
Automated 3-dimensional segmentation of pelvic lymph nodes in magnetic
resonance images

O. A. Debats,a) G. J. S. Litjens, J. O. Barentsz, N. Karssemeijer, and H. J. Huisman
Radboud University Nijmegen Medical Centre, Geert Grooteplein-Zuid 10—Radiologie 767, Nijmegen,
Gelderland 6525 GA, The Netherlands

(Received 21 April 2011; revised 15 August 2011; accepted for publication 30 September 2011;

published 26 October 2011)

Purpose: Computer aided diagnosis (CAD) of lymph node metastases may help reduce reading

time and improve interpretation of the large amount of image data in a 3-D pelvic MRI exam. The

purpose of this study was to develop an algorithm for automated segmentation of pelvic lymph

nodes from a single seed point, as part of a CAD system for the classification of normal vs

metastatic lymph nodes, and to evaluate its performance compared to other algorithms.

Methods: The authors’ database consisted of pelvic MR images of 146 consecutive patients,

acquired between January 2008 and April 2010. Each dataset included four different MR

sequences, acquired after infusion of a lymph node specific contrast medium based on ultrasmall

superparamagnetic particles of iron oxide. All data sets were analyzed by two expert readers who,

reading in consensus, annotated and manually segmented the lymph nodes. The authors compared

four segmentation algorithms: confidence connected region growing (CCRG), extended CCRG

(ECC), graph cut segmentation (GCS), and a segmentation method based on a parametric shape

and appearance model (PSAM). The methods were ranked based on spatial overlap with the manual

segmentations, and based on diagnostic accuracy in a CAD system, with the experts’ annotations as

reference standard.

Results: A total of 2347 manually annotated lymph nodes were included in the analysis, of which

566 contained a metastasis. The mean spatial overlap (Dice similarity coefficient) was: 0.35

(CCRG), 0.57 (ECC), 0.44 (GCS), and 0.46 (PSAM). When combined with the classification

system, the area under the ROC curve was: 0.805 (CCRG), 0.890 (ECC), 0.807 (GCS), 0.891

(PSAM), and 0.935 (manual segmentation).

Conclusions: We identified two segmentation methods, ECC and PSAM, that achieve a high

diagnostic accuracy when used in conjunction with a CAD system for classification of normal

vs metastatic lymph nodes. The manual segmentations still achieve the highest diagnostic accuracy.
VC 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3654162]
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I. INTRODUCTION

Prostate cancer (PCa) is the second leading cause of cancer

mortality in men, with 218 000 new cancer cases and 32 000

deaths in the United States in 2010.1 For patients diagnosed

with PCa, treatment options depend on whether the cancer is

contained within the prostate, or has broken through its cap-

sule and formed metastases in pelvic lymph nodes. In the lat-

ter case, radical prostatectomy or radical radiotherapy is not

considered a curative treatment.

MR lymphography (MRL)—MRI with a lymph node spe-

cific contrast agent—is currently the most accurate imaging

modality for assessing metastatic involvement of pelvic

lymph nodes, with reported sensitivities up to 91% at 98%

specificity.2 With MRL, lymph node metastases can be

found that are not detected by routine pelvic lymph node dis-

section.3 MRL uses ferumoxtran-10, a contrast agent based

on ultra-small superparamagnetic particles of iron oxide

(USPIO), which results in signal intensity differences

between metastatic and normal lymph node tissue. Other

modalities, such as CT or gadolinium-enhanced MRI cannot

distinguish metastatic tissue from normal lymph node tissue

and have to rely on size criteria instead, resulting in a sensi-

tivity of only 34% at 97% specificity.4

The interpretation of MRL images is time-consuming,

with reported average interpretation times up to 80 min,5 and

is highly dependent on the experience of the reader. MRL

interpretation time can be reduced and the accuracy further

improved by using a computer aided diagnosis (CAD) sys-

tem. Such a CAD system would, ideally, automatically

detect all lymph nodes in the MRL images, and subsequently

determine which of them are likely to contain metastasis.

This would allow the radiologist to efficiently display and

interpret suspicious nodes on a dedicated viewing station.

An important part of a CAD system for MRL is segmenta-

tion of the lymph nodes. Lymph node segmentation has been

subject of research for roughly 15 years,6 recent publications

being,7,8 mostly directed to segmentation in CT images. Unal

et al.9 segmented lymph nodes in MRL images by fitting an

ellipse in a 2-D slice, and propagating it to the next slices in

3-D. To our knowledge, no other studies have been published

which focus on lymph node segmentation in MR images.
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In this study, we developed a parametric shape and appear-

ance model-based segmentation method and an extended con-

fidence connected region growing method, and compared

them to two existing methods: graph cut segmentation and

nonextended confidence connected region growing. We eval-

uated the four methods with respect to a database of 2347

lymph nodes, annotated in MRL images.

