 2). All teams combined submitted 34,262 versions of their 
algorithms, resulting in a total of 32,137,756 predictions made by 
the algorithms.

The first team to achieve an agreement with the uropathologists 
of >0.90 (quadratically weighted Cohen’s κ) on the internal valida-
tion set already occurred within the first 10 days of the competition 
(Fig. 2). In the 33rd day of the competition, the median performance 
of all teams exceeded a score of 0.85.

Overview of evaluated algorithms. After the competition, teams 
were invited to join the PANDA consortium. Of all teams, 33 sub-
mitted a proposal to join the validation phase of the study. From 
these, the competition organizers selected 15 teams based on their 
algorithm’s performance on the internal validation set and method 
description (Supplementary Methods 6). Among the 10 highest 
ranking teams in the competition, 8 submitted a proposal and were 
accepted to join the consortium. A further seven teams in the con-
sortium all ranked within the competition’s top 30.

All selected algorithms made use of deep learning-based meth-
ods30,31. Many of the solutions demonstrated the feasibility of 
end-to-end training using case-level information only32, that is, 
using the International Society of Urological Pathology (ISUP) 
GG of a specimen as the target label for an entire WSI. Most lead-
ing teams, including the winner of the competition, adopted an 
approach in which a sample of smaller images, or patches, is first 
extracted from the WSI. The patches are then fed to a convolutional 
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neural network, the resulting feature responses are concatenated 
and the final classification layers of the network are applied to these 
features. This allows training a single model end-to-end in a com-
putationally efficient fashion to directly predict the ISUP GG of a 
WSI. Such weakly supervised approaches do not require detailed 
pixel-level annotations as often used in fully supervised training.

Another algorithmic feature adopted by several top-performing 
teams was to apply automated label cleaning, where samples consid-
ered as erroneously graded by the pathologists were either excluded 
from training or relabeled. Several teams indicated the label noise 
associated with the subjective grading assigned by pathologists as a 
key problem, and tackled it by algorithms that detect samples where 
the reference standard deviates considerably from the predictions 
of the model. Label denoising was then typically applied iteratively 
to refine the labels more aggressively as the model’s performance 
improved during training.

A third key feature shared by all teams of the PANDA consor-
tium was the use of ensembles consisting of diverse models, fea-
turing, for example, different data preprocessing approaches or 
different neural network architectures. Despite the relative diver-
sity in these algorithmic details, by averaging the predictions of the 
models constituting the ensembles, most teams achieved compa-
rable overall performance.

For a summary and details on the individual algorithms see 
Supplementary Methods 7 and Supplementary algorithm descrip-
tions. Most of the evaluated algorithms are available freely for 
research use (please see Supplementary algorithm descriptions for 
further details).

Classification performance in the internal validation dataset. In 
the validation phase, all selected algorithms were fully reproduced 
on two separate computing platforms. The average agreement of 
the selected algorithms with the uropathologists was high with a 
quadratically weighted κ of 0.931 (95% CI, 0.918–0.944, Fig. 3). 
Algorithms showed high sensitivity for tumor detection, with the 
representative algorithm (selected based on median balanced accu-
racy, see Statistical analysis) achieving a sensitivity of 99.7% (95% CI 
of all algorithms, 98.1–99.7, Fig. 4) and a specificity of 92.9% (95% 
CI of all algorithms, 91.9–96.7). The classification performances of 
the individual algorithms are presented in Extended Data Figs. 2–4 
and Supplementary Tables 2 and 3.

Classification performance in the external validation datasets. The 
algorithms were independently evaluated on the two external valida-
tion sets. The agreements with the reference standards were high with 
a quadratically weighted κ of 0.862 (95% CI, 0.840–0.884) and 0.868 
(95% CI, 0.835–0.900) for the US and EU external validation sets, 
respectively. The main algorithm error mode was overdiagnosing of 
benign cases as ISUP GG 1 cancer (Extended Data Figs. 5 and 6).

