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Purpose: Automated segmentation of breast and fibroglandular tissue (FGT) is required for various
computer-aided applications of breast MRI. Traditional image analysis and computer vision techniques,
such atlas, template matching, or, edge and surface detection, have been applied to solve this task.
However, applicability of these methods is usually limited by the characteristics of the images used in
the study datasets, while breast MRI varies with respect to the different MRI protocols used, in addition
to the variability in breast shapes. All this variability, in addition to various MRI artifacts, makes it a
challenging task to develop a robust breast and FGT segmentation method using traditional approaches.
Therefore, in this study, we investigated the use of a deep-learning approach known as "U-net."
Materials and methods: We used a dataset of 66 breast MRI’s randomly selected from our scientific
archive, which includes five different MRI acquisition protocols and breasts from four breast density
categories in a balanced distribution. To prepare reference segmentations, we manually segmented
breast and FGT for all images using an in-house developed workstation. We experimented with the
application of U-net in two different ways for breast and FGT segmentation. In the first method, fol-
lowing the same pipeline used in traditional approaches, we trained two consecutive (2C) U-nets: first
for segmenting the breast in the whole MRI volume and the second for segmenting FGT inside the
segmented breast. In the second method, we used a single 3-class (3C) U-net, which performs both
tasks simultaneously by segmenting the volume into three regions: nonbreast, fat inside the breast,
and FGT inside the breast. For comparison, we applied two existing and published methods to our
dataset: an atlas-based method and a sheetness-based method. We used Dice Similarity Coefficient
(DSC) to measure the performances of the automated methods, with respect to the manual segmenta-
tions. Additionally, we computed Pearson’s correlation between the breast density values computed
based on manual and automated segmentations.
Results: The average DSC values for breast segmentation were 0.933, 0.944, 0.863, and 0.848
obtained from 3C U-net, 2C U-nets, atlas-based method, and sheetness-based method, respectively.
The average DSC values for FGT segmentation obtained from 3C U-net, 2C U-nets, and atlas-based
methods were 0.850, 0.811, and 0.671, respectively. The correlation between breast density values
based on 3C U-net and manual segmentations was 0.974. This value was significantly higher than
0.957 as obtained from 2C U-nets (P < 0.0001, Steiger’s Z-test with Bonferoni correction) and 0.938
as obtained from atlas-based method (P = 0.0016).
Conclusions: In conclusion, we applied a deep-learning method, U-net, for segmenting breast and
FGT in MRI in a dataset that includes a variety of MRI protocols and breast densities. Our results
showed that U-net-based methods significantly outperformed the existing algorithms and resulted in
significantly more accurate breast density computation. © 2016 American Association of Physicists
in Medicine [https://doi.org/10.1002/mp.12079]
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1. INTRODUCTION

Automatic segmentation of breast and fibroglandular tissue
(FGT) is a key step in automated analysis of breast MRI for
several clinically relevant applications. One example is com-
puter-aided detection (CADe) systems which use breast seg-
mentation as an initial step to determine the region to search
for lesions.1–3 Automated quantification of background
parenchymal enhancement (BPE) could be considered as
another example to the applications which require FGT

segmentation, as BPE is evaluated within FGT.4 More impor-
tantly, volumetric measurement of breast density in MRI
requires segmentation of breast and FGT.5–9 Breast density,
measured by the amount of FGT relative to the breast volume,
is a strong predictor of breast cancer risk.10–12 Although
breast density is often measured based on mammograms,
these are two-dimensional projection images which may lead
to inaccuracy in estimation of breast density, due to the tissue
superimposition.13 T1-weighted images in breast MRI pro-
vide three-dimensional (3D) information with a strong
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contrast between fat and fibroglandular tissues within the
breast, making it ideal for evaluating breast density. For an
objective evaluation of breast density based on MRI, auto-
matic segmentation of breast and FGT is required.

Breast segmentation consists of breast-air and breast-pec-
toral muscle separation, where the latter is usually considered
to be a challenging problem. There have been several studies
investigating breast segmentation in MRI. Nie et al.5 devel-
oped an algorithm to segment breast and FGT, using B-spline
curve fitting for pectoral muscle-breast separation, which
required initial inputs from the user. Milenkovich et al.14 pro-
posed a fully automated method using edge maps obtained by
applying a tunable Gabor filter, and they reported 0.96 for the
average Dice similarity coefficient15 (DSC) value for 52
MRI’s. Koenig et al.16 developed a method which uses nipple
detection as a prior step. Martel et al.17 used Poisson recon-
struction method to define breast surface using automatically
detected edges, achieving a DSC score of 0.90 for 332 Dixon
images and 0.96 for 8 T1-weighted images. Similarly, Gal-
lego-Ortiz et al.18 suggested a method that aims to construct
breast surface, and they used a breast atlas. They reported a
DSC value of 0.88 for a large dataset consisting of 409 MRI’s.
Atlas-based methods were also employed by Khalvati et al.19

(obtaining average DSC scores of 0.94 for Dixon and 0.87 for
T1w images), Lin et al.20, and Gubern-M�erida et al.9,21 (ob-
taining an average DSC of 0.94 in 50 MRI’s). Pectoral mus-
cle-breast boundary separation in the latter method was based
on automatic detection of sternum as a landmark which is not
always clearly visible in all patients. Wang et al.22 suggested a
method which uses sheet-like appearance of pectoral muscle
boundary and does not require detection of a landmark. Gian-
nini et al.23 used gradient characteristic of pectoral muscle to
separate it from breast. Ivanovska et al.8 suggested a level-set
method to simultaneously correct bias field and segment
breast, which achieved an average DSC of 0.96 in 37 MRIs.