II. MATERIALS AND METHODS

II.A. Segmentation methods

Sections II A 1 and II A 2 describe confidence connected

region growing (CCRG) and our extended CCRG method

(ECC). In subsection II A 3, graph cut segmentation (GCS)

is briefly reviewed, and in subsection II A 4, our parametric

shape and appearance model-based segmentation method

(PSAM) is described.

II.A.1. Confidence connected region growing

Thresholding with either one or two fixed thresholds is

the simplest possible region-based segmentation method.

Given an image volume S represented as a set of voxels

v 2 S, a thresholded segmentation Sth � S is the subset of

voxels whose intensities Iv are within the threshold range,

Sth ¼ fv 2 S j tlower < Iv < tupperg: (1)

When the segmentation task is preceded by a detection step,

from which a seed location is available for the object to be

segmented, seeded region growing can be performed. We

can define a connected region Scr as the union of a series of

subsequent layers Li. Except for the first layer, which con-

tains only the seed voxel, each layer consists of all voxels

vp 2 Sth that are neighbor-connected to the previous layer

Li�1, according to a standard 6-, 18-, or 26-connected 3-

dimensional neighborhood system H,

Scr ¼
[

i

Li (2)

Li¼
fvseedg if i¼1

Sth\ vp 62
[i�1

j¼1

Li jHðvpÞ\Li�1 6¼;
( )

otherwise;

8><
>: (3)

using a voxel set based notation for region growing, which fol-

lows the notation of Dawant and Zijdenbos10 and Liu et al.11

CCRG segments a region by taking a seed region as an

initial segmentation and then iteratively adding all connected

voxels that have a signal intensity within a dynamically

defined threshold range.12 It has been shown to produce

accurate results when used for tumor volume segmentation

on FDG-PET images.13 With an initial segmentation

Scc;0 ¼ Sseed and N iterations, the confidence connected seg-

mentation Scc;N is defined as

Scc;n ¼ Scc;n�1 [ Scr;n 1 � n � N; (4)

where Scr;n depends on the two threshold values tlower,n and

tupper,n, which are determined by the mean signal intensity l
and standard deviation r of the voxels segmented in the pre-

vious iteration, and the bandwidth factor b, as follows:

tlower;n ¼ ln�1 � b � rn�1 (5)

tupper;n ¼ ln�1 þ b � rn�1: (6)

Because convergence is not guaranteed, the number of itera-

tions N is specified beforehand.

II.A.2. Extended confidence connected region
growing

In the original CCRG method, the bandwidth factor b is set

to a fixed value. If it is set too high, the segmented volume

will “leak” out of the lymph node into surrounding structures

with similar signal intensities, but when set too low, it will

lead to undersegmentation. When segmenting lymph nodes in

MR images, the optimal value of b may be very different

between lymph nodes. Therefore, segmentation results might

be greatly improved if an optimal setting of b could be com-

puted for each lymph node separately. We developed an

extended CCRG segmentation method, which includes selec-

tion of the optimal bandwidth factor by a leakage detection

mechanism based on the expansion rate, defined as

eðbÞ ¼ jSccðbþ DbÞj
jSccðbÞj

: (7)

Vertical bars denote the cardinality of a set, which is in this

case the size of a segmented region expressed as the number

of voxels it contains. The expansion rate is a measure of the

relative increase in size with increasing values of b. When

an increase of b results in leakage, there is usually a sudden

expansion of the segmented region, resulting in a high value

of e(b). By increasing b until e(b) reaches a predefined maxi-

mum, an optimal b is selected.

For both the CCRG and ECC methods, we apply seed

point optimization: in the neighborhood of each seed point,

the voxel with the lowest signal intensity is selected as seed

voxel. This increases robustness against small variations in

seed location, e.g., when the user defines the seeds by click-

ing on the lymph nodes.

II.A.3. Graph cut segmentation

In graph cut segmentation,14 the image to be segmented is

regarded as a graph G ¼ V; Eh i; defined as a set of nodes or

vertices V and a set of edges E, where each edge

e ¼ fp; qg 2 E connects two “neighboring” nodes p and q.

The nodes represent image pixels or voxels. There are also

two special nodes s (source terminal) and t (sink terminal),

representing “object” and “background” labels, which are

connected to every voxel. Thus, E can be divided into three

subsets, En containing edges between two voxels (called

neighbor-links or n-links), Es and Et containing edges

between a voxel and the source or sink, respectively (both

called terminal-links or t-links).