The representative algorithm identified cases with tumor in 
the external validation sets, with sensitivities of 98.6% (95% CI of 
all algorithms, 97.6–99.3) and 97.7% (95% CI of all algorithms, 
96.2–99.2) for the US and EU sets, respectively. In comparison to 
the internal validation set, the algorithms misclassified more benign 
cases as malignant, resulting in specificities of 75.2% (95% CI of 
all algorithms, 66.8–80.0) and 84.3% (95% CI of all algorithms,  
70.5–87.9) for the representative algorithm.

Table 1 | Data characteristics of the development set, tuning set, internal validation set and the two external validation sets

Eu 
development 
set

Eu 
development 
set

Eu tuning set Eu tuning 
set

Eu internal 
validation set

Eu internal 
validation 
set

uS external 
validation set

Eu external 
validation 
set

Total

Source Radboud 
university 
Medical 
Center 
Netherlands

Karolinska 
institutet 
Sweden

Radboud 
university 
Medical 
Center 
Netherlands

Karolinska 
institutet 
Sweden

Radboud 
university 
Medical 
Center 
Netherlands

Karolinska 
institutet 
Sweden

Medical 
Laboratories, 
CA/uT, 
uSA; tertiary 
teaching 
hospital, CA, 
uSA

Karolinska 
university 
Hospital 
Sweden

–

No. of sites 1 1 1 1 1 1 3 1 6

No. of cases 1,028 1,085 72 33 129 82 741 330 3,500

 No. of biopsies 5,160 5,456 195 198 333 212 741 330 12,625

 Nontumor 967 (19) 1,925 (35) 95 (49) 58 (29) 155 (47) 66 (31) 254 (34) 108 (33) 3,628 (29)

Tumor-containing 
(ISUP GG 
breakdown below)

4,193 (81) 3,531 (65) 100 (51) 140 (71) 178 (53) 146 (69) 487 (66) 222 (67) 8,997 (71)

 GG 1 852 (17) 1,814 (33) 24 (12) 48 (24) 48 (14) 53 (25) 247 (33) 65 (20) 3,151 (25)

 GG 2 675 (13) 668 (12) 15 (8) 32 (16) 35 (11) 34 (16) 122 (16) 63 (19) 1,644 (13)

 GG 3 925 (18) 317 (6) 15 (8) 14 (7) 38 (11) 16 (8) 70 (9) 49 (15) 1,444 (11)

 GG 4 768 (15) 481 (9) 19 (10) 30 (15) 16 (5) 22 (10) 21 (3) 19 (6) 1,376 (11)

 GG 5 973 (19) 251 (5) 27 (14) 16 (8) 41 (12) 21 (10) 27 (4) 26 (8) 1,382 (11)

No. of cases 
with general 
pathologist 
reviews

– – – – 70 – 237 – 307

No. of pathologist 
reviews

– – – – 910 – 4,740 – 5,650

The values in parentheses give the percentage. The development set was available to competition teams for algorithm development, and the tuning set for limited algorithm evaluation during the 
competition. All validation sets were fully independent and blinded to the algorithm developers. Additional details on reference standard protocol can be found in Supplementary Methods 2 and 3.
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Classification performance compared with pathologists. To 
compare algorithms’ performances with those of general patholo-
gists, we obtained reviews from two panels of pathologists on sub-
sets of the internal and US external validation sets. For the Dutch 
part of the internal validation set, 13 pathologists from 8 countries 
(7 from Europe and 6 outside of Europe) reviewed 70 cases. For 
the US external validation set, 20 US board-certified pathologists 
reviewed 237 cases. For details on the pathologist review protocol, 
see Supplementary Methods 3.