Several studies have also investigated FGT segmentation.
Although MRI provides a high contrast between fat and FGT
in breast, intensity inhomogeneities introduce the main diffi-
culty in FGT segmentation. Adaptive fuzzy c-means (FCM)
was used by Nie et al.5 for FGT segmentation. Gubern-
M�erida et al.9 used N4 bias-field correction24 as a prior step
to their pipeline and then applied a gaussian mixture model
for segmenting FGT, which resulted in an average DSC of
0.80 in 50 MRI’s. At a later study, we extended this work by
adding an additional N4 bias-field correction step applied
within the computed breast mask for each breast4 and
obtained a DSC value of 0.81 on 20 breast MRI’s. In another
study, simultaneous FCM and bias-field correction methods
were applied,8 which achieved an average DSC of 0.83 on 37
cases. Wu et al.6 suggested use of FGT atlas as a refinement
step after FCM and reported 0.77 as average DSC value. As
postprocessing steps, Gubern-M�erida et al.9 and Ravazi
et al.25 also proposed methods for removing skin folds from
the segmentation, an imaging artifact that mimics FGT. An
average DSC of 0.84 was reported in the latter work.

Although the studies summarized above reported satisfac-
tory results within their datasets, applicability of these

methods is usually limited by the characteristics of the
images used in the study datasets. However, breast MRI var-
ies with respect to different MRI protocols used. Even in a
single hospital, a variability would be expected in MRI data
across years, as protocols are changed from time to time due
to the improvements in acquisition or MRI units. In addition
to the variability in MRI protocols, there is also variability
in breast shapes, sizes, densities, and pectoral muscle
shapes. Another problem is the MRI artifacts such as inten-
sity inhomogeneities, ghosting, or aliasing effects. Skin folds
may also occur which mimic the appearance of FGT. For
each of such artifacts, a separate algorithm or filter is
needed to be designed and included in the segmentation pro-
cess. Even then, strength and presentation of these artifacts
vary with respect to breast shapes, acquisition protocols, or
patient movements during the acquisition. All this variability
and artifacts make it a challenging task to develop a robust
and widely applicable breast and FGT segmentation method
using traditional approaches. Therefore, we decided to inves-
tigate the use of deep-learning methods for breast and FGT
segmentation as an alternative to the traditional methods.
The main advantage of the deep-learning methods lies in
their ability to learn relevant features and models directly
from examples, rather than requiring design of features or
filters specific for each problem. Although it has a longer
history, deep convolutional neural networks have attracted a
considerable attention in the last few years due to the
groundbreaking success it demonstrated in various fields
such as image and speech recognition, natural language
understanding, and lately, in medical image analysis field. In
this study, we investigated two deep-learning approaches
based on the U-net architecture26 for breast and FGT seg-
mentation in MRI. To our knowledge, this is the first study
that applies deep learning for breast and FGT segmentation
in MRI.

One advantage of U-net is that it is possible to use entire
images of arbitrary sizes, without dividing them into patches.
This results in a large receptive field that the network uses
while classifying each voxel, which is important in segmenta-
tion of large structures like the breast. To represent the variety
mentioned above, we used MRI scans obtained by different
acquisition protocols and breasts from different breast density
categories in our dataset. We reported segmentation perfor-
mances of the trained U-nets for each beast density category
and for each MRI protocol, as well as the overall perfor-
mance. For comparison, we also applied two different exist-
ing methods9,22 on our datasets.

2. MATERIALS AND METHODS

2.A. Patient population and DCE-MRI acquisition

At the Radboud University Medical Center, Nijmegen,
the Netherlands, breast MRI is performed for screening
women with intermediate or high risk for developing breast
cancer; for preoperative staging in women with an invasive
lobular carcinoma, an invasive carcinoma under the age of

Medical Physics, 44 (2), February 2017

534 Dalmıs� et al.: Deep learning to segment breast in MRI 534



50, indeterminate tumor size, tumors larger than 3 cm,
locally advanced carcinoma treated with neo-adjuvant
chemotherapy; for troubleshooting in women with findings
that cannot be resolved by biopsy (BIRADS 0); and for
evaluation in women with lymph-node metastasis with an
unknown primary tumor. For this study, we randomly
selected 66 breast MRI examinations from different women
(ages 25–75) that had no history of breast cancer. To cover a
large variability of MRI protocols and breast sizes, we inten-
tionally included scans acquired in a long time span (from
2000 to 2015) from women at different breast density cate-
gories. For 53 of the patients, breast density scores were
measured on the mammograms that were acquired within 6
month prior to the MRI, with the Volpara software method
(version 1.5.0; Volpara Health Technologies, Wellington,
New Zealand). Accordingly, 10, 14, 14, and 15 women were
categorized in breast density categories 1, 2 ,3, and 4,
respectively (1 is the least and 4 is the most dense). Volpara
scores were not available for the remaining 13 cases. For
some of these patients, there were no mammography studies
close to the date when the MRI was scanned (mammograms
were acquired in another period of the year or, for women
younger than the age of 35, they were not acquired at all).
For the other patients, only processed mammograms were
available, while Volpara requires raw mammograms to com-
pute density.