All edges e have an associated weight or cost we. A graph

cut is then defined as a subset of edges C � E such that in

G0 ¼ V; EnCh i the terminals s and t are separated. The cost or

energy of a cut is defined as the sum of the costs of the edges

that it contains,
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EðCÞ ¼
X
e2C

we ¼
X

e2En\C
we þ

X
e2Es\C

we þ
X

e2Et\C
we: (8)

we ¼
exp �ðIp�IqÞ2

2r2

� �
if e2 En

k �� lnLðIp jp is a lymph node voxelÞ if e2 Es

k �� lnLðIp jp is a background voxelÞ if e2 Et

8><
>: ; (9)

where Ip is the intensity of voxel p and k� 0 is a coefficient

specifying the relative cost of t-links versus n-links. Assum-

ing Gaussian distributions, the likelihood function L is

defined by the means and standard deviations of voxel inten-

sity: llymph, lbg, rlymph, and rbg.

The cost function is chosen such that the costs of cutting

an n-link are high if it connects two voxels with similar

intensities, for which (Ip� Iq)2<r2, but the costs are low

when the intensities Ip and Iq are very different. The costs of

cutting a t-link are proportional to the negative log-

likelihood of the concerning voxel’s intensity occurring in a

lymph node or in the background.

To optimize the cost function of a graph cut representa-

tion, one can choose from a number of different combinato-

rial min-cut=max-flow algorithms. All these algorithms

guarantee convergence to the cost function’s global minima,

and yield identical segmentations; they only differ in execu-

tion speed.15 In a minimum-cost G0, each voxel p is either

connected to s or to t, but not both. The corresponding seg-

mentation is

Sgr ¼ fp 2 G0 j p connected to sg: (10)

II.A.4. Shape and appearance-based segmentation

A novel PSAM was developed to segment lymph nodes.

The rationale was to have a method that intuitively integrates

prior knowledge about an objects’ shape and appearance in a

general way, instead of the often ad hoc integration into

dedicated algorithms. The PSAM method includes a volume

model which is a synthetic representation of a lymph node

within a background, characterized by shape and appearance

parameters and initially centered at a seed location. The vol-

ume model defines a lymph node likelihood Lv for each

voxel v, based on location and gray value parameters. For a

given set of model parameters ~p, a lymph node segmentation

Spsam results from the application of a threshold t on the

voxel likelihoods,

Spsam ¼ fv 2 S j Lv > tg: (11)

The volume model is fitted to a lymph node by finding the

parameter values that minimize a cost function, which com-

prises an internal term, Eint, and an external term, Eext,

~poptimal ¼ arg min
~p

ðEintð~pÞ þ Eextð~pÞÞ: (12)

The internal cost term penalizes deviations from a popula-

tion PSAM model using the population distribution of the

model parameters. The population distribution is obtained in

a separate training session. The model is matched to the

image by an external cost term that penalizes deviations of

the current segmentation estimates and model parameters.

The PSAM volume model is characterized by the follow-

ing parameters: distance of the model center to the seed

location, the volume by the radius (shape), and the gray
value difference between the volume and its background

(appearance). The population model distribution is defined

as an independent, multi-variate Gaussian which is charac-

terized by each parameters’ mean and standard deviation

ldistance, rdistance, lradius, rradius, lgrayvalue, and rgrayvalue. The

mean and standard deviation were computed from a training

set of parameters obtained by segmenting a subset of lymph

nodes using PSAM with manual parameter optimization by

an expert observer (OD). The internal term of the cost func-

tion is the logarithm of the population model distribution.

The external term of the cost function is the sum of the

squared differences of the actual and estimated parameters.

During optimization for each segmentation, an estimate of

each parameter is obtained as follows. The estimated distance

is the actual center (center of mass) minus the seed location.

The estimated lymph node radius is obtained from the voxel

position standard deviation (with correction factor). The mean

gray values are computed from the segmented voxel gray

value statistics. Optimization was performed using the L-

BFGS-B optimization method. L-BFGS-B is a limited-

memory, quasi-Newton, bound-constrained optimization

method. The required cost function derivative was computed

from the analytical derivative of the above cost function. For

each parameter the optimization bounds are set to the 95%

range (population mean 62� standard deviation).

II.B. Experiments

Two experiments were performed to evaluate the per-

formance of the different segmentation methods. The first

experiment quantitatively analyzed the segmentation per-

formance of all segmentation methods using an overlap cri-

terion. In the second experiment, the ability to classify

lymph nodes as either metastasized or normal was studied.