The algorithms scored significantly (P < 0.001) higher in agree-
ment with the uropathologists (0.876, 95% CI, 0.797–0.927; Fig. 
3) than the international general pathologists did (0.765, 95% CI, 
0.645–0.852) on the 70 cases from the Dutch part of the internal val-
idations set. The representative algorithm had higher sensitivity for 
tumor (98.2%, 95% CI of all algorithms 97.4–100.0) than the repre-
sentative pathologist (96.5%, 95% CI of all pathologists 95.4–100.0) 
and higher specificity (100.0%, 95% CI of all algorithms 90.6–100.0, 
versus 92.3%, 95% CI of all pathologists 77.8–97.8). On average, the 
algorithms missed 1.0% of cancers, whereas the pathologists missed 

1.8%. Differences in grade assignments between the algorithms and 
pathologists are visualized in Fig. 5.

On the subset of the US external validation set with pathologist 
reviews, the algorithms exhibited a similar level of agreement with 
the uropathologists as the US general pathologists did (0.828, 95% 
CI, 0.781–0.869 versus 0.820, 95% CI, 0.760–0.865; P = 0.53). The 
representative algorithm had higher sensitivity for tumor (96.4%, 
95% CI of all algorithms, 96.6–99.5) than the representative pathol-
ogist (91.9%, 95% CI of all pathologists, 89.3–95.5) but lower speci-
ficity (75.0%, 95% CI of all algorithms, 61.2–82.7 versus 95.0%, 95% 
CI of all pathologists, 87.4–98.1). On average, the algorithms missed 
1.9% of cancers, whereas the pathologists missed 7.3%.

Discussion
AI has shown promise for diagnosis and grading of prostate can-
cer, but these results have been restricted to siloed studies with lim-
ited proof for generalization across diverse multinational cohorts, 
representing one of the central barriers to implementation of AI 
algorithms in clinical practice. The objective of the present study 

Validation phase
Independent multi-site validation

Selected 
algorithms

US external 
validation

set

EU external 
validation 

set

Internal 
validation setFull data 

access

Final algorithm 
submission

Development phase
International competition

Development set Tuning set

Provide
candidate

algorithm for
evaluation

Algorithm
performance

Participating teams

Comparison with 
international 
pathologists

Comparison with 
US pathologists

Netherlands
Sweden

USA

1,010
teams

1,290
participants

17,000
submissions

65
countries

3
data sources

6
data sites

10,616
Biopsies 

for development

PANDA challenge
Competition & study setup

Participants
Data source

2009
Biopsies 

for validation

Fig. 1 | Overview of the PANDA challenge and study setup. The global competition attracted participants from 65 countries (top: size of the circle for 
each country illustrates the number of participants). The study was split into two phases. First, in the development phase (bottom left), teams competed 
in building the best-performing Gleason grading algorithm, having full access to a development set for algorithm training and limited access to a tuning 
set for estimating algorithm performance. In the validation phase (bottom right), a selection of algorithms was independently evaluated on internal and 
external datasets against reference grading obtained through consensus across expert uropathologist panels, and compared with groups of international 
and US general pathologists on subsets of the data.
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was to overcome these critical issues. First, we aimed to facili-
tate community-driven development of AI algorithms for cancer 
detection and grading on prostate biopsies. Second, we sought to 
transcend isolated assessment of the diagnostic performance of 
individual AI solutions by focusing on reproducibility and fully 
blinded validation of a diverse group of algorithms on interconti-
nental and multinational cohorts.