In our study dataset, there was a variability in MRI acqui-
sition parameters, as we selected images from an image
archive that covers a large time period. Twenty-seven of the
66 MRI’s were acquired in 1.5 Tesla (T) MRI units, while
3T was used in the rest. The MRI’s acquired in 3T also var-
ied in acquisition parameters. We have grouped these acqui-
sition parameters into five protocols and details are given in
Table I. Note that the symbols X, Y, and Z denote the

directions corresponding to the directions orthogonal to the
sagittal, coronal, and axial planes, respectively. All of the
images used in this study were non-fat-suppressed T1-
weighted images.

2.B. Manual segmentation

For each MRI, we manually generated reference breast
and FGT segmentations, using an inhouse-developed work-
station. These manual segmentations were performed by a
trained biomedical engineer and were revised and validated
by a breast radiologist with 9 yr of expertise in breast MRI.

For manual breast segmentation, we manually delineated
each breast by drawing contours in several axial slices. The
workstation automatically interpolated between these con-
tours and generated mask of the whole breast volume. The
annotator could interactively add more contours between
slices when the result of the interpolation was not satisfac-
tory. The interpolation algorithm uses a spline surface func-
tion out of the path points of the contours and scans the
missing slices in between by a marching squares algorithm.

For FGT segmentation, we used manual thresholding to
select FGT voxels. First, to reduce the effect of bias field,
we applied N4 bias-field correction using the breast segmen-
tation mask obtained in the previous step. Then, we manu-
ally selected a threshold value for the whole breast to select
FGT voxels. Finally, we applied additional manual correc-
tions where necessary. These manual corrections included
modifying the threshold value for individual slices, and
manually excluding some of the regions by drawing con-
tours.

2.C. Data preprocessing

We initially re-oriented all coronal acquisitions into axial
orientation. As two breasts of a patient are often symmetric,
we approached the segmentation problem as a segmentation
task for a single breast. Therefore, we divided each breast
MRI scan into two breast volumes, each one including one
breast (right and left). This could be performed safely by
dividing the volume from the middle, as the use of a dedi-
cated breast coil and positioning of the patients in MRI units
ensure that right and left breasts always appear in their
respective right and left halves in the MRI scan. After this
division, we mirrored the left breasts so that they appear simi-
lar to the right breasts. This action was performed to facilitate
the learning process, thus the network only needed to learn
the shape variations of the right side. The segmentation task
was then performed for both right and mirrored left breasts.
We did not apply any further preprocessing to the data.

2.D. Deep-learning network architectures and U-net

Deep-learning methods are defined by LeCun et al.27 as
“representation-learning methods with multiple levels of
representation, obtained by composing simple but non-lin-
ear modules that each transform the representation at one

TABLE I. DCE-MRI acquisition parameters.

Protocol
1

Protocol
2

Protocol
3

Protocol
4

Protocol
5

Number of MRI’s 27 17 4 13 5

Field strength
(tesla)

1.5 3 3 3 3

Orientation Coronal Coronal Axial Axial Axial

Flip angle 20 13 10 20 15

Echo time (ms) 4 2.36–2.41 1.71 2.06 1.71

Repetition
time (ms)

7.8 7.35 4.56 5.03 5.5

Resolution-X (mm) 0.66 0.88–1.0 0.8 0.8 0.8

Resolution-Y (mm) 1.3 1 0.8 0.8 0.8

Resolution-Z (mm) 0.66 0.88-1.0 1.0 1.0 1.0

Field Of
view-X (mm)

340 340-380 360 360 360

Field Of
view-Y (mm)

156 160 360 360 360

Field Of
view-Z (mm)

170 170-190 176 160 176
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level (starting with the raw input) into a representation at
a higher, slightly more abstract level.". The main idea
behind this approach is that it is possible to implement
very complex functions using convolutional neural networks
with several layers, each having nonlinear output layers.
Each of these layers transform the representation of the
data (image) at their input to a higher level of representa-
tion. The advantage of this approach is, the weights in the
network are learned by examples through iterations of gra-
dient-descent based algorithms, leaving no need for engi-
neering features for specific problems.

A patch-based approach is commonly employed in deep
learning, where images are divided into small patches of cer-
tain sizes and provided to the network. However, this
approach limits context information provided to the network,
as the receptive field of these networks is limited to the patch
size. Increasing the patch size to increase contextual informa-
tion is not always the best solution because training might
then become computationally infeasible. The advantage of
convolutional networks with U-net26 architecture is that it is
possible to use entire images of arbitrary sizes, without divid-
ing them into patches. This results in a large receptive field
that network uses while classifying each voxel, which is

important in segmentation of large structures like the breast.
Therefore, we selected this architecture to investigate the use
of deep-learning methods for breast and FGT segmentation.

The name of the "U-net" stands for the "U"-shape of the
network as seen in Fig. 1. This is a fully convolutional net-
work, which consists of convolution and max-pooling layers
at the descending, or in other words, the initial part of the U.
This part can be seen as down-sampling stage, as at each
max-pooling layer, the input image size is divided by the size
of the max-pooling kernel size. At the later part of the net-
work, or at the ascending part of the U, up-sampling opera-
tions are performed which are also implemented by
convolutions, where kernel weights are learned during train-
ing. The arrows between the two parts of the U show the
incorporation of the information available at the down-sam-
pling steps into the up-sampling operations performed in the
ascending part of the network. In this way, the fine-detail
information captured in descending part of the network is
used at the ascending part.