All methods were implemented in open source programming

environments, the VISUALIZATION TOOLKIT and the INSIGHT

TOOLKIT, using the tool command language (TCL) and Cþþ.

II.B.1. Imaging

All imaging was performed on a Siemens 3.0 Tesla MR

scanner. Images were acquired in the coronal plane, covering

the whole pelvis. Four MR series were used in this study:

• T1-weighted “volumetric interpolated breath hold exam-

ination” (VIBE), with 0.78 mm isotropic voxel size
• T2*-weighted “multi echo data image combination”

(MEDIC), with 0.78 mm isotropic voxel size
• Apparent diffusion coefficient (ADC), with 2.3� 2.3 mm

in-plane resolution and 3.0 mm slice distance
• “Fast low angle shot” (FLASH), with 1.0 mm isotropic

voxel size

Data were collected from a consecutive set of patients

who had biopsy-proven prostate cancer and underwent MR

lymphography using the USPIO-based lymph node specific

contrast agent ferumoxtran-10 (Sinerem
VR

, Guerbet, France)
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in the Radboud University Nijmegen Medical Centre, as part

of their clinical evaluation. The patients received a

ferumoxtran-10 drip infusion, 36 to 24 h before MR imaging

was performed. Buscopan (20 mg i.v. and 20 mg i.m.) and

glucagon (20 mg i.m.) were administered immediately

before the MR examination in order to suppress bowel peri-

stalsis. All patients provided informed consent for the use of

their images for research purposes.

To be included in the analysis, the images of a patient had

to fulfill the following inclusion criteria:

• Scan date between January 2008 and April 2010
• All four above mentioned MR series available
• One or more lymph nodes visible in the VIBE image

Between January 2008 and April 2010, 289 patients

underwent USPIO imaging. For 146 patients, all MR series

were available with at least one lymph node visible in the

VIBE image; these patients were included in the analysis.

II.B.2. Reference standard

Two types of reference standard were used in this study: a

segmentation reference standard, which was used in experi-

ment 1, and a classification reference standard, used in

experiment 2. The images of each patient were assessed by

two expert readers in consensus: an MD researcher (reader

1) and an experienced radiologist (reader 2). As a common

first step, all lymph nodes visible in the pelvic area were

identified and numbered by reader 1.

II.B.2.a. Segmentation reference standard. Each lymph

node was interactively segmented by reader 1, using the

application Lymph Node Task Card, developed by Siemens,

Malvern, PA (USA). Segmentation was performed in the

VIBE image, which was also used as the input for the auto-

matic segmentation algorithms. The location of each lymph

node was listed as a seed point, defined as the center of the

manual segmentation of the node. Subsequently, the two

readers discussed each lymph node and changed its segmen-

tation where needed.

II.B.2.b. Classification reference standard. Each lymph

node was assigned a level of suspicion (LOS), on a five-

point scale where LOS 1¼ “definitely not metastatic,” LOS

2¼ “probably not metastatic,” LOS 3¼ “equivocal,” LOS

4¼ “probably metastatic,” and LOS 5¼ “definitely meta-

static.” The two readers discussed each lymph node until

they reached consensus and defined its level of suspicion.

For the classification experiment described below, the lymph

nodes had to be defined as either negative or positive; the

cut-off was placed between LOS 3 and LOS 4.

II.B.3. Segmentation

All segmentation methods used the VIBE series as input

image. Because this MR series, as described above, has iso-

tropic voxels, no resampling or interpolation was needed. To

reduce noise but retain sharp edges, we preprocessed the

VIBE images prior to segmentation by application of a me-

dian smoothing filter using a 3-dimensional, cubic smooth-

ing kernel with a width of 2.34 mm (3 voxel widths).

Long-axis lymph node diameter did not exceed 2.5 cm

in our database. We selected a 3� 3� 3 cm region of inter-

est (ROI) around each seed point to reduce computation

time.

A subset of the MR lymphographies that were excluded

because no FLASH or no ADC series was available was

used for the purpose of trying out the segmentation methods

and determine the most suitable parameter settings. For this

subset, manual segmentations were created in the same way

as the reference standard segmentations.

The CCRG method has two parameters: the number of

iterations N and the bandwidth factor b. For segmentation of

lymph nodes, which are relatively small with respect to

voxel size, N can be set to a low value. In this study, it was

set to 4 iterations. Any value of b will either result in over-

segmentation or undersegmentation or both, of part of the

data set. We used b¼ 1.8, which gave the best balance

between over- and under-segmentation.