The resulting PANDA challenge was, to the best of our knowl-
edge, the largest competition in pathology organized to date, in 
terms of both the number of participants and the size of the data-
sets, and the first study to analyze a variety of AI algorithms for 
computational pathology on this scale33. The datasets included vari-
ability in biopsy sampling procedure, specimen preparation process 
and whole-slide scanning equipment, and had different and multi-
national sets of pathologists contributing to the reference standard 
of the validation sets. Our main finding was that AI algorithms 
obtained from a competition setup could successfully detect and 
grade tumors, reaching pathologist-level concordance with expert 
reference standards. We further compared the algorithms with pre-
viously published results (Supplementary Table 5 and Extended 
Data Fig. 7)15–17. The algorithms outperformed earlier works on sub-
sets of the EU validation sets. On the US external validation set, the 
algorithms reached similar performance without any fine-tuning, 
demonstrating a successful generalization to an unseen indepen-
dent validation set and beyond any current state of the art. Last, 
groups of international and US pathologists also reviewed subsets 
of the internal and external validation datasets. The algorithms had 

a concordance with the reference standard that was similar to or 
higher than that of these pathologists.

In the external validation sets, the main algorithm error mode 
was overdiagnosing benign cases as ISUP GG 1. This is probably 
due to the data distribution shift between training data and external 
validation data34, in combination with the study design of indepen-
dent validation, where the teams did not have any access to the vali-
dation sets, potentially leading to suboptimal selection of operating 
thresholds based only on the tuning set. We observed this in the 
US external validation set (Fig. 4), where the algorithms appear to 
be shifted toward higher sensitivity but lower specificity compared 
with the general pathologists. A potential solution to address the 
natural data distribution shift is to calibrate the models’ predictions 
using sampled data from the target sites. In addition, we showed 
high consistency between reference standards (Supplementary 
Table 9), adding additional proof that the performance drop was 
not caused by a difference in grading characteristics.

In the US external validation set, tumor identification was con-
firmed by immunohistochemistry, supporting the finding that the 
algorithms missed fewer cancers than the pathologists. This higher 
sensitivity shows promise for reducing pathologist workload by 
automated identification and exclusion of most benign biopsies 
from review. Analysis of an ensemble constructed from the algo-
rithms suggests that combining existing algorithms could improve 
specificity (Supplementary Table 4).

Further analysis of the grade assignments by the algorithms and 
general pathologists showed that the algorithms tended to assign 
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Fig. 2 | Progression of algorithms’ performances throughout the competition. During the competition, teams could submit their algorithm for evaluation 
on the tuning set, after which they received their score. At the same time, algorithms were evaluated on the internal validation set, without disclosing these 
results to the participating teams. a,b, The development of the top score obtained by any team (a) and the median score over all daily submissions (b) 
throughout the timeline of the competition showing the rapid improvement of the algorithms. c, A large fraction of teams reached high scores in the range 
0.80–0.90, and retained their performance on the internal validation set.
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higher grades than the pathologists (Fig. 5). For example, in the US 
external validation set, algorithms overgraded a substantial portion 
of ISUP GG 3 cases as GG 4. The general pathologists, in contrast, 
tended to undergrade cases, most notably in the high-grade cases. 
These differences suggest that general pathologists supported by 
AI could reach higher agreements with uropathologists, potentially 
alleviating some of the rater variability associated with Gleason 
grading19,20. It should be noted that the algorithms’ operating points 
were selected solely based on the EU tuning set. For clinical usage, 
the operating points can be adjusted based on the needs and the 
intended use cases. For example, for a prescreening use case aimed 
to reduce pathologist workload, one could select an operating point 
favoring high sensitivity to minimize false negatives. Alternatively, 
if AI was used as a stand-alone tool, increasing the algorithms’ 
specificity to tumors, while retaining a high sensitivity, could be 
an important prerequisite for clinical implementation to prevent 
overdiagnosis.

We aimed to lower the entry barrier to medical AI development 
by providing access to a large, curated dataset, typically attain-
able only through large research consortia, and by organizing this 
competition to facilitate joint development with experience shar-
ing among the teams. The results show that the publication of 
such datasets can lead to rapid development of high-performing 
AI algorithms. Dissemination and fast iteration of new ideas 
resulted in the first team achieving pathologist-level performance 
in the first 10 days of the challenge (Fig. 2). These results show 
the important role data play in the development of medical AI 
algorithms, given the short lead-time of top-performing solu-
tions by various teams. At the same time, often raised criticisms 
of medical AI challenges are the lack of detailed reporting, and 
limited interpretation and reproducibility of results28. Typically 
algorithms are evaluated only on internal competition data and 
by participants themselves, which introduces a risk of overfit-
ting and reduced likelihood of reproducibility. We addressed 
these limitations in our challenge design by using preregistration, 
blinded evaluation, full reproduction of algorithm results, inde-
pendent validation of algorithms on external data and comparison  
with pathologists.