In this study, we used four down-sampling and four up-
sampling steps. In each down-sampling step, we used two
convolutional layers with a kernel size of 3 9 3, each fol-
lowed by a rectified-linear unit (ReLu) for nonlinearity, and
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FIG. 1. Deep-learning network with U-net architecture used in this study. K is the number of classes. [Color figure can be viewed at wileyonlinelibrary.com]
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finally a max-pooling layer with 2 9 2 kernel size for
down-sampling. We used Glorot-uniform28 initialization for
weights of the network and RMSProp29 for gradient-descent
optimization. In the up-sampling steps, we up-convolved the
output of the previous step, by initially upscaling the image
by a factor of two using nearest neighbor interpolation, then
convolving it with a convolutional layer with a kernel size
of 2 9 2 and a ReLu layer. Then, this was concatenated
with the output of the corresponding down-sampling layer.
Finally, two convolutional layers, each followed by a ReLu,
were applied to this concatenated image. After the up-sam-
pling steps, there is a final convolutional and a following
sigmoid unit, which produces probability outputs for each
class. Different than the U-net described by Ronneberger
et al.,26 we used padded convolutions in this network, which
allowed us to process the whole image at once.

2.E. Segmenting breast and FGT with U-net

The final goal of the segmentation task in this study is to
get three-class labels within a given MRI: nonbreast (Lnb), fat
tissue inside breast (Lfat) and FGT inside breast (LFGT ). The
combination of fat and FGT voxels constitutes the whole
breast (Lbreast ¼ Lfat [ LFGT ). Traditional approaches usually
perform this segmentation task in two steps, first segmenting
the breast, and at the second step, segmenting FGTwithin the
obtained breast mask. It would be possible to follow a similar
approach using two consecutive (2C) U-nets, performing sep-
arate but consecutive tasks. On the other hand, it is also pos-
sible to approach the problem as a 3-class (3C) problem and

train a single U-net with 3-class outputs. In this study, we
investigated both approaches, which are illustrated in Fig. 2.
In both approaches, we used all two-dimensional axial slices
as samples provided to the network in random order. As we
apply four max-pooling layers in total, the sizes of the input
images need to be factors of 16 at both dimensions. There-
fore, we padded the images with zero values to meet this cri-
teria before feeding them into the network and we cropped
the output of the network back to the original size of the
images. The final segmentation was determined by selecting
the class for each voxel having highest corresponding proba-
bility and selecting the largest connected component within
the resulting breast masks. Finally, we combined the output
segmentations for all slices of right and left breasts to get the
final segmentation in the whole MRI. We used all axial slices
of the MR volumes, both in training and testing.

2.E.1. Two consecutive U-nets (2C U-nets)

In this approach, we trained a 2-class U-net for breast seg-
mentation and a subsequent 2-class U-net for FGT/fat seg-
mentation within the breast. To get the final result, the
segmentation output of the FGT segmentation was masked
with the segmentation output of the breast segmentation.
While training the second network, the loss function was
computed only in the breast region defined by the automated
breast segmentation which was produced by the first network.
The reason of not using the manual breast segmentations dur-
ing this training stage was to make the FGT segmentation net-
work to learn to exclude nonrelevant voxels from FGT

FIG. 2. Two different approaches for applying U-net to breast and FGT segmentation. The upper figure shows 2C U-nets, where two consecutive U-nets are used.
The figure below illustrates the other approach, a single U-net with 3-class outputs. Pnb, Pbreast , Pfat and PFGT denote the probability values of voxels to belong to
nonbreast, breast, fat, and FGT, respectively.
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segmentation whenever the first network over-segments the
breast.

2.E.2. Three-class single U-net (3C U-net)

In this approach, the output of the last up-sampling layer
of the U-net was convolved by three filters, followed by a sig-
moid unit, which outputs the probability values of voxels to
belong to one of the three classes: Pnb for nonbreast, Pfat for
fat tissue in the breast and PFGT for FGT tissue in the breast.
For the cost function, we computed the mean of the negative
log-likelihood values of the voxels within the whole slice.
However, as FGT/fat separation occurs within breasts and
breasts only occupy a small portion of the whole MRI vol-
umes (between one-third to one-twentieth of MRI volumes,
depending on the field of view of the acquisition and breast
shape), the loss caused by breast/nonbreast separation would
dominate the loss caused by FGT/fat separation inside breast,
which results in under-training for FGT segmentation. To pre-
vent this, we weighted the loss computed inside the breast by
a factor of 10.

2.F. Existing methods for breast and FGT
segmentation

We applied two existing breast segmentation methods to
our dataset, one of which also has an FGT segmentation step.

The atlas-based method by Gubern-M�erida et al.9 initially
applies a bias-field correction algorithm and normalizes
intensity values to reduce intra- and interimage intensity vari-
ability. Second, the breasts are segmented using spatial infor-
mation encoded in a multiprobabilistic atlas3 and the sternum
as an anatomical landmark. FGT segmentation is performed
on each breast independently: remaining intensity inhomo-
geneities are corrected using N4 and subsequently FCM is
applied to select FGT voxels inside the breast.4 Finally, a skin
fold removal step is applied.

The sheetness-based breast segmentation method by Wang
et al.22 uses second-order derivatives based on the Hessian
matrix to enhance voxels that are part of sheet-like structures.
Breast-pectoral and breast-air surfaces are identified using
this information and the breast mask is obtained as a combi-
nation of both. This method does not include an FGT seg-
mentation step.