The ECC method extends CCRG by dynamically select-

ing a value of b for each lymph node, based on maximum

expansion rate emax and step size Db. The value of these pa-

rameters was set to 2 and 0.2, respectively, indicating that

the value of b will be selected at which a further increase of

0.2 would lead to a more than twofold increase in segmented

volume.

For GCS, we calculated the mean and standard deviation

of signal intensity in the try-out set, using the manually seg-

mented lymph nodes, and set the parameters accordingly:

llymph¼ 219, rlymph¼ 97, lbg¼ 391, and rbg¼ 143.

For PSAM, the means and standard deviations of the popu-

lation model distribution were: ldistance¼ 0.0, rdistance¼ 1.5,

lradius¼ 3.3, rradius¼ 0.9, lgrayvalue¼ 150, and rgrayvalue¼ 50.

Because of the inhomogeneity of lymph node tissue with

respect to signal intensity in the VIBE image, all tested seg-

mentation methods frequently miss one or more bright or

dark patches inside the lymph nodes. To solve this, a mor-

phological closing operation is applied to obtain the final

segmentation result, using a spherical kernel with a 2.34 mm

diameter (3 voxel widths).

In experiment 1, the performance of the four segmenta-

tion methods was assessed in terms of spatial similarity

between the resulting segmentations and the reference seg-

mentations. Two spatial overlap metrics are often used in

segmentation studies: the Dice similarity coefficient

(DSC),16 derived as a special case of the kappa statistic by

Zijdenbos et al.,17

DSCx ¼
jSx \ Shj

1
2
ðjSxj þ jShjÞ

(13)

and the Jaccard index (JI),18

JIx ¼
jSx \ Shj
jSx [ Shj

; (14)

where Sx is the segmentation result of method x, and Sh is

the segmentation made by the human experts. For both DSC

and JI, a value of 1 means a perfect match between the two

regions, whereas 0 means no overlap at all. In case of a
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partial match, the JI is always lower than the DSC value.

Both metrics describe similarity in terms of overlap, and

they have a one-to-one correspondence,

JI ¼ DSC=ð2� DSCÞ: (15)

Note that this equation holds for single measurements but

not for mean values. Following the majority of recent publi-

cations on lymph node segmentation, we use the DSC to

report overlap results, but to enable comparison with studies

that report overlap as JI, we will include also JI values.

II.B.4. Normal vs metastasis classification

The four segmentation methods were also evaluated by

studying classification performance of a classifier that used

features computed from their segmentations. For each seg-

mentation, 25 features were calculated: volumetric lymph

node size and 24 features based on voxel intensity values.

The intensity features were the 24 combinations of 6 descrip-

tive statistics: mean, standard deviation, median, 25th and

75th percentile, and interquartile range (IQR) of signal inten-

sity inside the segmented region, in 4 MR sequences (VIBE,

MEDIC, ADC, and FLASH).

No smoothing was applied to the MR images when used

as input for the feature extraction. Because the ADC and

FLASH had a different spatial resolution than the VIBE se-

ries, the surface of the segmented lymph nodes did not fol-

low the ADC and FLASH voxel boundaries, i.e., some

voxels were not completely inside or outside the segmented

lymph node, but were intersected by the surface of the seg-

mentation. For feature computation, both these surface vox-

els and the voxels inside were included in the analysis.

Classification was performed for each of the four sets of

segmentations (one from each method) using linear discrimi-

nant analysis with leave-one-out cross-validation. Addition-

ally, the same classification system was also applied to the set

of manual segmentations, and to the population-averaged

shape model (PAS) described below. The complete classifica-

tion experiment was done twice, once with and once without

the lymph node size feature, to evaluate how much this fea-

ture contributed to the performance. The likelihood of malig-

nancy provided by the classifier was used as a discrimination

score to classify the lymph nodes as normal or metastatic. The

discrimination scores were analyzed with ROC methodology,

and the diagnostic performance of the classification was cal-

culated as the area under the ROC curve (AUC).

II.B.5. Population-averaged lymph node shape

In order to demonstrate the need for individual segmenta-

tion of each lymph node when classifying normal vs meta-

stasized lymph nodes, we constructed a population-averaged

shape model. In MR lymphography images, lymph nodes

have varying shapes. What their shapes do have in common

is that they are more or less blob-like, as opposed to tubular

or sheet-like. Therefore, we used a generalized blob shape—

i.e., a sphere with a fixed diameter—as a population average.

For each lymph node, the center of the sphere was defined

by the corresponding seed point; the diameter was estimated

by the mean diameter of a set of manual segmentations.

Although, strictly, it is not a segmentation method, because

it does not use any image information, this model does result

in a set of voxels defining a “segmented” structure for each

seed point. As such, it can be used as a basis for feature com-

putation. Our features currently do not include lymph node

shape. We performed classification (as described in the sub-

section II B 4) based on this fixed lymph node model to

judge the additional value of segmentation.