This study has limitations. First, for the validation phase we were 
limited to including 15 teams from the pool of 1,010. To ensure 
transparent selection of teams and minimizing potential bias in the 
external validation, we disclosed the selection criteria and process 
beforehand to all participating teams, included both score and algo-
rithm descriptions as criteria, and performed the selection before 
running the analyses (Supplementary Methods 6).

Second, algorithm validation was restricted to the assessment 
of individual biopsies whereas, in clinical practice, pathologists 
examine multiple biopsies per patient. Future studies can focus 
on patient-level evaluation of tissue samples, taking multiple 
cores and sections into account for the final diagnosis. Third, this 
study focused on grading acinar adenocarcinoma of the prostate, 
and algorithm responses to other variants and subtypes of cancer, 
precancerous lesions or nonprostatic tissue were not specifically 
assessed. Although cases with potential pitfalls were not excluded, 
it is of interest to further examine algorithm performance on 
such cases (for example, benign mimickers, severe inflammation, 
high-grade prostatic intraepithelial neoplasia, partial atrophy) and 
to investigate which patterns consistently result in classification 
errors. Although not quantitatively assessed, an analysis of cases 
with frequent miscalls showed that these cases often contained 
patterns such as cutting artifacts, and different inflammatory and 
other biological processes—all common occurrences within pathol-
ogy—that could have resulted in the algorithms’ miscalls. A com-
prehensive understanding of potential error modes is especially 
important when these algorithms leave controlled research settings 
and are used in clinical settings. Therefore, future research should 
more extensively assess what common tissue patterns in pathology 
routinely affect algorithm performance, whether they are the same 
patterns that are notoriously difficult for pathologists and how we 
can build safeguards to prevent such errors.

Fourth, algorithms were compared against reference standards 
set by various panels of pathologists. Although the gold standard 
in the field, relying on pathologists’ gradings introduces a risk of 
bias because algorithms could learn the grading habits of specific 
pathologists and not generalize well to other populations. To rem-
edy this effect, panels of uropathologists established the reference  
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International pathologists comparison, grades of algorithms and general pathologists (n = 70)

US pathologists comparison, grades of algorithms and general pathologists (n = 237)
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standards of the EU internal and US external validation sets. 
Although these sets were graded in silo by different panels, we have 
shown that a majority-vote reference standard is highly consistent, 
even in a cross-continental setting (Supplementary Table 9). The EU 
external validation set was an exception, because a single uropathol-
ogist established the reference standard for that set. However, we 
observed high concordance between the grading by this pathologist 
and other pathologists when evaluated on the internal validation 
set (Supplementary Methods 2). For the training sets, we relied on 
reference standards extracted from clinical diagnostics, typically set 
by a single pathologist. Although unfeasible due to the high number 
of cases, a training reference standard based on multiple patholo-
gists’ reviews could have potentially further increased algorithm 
performance.

Fifth, all the data were collected retrospectively across the insti-
tutions and the general pathologist reviews were conducted in a 
nonclinical setting, without additional clinical information avail-
able at the time of review. Sixth, despite the international nature 
of our evaluation (in terms of both pathologists’ practice and data 
sources), the countries involved were predominantly white, and 
demographic characteristics were not available for all datasets in the 
present study. Further investigation is required to validate the use 
of AI algorithms in more diverse settings35,36. Last, this study did 
not evaluate the algorithm grading’s association directly with radi-
cal prostatectomy or clinical outcomes.