2.G. Experiments and evaluation

We used threefold cross-validation to train and test the U-
net methods. We had breast MRI’s from 66 patients, which
corresponded to MRI volumes of 132 breasts in total. Each
breast volume consisted of 160 to 260 axial slices in MRI,
depending on the acquisition protocol. The separation of the
dataset into folds was random; however, we made sure to
keep a balanced distribution of breasts from different density
categories in training and test sets. We also took care that
both breasts of the same patient were always placed in the
same set. In each fold, MRI’s of five patients in the training

set, therefore 10 breasts, were excluded from the training set
to be used as a validation set. Therefore we had 39, 5, and 22
MRI scans in training, validation, and test sets, respectively,
in each fold. Performances on the validation sets during train-
ing were measured using DSC values. When the performance
did not improve any further, the training was stopped, and the
network that corresponds to the highest performance value in
the validation set was selected as the final network for the
fold. This final network was applied to the test set. Further-
more, as networks with the U-net architecture are claimed to
be trainable with fewer number of images compared to other
deep-learning algorithms,26 we investigated this using the
proposed pipeline. Following the same cross-validation strat-
egy as in the previous experiment, we trained the 3C U-net
with 5, 10, and 20 training volumes of each fold. We plotted
the resulting DSC values for breast and FGT segmentations.

We used DSC to measure the overlap between automated
and manual segmentations of the whole MRI volumes. To
compare performances of different segmentation algorithms,
we applied paired t-test to the DSC values obtained for each
MRI. We applied multiple test correction to the P-values
using Bonferoni correction for nine tests (six tests for the four
methods in breast segmentation, and three tests for the three
methods in FGT segmentation). We also reported DSC results
per density category, for the cases where breast density scores
as determined by Volpara on a mammogram were available,
as well as DSC results for each MRI protocol used in the
acquisitions. Furthermore, to complement DSC values on the
whole dataset, five additional performance metrics were also
computed: average Hausdorff distance30 (H), average of the
highest 5% of H, maximum H, sensitivity, and specificity.

As one of the relevant clinical applications of breast and
FGT segmentation is to provide volumetric breast density,
defined as ratio of FGT volume to the breast volume, we also
measured performance of the FGT segmentation methods in
this respect. Pearson’s correlation of the volumetric breast
density estimates obtained from manual segmentations to the
ones obtained from automated segmentations were com-
puted. The correlation values were compared using Steiger’s
Z-test for two dependent correlations with one variable in
common,31,32 with Bonferoni correction for three tests. We
also conducted a Bland–Altman analysis to investigate any
bias in breast density measurements and how differences
between measurements are distributed. We provided the plots
for the Bland–Altman analysis and we computed limits of
agreement (LOA), coefficient of variation (CV), standard
deviation of the mean values, and sum of squared errors
(SSE) for each automated segmentation method.

3. RESULTS

3.A. DSC values for breast segmentation and FGT
segmentation

DSC values of breast and FGT segmentations for each
method with respect to the manual segmentations are given
in Tables II and III, respectively. DSC values obtained for
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different breast density categories and different MRI proto-
cols are also provided in the same tables. Comparing overall
results of the two different U-net methods, we see that 2C U-
nets performed better by 1.1% in breast segmentation com-
pared to 3C U-net (P =0.0055). On the other hand, 3C U-net
achieved a higher DSC value in FGT segmentation
(P < 0.0001). Atlas-based and sheetness-based methods per-
formed significantly worse compared to U-net methods
(P < 0.0001 in all comparisons). The difference between
DSC values of atlas-based and sheetness-based methods was
not statistically significant (P > 0.1).

Regarding the MRI acquisition protocols, the most
remarkable drop in segmentation performance was observed
in breast segmentation with atlas-based method for Protocol
2 (Table II). The average DSC for the MRI volumes obtained
with this acquisition protocol was 0.812 (0.13), while it was
0.88 (0.05) for all other MRI volumes obtained with other
acquisition protocols. The comparison between the two aver-
ages produced a P-value of 0.061 when a t-test for indepen-
dent samples was applied.

To train the second U-net of the 2C U-nets approach, we
used automated breast masks generated from the first U-net
and a DSC value of 0.811 (0.11) for FGT segmentation was
obtained. This approach was chosen over using manual breast
masks during training to mimic the testing conditions. How-
ever, we did not observe a significant difference compared to

using manual breast segmentations during training (DSC of
0.808 (0.16), P = 0.73 with paired t-test).

Additional performance measures for breast and FGT seg-
mentations are given in Table IV. The differences between
performances of the methods measured with these metrics
are comparable to the differences based on DSC measure-
ments. Sensitivity is an exception to this. In particular, sensi-
tivity of the atlas-based method for FGT segmentation is
significantly higher than those obtained using U-net methods
(P < 0.001 with paired t-test for both U-net methods). How-
ever, atlas-based method also had a significantly lower speci-
ficity compared to the same methods (P < 0.001 with paired
t-test for both U-net methods). While the difference in speci-
ficity values might look small, one should note that FGT
regions occupy a small volume pulling the specificity values
close to 1. For the same reason, small differences in FGT seg-
mentation have a large effect on sensitivity values.