II.B.6. Statistical analysis

The statistical significance of differences in Dice similar-

ity was tested using Wilcoxon’s signed rank test for paired

nonparametric data.

The ROC analysis was performed using the R Project for

Statistical Computing and the ROCKIT software package (Kurt

Rossmann Laboratories, University of Chicago).

As we performed multiple significance tests, Bonferroni

correction was included.19

III. RESULTS

III.A. Segmentation overlap results

The automated segmentation result of each of the

described methods for three example lymph nodes is visually

presented in Fig. 2. For each lymph node in the data set, the

Dice similarity between the automated and the reference seg-

mentations was calculated. To enable comparison with stud-

ies that use the JI as similarity metric, we also calculated the

JI values for each segmentation. The results are summarized

in Table I. The mean DSC value was 0.35 for the original

CCRG method, 0.57 for the ECC method, 0.44 for graph cut

segmentation, and 0.46 for the parametric shape and appear-

ance model-based segmentation method. The difference in

Dice similarity between ECC and PSAM was statistically

significant (p< 0.004 with Bonferroni correction).

III.B. Normal vs metastasis classification

The second experiment evaluated how the ability of the

classifier to discriminate between normal and metastasized

lymph nodes was influenced by the choice of the segmentation

method. This evaluation was done with the four segmentation

methods, the PAS model, and the manual segmentations. Clas-

sification accuracy was determined by calculating the AUC.

The ROC curves are displayed in Fig. 3. Note that the experts’

FIG. 1. Example of a CCRG segmentation leaking

out of the lymph node at a certain (unpredictable) value

of b.
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lymph node classifications, but not their manual segmenta-

tions, were used as reference standard in this experiment. That

is why when evaluating classification with the manual segmen-

tations the AUC does not equal the ideal value of 1. The mean

AUC values were 0.935 for the manual segmentations, 0.890

for the ECC segmentations, 0.891 for PSAM, 0.807 for graph

cut segmentation, 0.805 for CCRG, and 0.728 for the popula-

tion averaged shape method (Fig. 4). When classification was

done without lymph node size as a feature, performance

changed only very slightly, as shown in Fig. 4.

While PSAM had the highest AUC performance of the

four automated segmentation methods, the difference between

PSAM and ECC was not statistically significant. However,

both PSAM (p< 0.0004 with Bonferroni correction) and ECC

(p< 0.0004 with Bonferroni correction) had a significantly

higher performance than GCS, which had the third best

performance.

IV. DISCUSSION

This study provides baseline results for automated seg-

mentation of lymph nodes in MR images. We evaluated four

segmentation methods on a large number of lymph nodes,

for all of which a reference segmentation was available,

FIG. 2. Segmentation results of three example lymph

nodes. For each node, a coronal, sagittal, and axial slice

through the seed point are shown. Lymph node A is

segmented well by all four automated segmentation

methods. Leakage out of lymph nodes B and C is seen

in the segmentations by the CCRG and GCS methods,

respectively. Note that, while in these 2-D slices, some

leaked-into regions seem disjoint, they are connected in

the 3-D image.

TABLE I. Summary statistics (minimum, first quartile, median, mean, third quartile, and maximum) for the segmentation performance in terms of DSC and JI.

DSC JI

Method Min Q1 Med Mean Q3 Max Min Q1 Med Mean Q3 Max

CCRG 0.00 0.02 0.37 0.35 0.64 0.91 0.00 0.01 0.23 0.26 0.47 0.84

ECC 0.00 0.43 0.64 0.57 0.77 0.93 0.00 0.27 0.47 0.44 0.63 0.88

GCS 0.00 0.17 0.42 0.44 0.70 0.91 0.00 0.09 0.27 0.32 0.54 0.84

PSAM 0.00 0.25 0.49 0.46 0.68 0.90 0.00 0.14 0.32 0.33 0.51 0.82
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created by two expert readers who annotated all MR lym-

phographies that met the inclusion criteria in a consecutive

set of patients. All four methods are automated segmentation

methods, i.e., they require only a seed point as initialization.

The seed points can be provided beforehand, e.g., by an

automated lymph node detection algorithm (which is outside

the scope of this study), or can be defined through a mouse

click by a human reader, as all four methods are fast enough

for interactive use on a state-of-the-art desktop PC.