We found that a group of AI Gleason grading algorithms devel-
oped during a global competition generalized well to intercontinen-
tal and multinational cohorts with pathologist-level performance. 
On all external validation sets, the algorithms achieved high agree-
ment with uropathologists and high sensitivity for malignant biop-
sies. The performance exhibited by this group of algorithms adds 
evidence of the maturity of AI for this task and warrants evalua-
tion of AI for prostate cancer diagnosis and grading in prospective 
clinical trials. We foresee a future where pathologists can be assisted 
by algorithms such as these in the form of a digital colleague. To 
stimulate further advancement of the field, the full development set 
of 10,616 biopsies has been made publicly available for noncom-
mercial research use https://panda.grand-challenge.org/.
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author contributions and competing interests; and statements of 
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validation set, we used the Puhti cluster. This process was done independently of 
the teams and no prior information about the external datasets was supplied to the 
teams. The ISUP GG predictions of the algorithms on the cases were saved and 
used as input for the analysis.

Statistical analysis. We defined the main metric as the agreement on ISUP GG 
with the reference standard of each particular validation set, measured using 
quadratic Cohen’s κ. To compare the performance of the algorithms with that 
of the general pathologists, we performed a two-sided permutation test per 
pathologist panel. The average agreement was calculated as the mean of the κ 
values across the algorithms and the pathologists, respectively. The test statistic 
was defined as the difference between the average algorithm agreement and the 
average pathologist agreement.

We calculated sensitivity and specificity on benign versus cancer-containing 
biopsies for all algorithms and individual general pathologists, based on the 
reference standard set by the uropathologists. To further understand how a 
representative pathologist and algorithm performed, we selected the pathologist 
and the algorithm with the median balanced accuracy (the average of sensitivity 
and specificity) as the representative pathologist and the representative 
algorithm, and reported the associated sensitivity and specificity. A representative 
pathologist or algorithm was used in favor of averaging across algorithms 
and pathologists for better estimates of performance. For the 95% CIs of the 
algorithms’ and pathologists’ performance metrics, we used bootstrapping across 
all algorithms or pathologists, with both the algorithm or pathologist and case as 
the resampling unit.

Analysis was performed using scripts39 written in Python (v.3.8) in 
combination with the following software packages: scipy (1.5.4), pandas (1.1.4), 
mlxtend (0.18.0), numpy (1.19.4), scikit-learn (0.23.2), matplotlib (3.3.2), 
jupyterlab (2.2.9) and notebook (6.1.5).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The full development set, from here on named the PANDA challenge dataset, of 
10,616 digitized de-identified hematoxylin and eosin-stained prostate biopsies, 
will be made publicly available for further research. The data can be used under 
a Creative Commons BY-SA-NC 4.0 license. To adhere to the ‘Attribution’ part of 
the license, we ask anyone who uses the data to cite the current article. The most 
up-to-date information regarding the dataset is available at the challenge website at 
https://panda.grand-challenge.org. Source data are provided with this paper.

Code availability
Code that was used to generate the results of the various algorithms, and example 
code on how to load the images in the PANDA dataset is available at https://
github.com/DIAGNijmegen/panda-challenge and https://doi.org/10.5281/
zenodo.5592578. Algorithms were built using open source deep learning 
frameworks, including Pytorch (https://pytorch.org) and TensorFlow (https://
www.tensorflow.org). The Docker image that all the algorithms were based on 
is available online at https://github.com/Kaggle/docker-python. Details on the 
availability of specific models and the code of the contributed algorithms can be 
found in the Supplementary algorithm descriptions.

References
 37. Merkel, D. Docker: lightweight Linux containers for consistent development 

and deployment. Linux J. 2014, 2 (2014).
 38. Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for 

mobility of compute. PLoS ONE 12, e0177459 (2017).
 39. Bulten, W. et al. PANDA challenge analysis code. Zenodo https://doi.

org/10.5281/zenodo.5592578 (2020).