The changes in segmentation performances of the 3C U-
net when trained with 5, 10, 20, and 39 volumes of each fold
are illustrated in Fig. 3. The DSC values obtained using 20
and 39 training volumes were almost identical for breast seg-
mentation (only 0.002 higher with 39 training volumes and
P = 0.49 with paired t-test). For the same numbers of train-
ing volumes, the difference between DSC values obtained for
FGT segmentation was 0.023, which was statistically signifi-
cant (P = 0.002 with paired t-test).

3.B. Visual examples

In this section, we provide examples from our segmenta-
tion results. Figure 4 shows a case for which segmentation
was performed properly by all methods. Other examples
demonstrate how different variations and artifacts in MRI
volumes may affect segmentation algorithms.

The example given in Fig. 5 corresponds to a dense breast
(density category 4) in which the breast-pectoral muscle
boundary is less visible due to the presence of dense tissue.

Figure 6 shows an example of how segmentation algo-
rithms were affected by magnetic field inhomogeneities. The
strong bias field visible in the image caused the sheetness-
based method to misinterpret the breast-pectoral muscle

TABLE II. DSC values for breast segmentation: overall, per breast density category and per MRI acquisition protocol.

All images (66) 2C U-nets 3C U-net Atlas-based Sheetness-based
0.944 (0.026) 0.933 (0.028) 0.863 (0.087) 0.848 (0.071)

Per density Category 1 (10) 0.953 (0.012) 0.946 (0.018) 0.881 (0.045) 0.874 (0.016)

Category 2 (14) 0.937 (0.017) 0.948 (0.012) 0.889 (0.033) 0.870 (0.027)

Category 3 (14) 0.938 (0.029) 0.937 (0.019) 0.873 (0.073) 0.858 (0.117)

Category 4 (15) 0.906 (0.039) 0.921 (0.03) 0.782 (0.134) 0.775 (0.116)

Per protocol Protocol 1 (27) 0.949 (0.024) 0.939 (0.029) 0.88 (0.06) 0.849 (0.084)

Protocol 2 (17) 0.930 (0.029) 0.928 (0.026) 0.812 (0.13) 0.826 (0.074)

Protocol 3 (4) 0.947 (0.011) 0.936 (0.022) 0.863 (0.036) 0.850 (0.03)

Protocol 4 (13) 0.937 (0.021) 0.926 (0.033) 0.89 (0.035) 0.864 (0.054)

Protocol 5 (5) 0.940 (0.008) 0.938 (0.013) 0.874 (0.04) 0.878 (0.02)

TABLE III. DSC values for FGT segmentation: overall, per breast density cat-
egory and per MRI acquisition protocol.

All images (66) 2C U-nets 3C U-net Atlas-based
0.811 (0.11) 0.850 (0.086) 0.671 (0.207)

Per density Category 1 (10) 0.665 (0.172) 0.748 (0.117) 0.386 (0.140)

Category 2 (14) 0.785 (0.09) 0.825 (0.073) 0.659 (0.129)

Category 3 (14) 0.877 (0.044) 0.90 (0.038) 0.792 (0.125)

Category 4 (15) 0.849 (0.073) 0.870 (0.061) 0.724 (0.185)

Per protocol Protocol 1 (27) 0.792 (0.137) 0.845 (0.1) 0.676 (0.19)

Protocol 2 (17) 0.823 (0.124) 0.857 (0.088) 0.683 (0.202)

Protocol 3 (4) 0.795 (0.086) 0.83 (0.076) 0.625 (0.265)

Protocol 4 (13) 0.835 (0.074) 0.86 (0.067) 0.689 (0.218)

Protocol 5 (5) 0.823 (0.06) 0.843 (0.073) 0.58 (0.302)
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boundary at the right breast. Regarding the atlas-based seg-
mentation approach, although breast segmentation was not
affected by bias field, most of the fat voxels were wrongly
classified as FGT because of the same artifact.

In the example shown in Fig. 7, ghosting artifacts severely
affected atlas-based segmentation. Additionally, unusual breast
and body shape affected both atlas-based and sheetness-based
methods by making them cut the breast boundary at a higher
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FIG. 3. DSC values obtained when 3C U-net was trained with varying number of volumes in each fold. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE IV. Additional performance metrics for breast and FGT segmentation.

2C U-nets 3C U-net Atlas-based Sheetness-based

Breast Mean H (mm) 2.9 (1.1) 2.9 (0.1) 5.7 (3.3) 6.0 (2.1)

5% H (mm) 11.2 (4.9) 11.3 (5.2) 21.5 (8.7) 23.7 (9.7)

Max H (mm) 34.3 (15.1) 30.5 (9.2) 40.0 (12.6) 49.2 (15.3)

Sensitivity (%) 93.7 (3.7) 97.6 (2.0) 91.6 (7.5) 93.6 (8.7)

Specificity (%) 99 (0.5) 98.1 (1.0) 96.1 (3.7) 95.0 (3.4)

FGT Mean H (mm) 3.1 (1.8) 2.6 (0.1) 7.4 (4.6) -

5% H (mm) 11.6 (7.8) 9.7 (5.2) 26.7 (12.4) -

Max H (mm) 49.3 (15.0) 45.0 (9.2) 51.3 (14.3) -

Sensitivity (%) 79.5 (15.2) 84.0 (12.7) 94.0 (9.7) -

Specificity (%) 98.8 (1.3) 99.0 (1.2) 96.8 (2.1) -

FIG. 4. A breast MRI, which was segmented accurately by all automated methods. [Color figure can be viewed at wileyonlinelibrary.com]
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level than desired. U-net-based methods were not affected by
ghosting artifacts, and breast-body boundaries were affected
minimally. In the other example given in Fig. 8, the shape of
the breast was usual compared to the previous case, but strong

ghosting effects still caused problems in both atlas-based and
sheetness-based methods for segmenting the breast.