The presented results show that the ECC method scores

significantly better on segmentation performance than the

other segmentation methods that were compared in this

study. This might seem surprising at first sight because of its

relative simplicity, but can be understood better when one

considers the fact that it has two properties that are very ad-

vantageous for this particular application. ECC does not

depend on predefined gray values, which is important

because lymph nodes in MRI—as opposed to CT—vary

widely in image intensity, even within one MR image.

Second, it is capable of segmenting lymph nodes within a

wide size range, which is needed because with MR lymphog-

raphy, metastases can be found in very small lymph nodes as

well as in large ones. Another advantage is that ECC has an

explicit mechanism to prevent leakage into surrounding

structures. The idea that for segmentation of small blob-like

objects, methods based on region growing perform well, is

supported by research in related fields such as lung nodule

segmentation20 and segmentation of liver metastases.21

The results of the second experiment show that with the

segmentations from either the ECC or the PSAM method,

the classification system achieves a good diagnostic accu-

racy, with AUC values around 0.89. However, using the

manual segmentations still yields the highest accuracy.

When lymph node size was omitted as a feature for the

classifier, performance changed only very slightly, as shown

in Fig. 4.

Measurement of radiological lymph node size is generally

accepted as a method to detect metastatic lymph nodes in

CT and MR imaging, and is recommended in the response

evaluation criteria in solid tumors (RECIST) guideline.22

However, in the case of prostate cancer, a meta-analysis

showed that while specificity was 0.82, sensitivity was only

0.42, indicating that 82% of normal lymph nodes but also

58% of metastatic nodes were normal-sized.23 Another study

analyzing 980 prostatectomy patients concluded that in

normal-sized nodes, size did not correlate with the presence

of metastasis.24 Seen in this light, the very modest

FIG. 3. ROC curves of all segmentation methods.

FIG. 4. The effect on the diagnostic accuracy of the

normal vs metastasis classification using six types of

segmentation. Error bars represent 95% confidence

intervals.

6184 Debats et al.: Automated segmentation of pelvic lymph nodes in MRI 6184

Medical Physics, Vol. 38, No. 11, November 2011



contribution of lymph node size to classification perform-

ance is not surprising, because in our study population

almost all metastatic lymph nodes are normal-sized.

To date, a limited number of studies have been published

on lymph node segmentation and most of them focus on CT

data, exceptions being Zhang et al.,25 who used ultrasound

images, and Unal et al.9 who focused on lymph nodes in

MR images. However, Unal’s method is semi-automatic,

2D-oriented, and forces lymph node shape to be elliptical.

While both CT and MR lymphography are cross-sectional

imaging techniques, radiodensity in CT is a quantitative

measurement of x-ray attenuation, expressed in Hounsfield

units (HU), and each tissue type has a specific range of HU

values, whereas signal intensity in most MR sequences is

nonquantitative by nature. The intensities of lymph node tis-

sue in MR therefore cannot be defined a priori. They can

vary between scanners but also between patients. Moreover,

because bias fields and other image artifacts are ubiquitous

in MR imaging, lymph nodes can have very different inten-

sity ranges even within one image. Another difference is that

MRI distinguishes different types of soft tissue that have the

same HU value, which causes lymph nodes to have a more

heterogeneous appearance than in CT. These differences

between CT and MR images hamper the interpretation of

differences in segmentation result between studies.

Yan et al. were the first to evaluate semi-automatic seg-

mentation on real lymph node images, after a few studies

that evaluated their methods on synthetic images.6,26 They

proposed a fast marching method,27 and a marker-controlled

watershed method28 to segment lymph nodes in CT scans of

lymphoma patients, which achieved a JI value (called

“overlap ratio” in their paper) of 0.832. This high accuracy

was made possible by extensive input from a human reader,

who selected an optimal seed point and drew a circle around

the lymph node to prevent boundary leaking. In a separate

study,29 they developed an algorithm for lymph node seg-

mentation in follow-up scans, based on registration with

manually segmented baseline scans. The reported JI of 0.73

was the mean of only the successfully segmented nodes.

Lu et al.30 proposed a method called “single-click live

wire.” They evaluated their method on central-chest lymph

nodes in an interactive setting where they permitted up to three

single-click attempts, and achieved a mean DSC (called

“accuracy” in their paper) of 0.79, but they did not report what

DSC would result if only one single-click were permitted.

For the segmentation of pelvic lymph nodes, Young

et al.31 evaluated a commercially available software package

that used atlas registration to generate “autocontours,” which

were corrected by human readers. The DSCs that they report,

0.78, 0.86, and 0.78, are from the corrected autocontours.