Acknowledgements
We were supported by the Dutch Cancer Society (grant no. KUN 2015-7970, to W.B., 
H.P. and G.L.); Netherlands Organization for Scientific Research (grant no. 016.186.152, 
to G.L.); Google LLC, Verily Life Sciences, Swedish Research Council (grant nos. 2019-
01466 and 2020-00692, to M.E.); Swedish Cancer Society (CAN, grant no. 2018/741, 
to M.E.); Swedish eScience Research Center, EIT Health, Karolinska Institutet, Åke 
Wiberg Foundation and Prostatacancerförbundet (all to M.E.); Academy of Finland 
(grant nos. 341967 and 335976, to P.Ruusuvuori), Cancer Foundation Finland (project 
‘Computational pathology for enhanced cancer grading and patient stratification’, to 
P.Ruusuvuori) and ERAPerMed (grant no. 334782, 2020-22, to P.Ruusuvuori). Google 
LLC approved the publication of the manuscript, and the remaining funders had no 
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Methods
Study design. The study design of the PANDA challenge was preregistered29. 
We retrospectively obtained and de-identified digitized prostate biopsies with 
associated diagnosis from pathology reports from Radboud University Medical 
Center, Nijmegen, the Netherlands and Karolinska Institutet, Stockholm, Sweden 
(Extended Data Fig. 1 and Supplementary Methods 1, 2 and 3). At the start of 
the competition, participating teams gained access to this EU development set of 
10,616 biopsies from 2,113 patients for training of the AI algorithms (Table 1 and 
Supplementary Methods 4). During the course of the competition, the teams could 
upload their algorithms to the Kaggle platform (Supplementary Methods 5) and 
receive performance estimates on a tuning set of 393 biopsies. Processing time was 
limited to 6 h and the maximum graphics processing unit (GPU) memory available 
was 16 GB.

By the competition closing date, each team picked two algorithms of their 
choice for their final submission, and the higher scoring of the two determined the 
team’s final ranking. The final evaluation was performed on an internal validation 
dataset of 545 biopsies, collected from the same sites as the development and 
tuning sets and fully blinded to the participating teams. Moreover, to obtain an 
independent internal validation set, all samples from a given patient were used for 
either development or validation.

After the competition on the Kaggle platform ended, all teams were invited 
to send in a proposal to join the validation phase of the study as members of the 
PANDA consortium. Joining the validation phase was fully voluntary and not a 
prerequisite for partaking in the competition. As a result, 15 teams were selected 
for further evaluation on two external validation datasets consisting of 741 and 330 
biopsies, also fully blinded to the participating teams (Supplementary Methods 
6 and 7). The first external validation set was obtained from two independent 
medical laboratories and a tertiary teaching hospital in the USA. The second 
external validation set was obtained from the Karolinska University Hospital, 
Stockholm, Sweden. All datasets consisted of both benign biopsies and biopsies 
with various ISUP GGs. For details on the inclusion and exclusion criteria, see 
Supplementary Methods 1 and Extended Data Fig. 1.

WSIs of the biopsies were obtained using four different scanner models 
from three vendors: 3DHISTECH, Hamamatsu Photonics and Leica Biosystems 
(Supplementary Table 1). The open source ASAP software (v.1.9: https://github.
com/computationalpathologygroup/ASAP) was used to export the slides before 
uploading to the Kaggle platform.

The present study was approved by the institutional review board of Radboud 
University Medical Center (IRB 2016-2275), Stockholm regional ethics committee 
(permits 2012/572-31/1, 2012/438-31/3 and 2018/845-32) and Advarra (Columbia, 
MD; Pro00038251). Informed consent was provided by the participants in the 
Swedish dataset. For the other datasets, informed consent was waived due to the 
usage of de-identified prostate specimens in a retrospective setting.