In most of the cases, the image quality is low in caudal
and cranial ends of the MRI volume, which causes

FIG. 5. Segmentation for a dense breast (category 4). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. An example to illustrate the effect of a bias field on segmentation. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 7. An example to illustrate the effect of ghosting artifact on segmentation. [Color figure can be viewed at wileyonlinelibrary.com]
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difficulties for segmentation algorithms. This is demonstrated
in the example given in Fig. 9, where U-net-based methods
showed relatively more robust performance compared to
atlas-based and sheetness-based methods.

Figure 10 illustrates an example where skin folds are pre-
sent. Not only U-net based methods, but also atlas-based
method was able to exclude skin folds in this example. This
example also shows an MRI artifact known as "zebra" or

FIG. 8. An example to illustrate the effect of ghosting artifact on segmentation. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 9. An example to illustrate the effect of low image quality at the ends of the MRI volume. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 10. An example where skin folds of the breast and zebra artifacts are present in the image. [Color figure can be viewed at wileyonlinelibrary.com]
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"Moire" artifact,33 which had a slight effect on the atlas-
based method by making darker pixels classified as FGT (see
area pointed by white arrow in Fig. 10).

3.C. Measurement of breast density

Correlation of the breast density values obtained from
manual segmentations to the values obtained from 2C U-nets,
3C U-net, and atlas-based methods were 0.957, 0.974, and
0.938, respectively. In this metric, 3C U-net method had a
significantly better performance compared to 2C U-nets and
atlas-based methods (P < 0.0001 and P = 0.0016, respec-
tively). The difference between the correlation values
obtained from atlas-based and 2C U-nets methods was not
statistically significant (P > 0.1). Bland–Altman plots in
Fig. 11 show that there was a positive bias of 3.8 % in breast
density measurements obtained from the atlas-based method.
The biases in 2C U-nets and 3C U-net methods were �0.8 %
and �1.5 %, respectively. According to the same plots, the

values for LOA were smallest in 3C U-net method (5.88) and
largest in atlas-based method (7.84).

Both of the U-net methods strongly disagreed with manual
segmentation in one case (indicated by arrows in Fig. 11) in
breast density measurement. Manual segmentation resulted
in a density value of 42%, while the values obtained from 2C
U-nets and 3C U-net methods were 22% and 23%, respec-
tively. An example slice from this case is provided in Fig. 12.

4. DISCUSSION

In this study, we investigated the use of deep-learning
methods, in particular U-net, for breast and FGT segmenta-
tion. We explored two different approaches. The first method
does breast and FGT segmentation in two consecutive steps
using 2 U-nets (2C U-nets). The second method performs this
simultaneously in a 3-class U-net (3C U-net). We collected a
challenging dataset that covers a large time period including
variations in MRI acquisition protocol, in addition to
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FIG. 11. Bland–Altman plots for breast density values obtained from automated segmentations with respect to the values obtained from manual segmentations.
Solid lines show the average values of the differences in breast density measurements. Dashed lines show the values at a distance of 1.96 times the standard devia-
tion to the mean value. Arrows point the case with the most disagreement between estimations using manual and U-net segmentations. This case is shown in
Fig. 12. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 12. A slice from the MRI for which the strongest disagreement occurred between the density values obtained from U-net segmentations and manual segmen-
tation. [Color figure can be viewed at wileyonlinelibrary.com]
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variations in breast density. The two presented deep-learning-
based methods were applied to this dataset as well as two
other previously published algorithms for comparison.

One of the relevant clinical applications of breast and FGT
segmentation is to compute breast density. Our results show
that 3-class U-net performed significantly better than two-
stage U-nets method and atlas-based method in determining
breast density, by achieving a correlation value of 0.974 with
respect to the density values obtained by manual segmenta-
tions. Bland–Altman analysis showed that the LOA was lar-
gest for the atlas-based method, which means that the average
difference between the density values obtained from manual
and atlas-based segmentations tended to be larger than when
computed with the other methods. This finding is in accor-
dance with the correlation values computed. According to the
same analysis, atlas-based method had a tendency to over-
estimate breast density, while a slight tendency in the oppo-
site direction was observed in U-net-based methods. This
effect was the strongest in the case shown in Fig. 12. It can be
seen that FGTwas under-segmented by U-net-based methods
in this case. Additionally, breast region was also defined as
larger by the U-net methods compared to the manual segmen-
tation. These together led to the least accurate breast density
estimation with U-net in our dataset.