A number of publications address segmentation of lymph

nodes in head and neck CT images. Chen et al.,32 for exam-

ple, report a DSC of 0.698 and Stapleford et al.33 reach a

DSC of 0.76. It is important to realize that these studies did

not segment individual lymph nodes nor separate neck lymph

node levels. Instead, all included lymph nodes on either side

of the body were taken together and regarded as one single

volume. Segmenting lymph nodes individually, as we did, is

much more challenging in terms of overlap accuracy, as small

segmentation errors on the boundaries of each lymph node

add up together, which decreases DSC values. Dornheim

et al.34 achieved in 2007 already a remarkably good overlap

with their method based on “stable mass-spring models.” The

mean JI of the first version was 0.56, and with the improved

method this increased to 0.721.8 Although this is a very good

result, it is unlikely that the method can be easily adapted for

MR images, because it relies on the specific HU range of

lymph nodes. Moreover, it must be noted that the evaluation

was done on 40 manually selected lymph nodes, and that the

mean overlap might be less if the method were evaluated on a

larger set of nodes from a consecutive set of patients.

Other studies that do distinguish at least between the dif-

ferent neck lymph node levels report much lower DSCs. For

example Gorthi et al., who segmented levels Ia, Ib, IIa, IIb,

III, IV, Va, Vb, and VI separately, reported in 2009 DSCs of

0.42 an 0.46 with and without leave-one-out cross-

validation, respectively.35 In their most recent study, they

improved the method and achieved a DSC of 0.503.36 Our

best performing method, with a mean DSC of 0.57, com-

pares favorably to those results.

One limitation of this study is that we use one fixed seed

point per lymph node in the experiments. Therefore, we can-

not draw conclusions concerning the effect of variations in

seed point location. However, all methods have the ability to

deal with a seed point that deviates from the lymph node’s

center of mass. Our CCRG and ECC implementations apply

seed point optimization, PSAM directly optimizes lymph

node center, so it uses the seed point only for initialization,

and GCS assumes only that the seed point is inside the

lymph node but not necessarily in its center.

In imaging studies it is, in general, important to include

images of both healthy and diseased patients, or else the con-

clusions drawn may not apply to both groups of patients.

While it is true that all patients included in our study are

prostate cancer patients, our study specifically addresses the

lymph nodes, not the prostate gland. Therefore, in our case

the important issue is to include both nonmetastasized and

metastasized patients. Indeed, more than half of the patients

in our database did not have metastases (as defined by the

reference standard). Moreover, only 566 of the 2347 ana-

lyzed lymph nodes (24%) contained metastases.

The ferumoxtran-10 contrast agent used for MRI acquisi-

tion, which is needed for the normal vs metastasis classifica-

tion, is currently not available. While imaging without

contrast agent, or with another type of USPIO, might have a

big impact on classification performance, it has little or no

influence on the segmentation results, because the input for

the segmentation algorithms is the VIBE image, which is

insensitive to USPIO contrast. Therefore the performance, in

terms of similarity between manual and automated methods,

would not be affected. Furthermore, it is expected that new

USPIO agents with imaging characteristics very similar to

ferumoxtran-10 will be introduced in the near future.

Future improvements in segmentation and classification

performance can probably be made by including a segmenta-

tion of the main pelvic anatomical structures, such as the
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pelvic bones and the major blood vessels. By doing so, erro-

neous inclusion of parts of those structures in segmented

lymph nodes can be further eliminated. As pelvic lymph

nodes are mainly located near big blood vessels, a segmenta-

tion of those can also serve as basis for a fully automatic

lymph node segmentation system that includes automated

seed point detection. Classification performance may be fur-

ther improved by including a registration step: although in our

images, the misalignments are small (in the order of 1 mm)

registration of the MEDIC, ADC, and FLASH images to the

VIBE image, on which the segmentation was performed, may

increase accuracy especially for small lymph nodes.

V. CONCLUSION

In this paper, we compared four automated segmentation

methods applied to MR lymphography images. We evaluated

the performance of the methods by two experiments, with a

database of 2347 lymph nodes, including manual segmenta-

tions created by two expert readers in consensus. The first

experiment, in which each method’s results were compared to

a set of reference segmentations using the Dice similarity coef-

ficient, showed that our ECC method is significantly more

accurate than the other segmentation methods (p< 0.004). The

second experiment, in which the methods were compared on

the basis of their diagnostic accuracy when used as input for a

lymph node metastasis CAD system, showed that both ECC

and PSAM had a good diagnostic accuracy and were signifi-

cantly better than GCS and CCRG (p< 0.0004).
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4R. A. M. Heesakkers, A. M. Hövels, G. J. Jager, H. C. M. van den Bosch,

J. A. Witjes, H. P. J. Raat, J. L. Severens, E. M. M. Adang, C. Hulsbergen
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