Reproducing algorithms and application to validation sets. All teams selected 
for the PANDA consortium were asked to provide all data and code necessary 
for reproducing the exact version of their algorithm that resulted in the final 
competition submission. For each algorithm, we collected the main Jupyter 
notebook or python script for running the inference, the specific Kaggle Docker37 
image (https://github.com/Kaggle/docker-python) used by the team during the 
competition and any necessary associated files, including model weights and 
auxiliary code.

We replicated the computational setup of the competition platform and ran 
the algorithms on two different computational systems: Google Cloud and Puhti 
compute cluster (CSC—IT Center for Science, Espoo, Finland). On the Google 
Cloud platform, all algorithms were run using the original Docker images. On 
Puhti, the Docker images were automatically converted for use with Singularity38 
(v.3.8.3). The algorithms and scripts provided by the teams were not modified 
except for minor adjustments required for successful run-time installation of 
dependencies on our computational systems. On Puhti, the algorithms had access 
to 8 central processing unit (CPU) cores, 32 GB of memory, 1 Tesla V100 32GB 
GPU (Nvidia) and 500 GB of SSD storage. On the Google Cloud platform, the 
algorithms had access to 8 CPU cores, 30 GB of memory, 1 Tesla V100 GPU 32GB 
and 10,000 GB of hard disk drive storage.

Before applying the algorithms on the external validation sets, we first validated 
that the Kaggle computational environment had been correctly replicated and the 
algorithms’ performance on our systems remained identical. To this end, we ran 
all algorithms on the tuning and internal validation sets on the two systems to 
reproduce the output generated during the competition on the Kaggle platform. By 
crosschecking the new results with the competition leaderboard, we additionally 
assured that the algorithms supplied by the teams were not altered after the 
competition or tuned to perform better on the external validation sets. The 
verification runs we performed on the Puhti cluster were used as the basis for all 
results reported on the internal validation set.

Some algorithms were nondeterministic, for example, because of test time 
augmentations with nonfrozen random seeds. We ran each of these algorithms five 
times and averaged the computed metrics.

After verification, we ran all algorithms on the external validation sets. For the 
US external validation set, we used the Google Cloud platform. For the EU external 
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Flow charts of inclusion and exclusion for the various datasets. (a) Data originating from Radboud University Medical Center 
(development, tuning and internal validation sets, and international pathologist comparison), (b) Data originating from Karolinska Institutet (development, 
tuning and internal validation sets), (c) Data originating from the United States (US external validation set, and US pathologist comparison), (d) Data 
originating from Karolinska University Hospital (EU external validation set).
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Extended Data Fig. 2 | individual algorithms’ agreement with the reference standard for the validation sets. Concordance with ISUP GG of the reference 
standard (Cohen’s quadratically weighted kappa with 95% CI over cases) is shown for each algorithm on each validation set. The dashed line indicates the 
mean of all teams on the validation set in question.
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Extended Data Fig. 3 | individual algorithms’ Sensitivity and specificity for the validation sets. Performance in detecting biopsies containing cancer 
(sensitity and specificity with 95% CI over cases) is shown for each algorithm on each validation set.
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Extended Data Fig. 4 | Visualization of grade assignment by algorithms for the internal validation set. Cases are ordered by the reference ISUP grade 
group and average grade group of the AI cohort.
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Extended Data Fig. 5 | Visualization of grade assignment by algorithms for the uS external validation set. Cases are ordered by the reference ISUP grade 
group and average grade group of the AI cohort.
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Extended Data Fig. 6 | Visualization of grade assignment by algorithms for the Eu external validation set. Cases are ordered by the reference ISUP grade 
group and average grade group of the AI cohort.
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Extended Data Fig. 7 | Comparison of challenge algorithms to prior work. The performance of the teams’ algorithms was computed on validation (sub)
sets of earlier work. For each validation set, we additionally show the performance of the original algorithm.
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