According to the DSC values we obtained, U-net based
methods outperformed both of the existing methods by a
large margin as given in Tables II and III. This holds for all
breast density categories as given in the same tables. In the
examples given in section 3.B., we demonstrated how differ-
ent variations in breast images caused problems for tradi-
tional segmentation techniques, while U-net-based methods
were relatively more stable against these variations. U-net-
based methods were less affected by the obscured pectoral
muscle boundaries in dense breasts, compared to the tradi-
tional approaches, which is also reflected in DSC values. U-
net methods were also minimally affected by MRI artifacts
like ghosting effects, while these artifacts troubled both
atlas-based and sheetness-based segmentation methods.
Another important observation is that U-net-based methods
were minimally affected by intensity inhomogeneities,
although no bias-field correction was applied as a prior step.
This indicates that U-net was able to learn the bias field in
our dataset. According to our observations in the segmenta-
tion results, U-net-based methods were relatively more
robust to low image quality, which often occurs at caudal
and cranial ends of an MRI volume. Furthermore, U-net
approaches were also capable of learning to exclude skin
folds from the segmentations they output. Another advan-
tage of using U-net over traditional approaches was regard-
ing the definition of the extent of the breast. Traditional
approaches determine breast area using a distance criteria to
anatomical landmarks, such as the sternum, cutting the
resulting segmentation at certain locations. However, as seen
in examples given in Figs. 7 and 5, this does not generalize
well to all breasts. We observed that U-net-based methods
had the flexibility to learn to mimic the human annotator
using the training examples.

We observed that the performances of U-net- and sheet-
ness-based algorithms were relatively stable across different
MRI acquisition protocols, while the most remarkable differ-
ence occurred when the atlas-based method was used for
breast segmentation with MRI scans obtained from the Proto-
col 2. The DSC value in this set was 0.812, while it was 0.88
for other MRI protocols. This might be related to the strong
ghosting artifacts, as both of the examples given in Figs. 7
and 8 are images obtained with this protocol and we have not
observed a similar case with the other protocols. However,
the difference between the DSC values in this set and the
DSC values obtained from other MRI protocols did not reach
statistical significance level (P = 0.061). Therefore, further
studies are needed to reach a final conclusion on how differ-
ent MRI protocols and systems affect such segmentation
algorithms.

Comparing the two U-net-based methods, we found that
2C U-nets method performed better in breast segmentation
by 1.1% in DSC values. This result may be expected, as in
the former approach the whole network is dedicated to the
breast segmentation task, while in the latter approach, the
same network is performing two tasks simultaneously. How-
ever, the performance of the 3C U-net was better in FGT seg-
mentation. The poorer performance of the two-stage
approach in FGT segmentation might be related to the propa-
gation of the errors of the breast segmentation stage to the
FGT segmentation stage. Although breast segmentations
obtained from two-stage approach are slightly better than
those obtained from the 3-class network, when an under-seg-
mentation occurs in this first stage, there is no way to recover
this error in the second stage because the final result is
masked by the result of breast segmentation. Such under-seg-
mentation errors directly cause FGT to be under-segmented
as well. There is no such error-propagation problem in 3-class
network, as breast segmentation and FGT segmentation is
learned and applied simultaneously by the same network in
this approach. This is also reflected, as explained above, in
the superior performance of 3C U-net in determining breast
density.

We used 39 training volumes in each cross-validation fold.
However, we observed that breast segmentation did not
improve any further when we increased the number of training
volumes from 20 to 39. On the other hand, a significant DSC
increase was observed for FGTsegmentation when the number
of volumes used for training was incremented from 20 to 39.
This result might be related to the fact that FGT segmentation
is more vulnerable to a variety of MRI artifacts, thus it bene-
fited more from increasing the number of examples.

Most of the U-net parameters used in this study are based
on the parameter values reported by Ronneberger et al.26.
However, we have introduced some modifications such as
padded convolutions and the weighting factor in the loss
function of the 3C U-net, which was empirically determined.
Furthermore, in this study, rather than splitting the study
dataset into single training, validation and tests sets, we fol-
lowed a threefold cross-validation strategy to evaluate the
presented methods. Following this approach, we were able
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to report the performance of the studied algorithms for the
whole study dataset. We observed that a common training
procedure with equal hyperparameters, in particular the
learning rate, did not always lead to the most optimal solu-
tion. Therefore, we tuned the learning rate for each fold
based on the changes in performance on the corresponding
validation set. The final networks were selected based on
performance on the validation sets and finally applied to the
"unseen" data (i.e., test sets). Hyperparameter tuning is a
known problem and research topic that is currently being
investigated.34–36

Our study had some limitations. Although we used MRI
scans obtained by different MRI protocols in this study, all
scans were obtained in MRI units of Siemens, in the same hos-
pital, and all of them were non-fat-suppressed images. In the
future, we aim at applying and evaluating the presented meth-
ods on a multicenter and multivendor dataset. Furthermore,
we did not investigate how inter-reader differences affect man-
ual segmentations. Training deep convolutional networks
(such as U-nets) require a decent amount of data, but prepar-
ing manual breast segmentation for a case is a tedious and
time-consuming task. Note that the full process for manually
segmenting breast and FGT may take more than 45 min per
MRI volume. For the sake of being able to generate a large
dataset, we used single annotation per case in this study; there-
fore, we were not able to investigate inter-reader variability.
Lastly, although we are dealing with volumetric data, we used
a two-dimensional approach. To improve the algorithms, in
the future, we will explore the use of 3D convolutions. We
expect this to be beneficial especially for the breast segmenta-
tion task in which depth information might be important.

In conclusion, we investigated using deep-learning meth-
ods for breast and FGT segmentation in a challenging dataset
that includes many variations in terms of MRI acquisition
and breast density. We based our methods on U-net architec-
ture, and we compared them to two of the existing methods
in terms of their segmentation performances. U-net-based
deep-learning methods outperformed two of the traditional
methods in our dataset in both tasks: breast segmentation and
breast density computation.
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