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Automated multistructure atlas-assisted detection of lymph nodes
using pelvic MR lymphography in prostate cancer patients

Oscar A. Debats,a) Midas Meijs, Geert J. S. Litjens, and Henkjan J. Huisman
Department of Radiology and Nuclear Medicine, Radboud University Medical Center,
Nijmegen 6525 GA, The Netherlands

(Received 27 July 2015; revised 29 April 2016; accepted for publication 5 May 2016; published 31
May 2016)

Purpose: To investigate whether atlas-based anatomical information can improve a fully automated
lymph node detection system for pelvic MR lymphography (MRL) images of patients with prostate
cancer.
Methods: Their data set contained MRL images of 240 prostate cancer patients who had an MRL as
part of their clinical work-up between January 2008 and April 2010, with ferumoxtran-10 as contrast
agent. Each MRL consisted of at least a 3D T1-weighted sequence, a 3D T2*-weighted sequence,
and a FLASH-3D sequence. The reference standard was created by two expert readers, reading in
consensus, who annotated and interactively segmented the lymph nodes in all MRL studies. A total
of 5089 lymph nodes were annotated. A fully automated computer-aided detection (CAD) system
was developed to find lymph nodes in the MRL studies. The system incorporates voxel features
based on image intensities, the Hessian matrix, and spatial position. After feature calculation, a
GentleBoost-classifier in combination with local maxima detection was used to identify lymph node
candidates. Multiatlas based anatomical information was added to the CAD system to assess whether
this could improve performance. Using histogram analysis and free-receiver operating characteristic
analysis, this was compared to a strategy where relative position features were used to encode
anatomical information.
Results: Adding atlas-based anatomical information to the CAD system reduced false positive
detections both visually and quantitatively. Median likelihood values of false positives decreased
significantly in all annotated anatomical structures. The sensitivity increased from 53% to 70% at 10
false positives per lymph node.
Conclusions: Adding anatomical information through atlas registration significantly improves an
automated lymph node detection system for MRL images. C 2016 American Association of Physicists
in Medicine. [http://dx.doi.org/10.1118/1.4951726]

Key words: CAD, MR lymphography, prostate cancer, atlas registration, pelvic lymph node
metastasis

1. INTRODUCTION

Approximately 220 000 men are diagnosed with prostate
cancer (PCa) in the USA each year, and 27 000 die as a conse-
quence of the disease. Those in whom the cancer has broken
through the prostate capsule and formed metastases in pelvic
lymph nodes have a substantially lower chance to survive.1

Not only the prognosis but also the treatment options for a
patient diagnosed with PCa depend on their lymph node status.

MR lymphography (MRL) remains the most accurate
imaging modality for the assessment of metastatic involve-
ment of pelvic lymph nodes.2 MRL is MR imaging using
a lymph node specific contrast agent based on ultrasmall
superparamagnetic particles of iron oxide (USPIO), which
result in signal intensity differences between metastatic
and normal lymph node tissue.3 However, despite its high
accuracy, MRL is currently not very widely used. Reasons for
this are that the interpretation of MRL images is very time-
consuming, with average reading times up to 80 min, and that
readers with a very high level of experience are required for
the assessment of the images.4

MRL interpretation time as well as dependence on high
reader experience can be reduced by using a computer-aided
detection (CAD) system. Such a system can detect the pelvic
lymph nodes and present each one subsequently to the human
reader, who can then assess more efficiently whether it is a
metastatic lymph node or a healthy one, without having to
search painstakingly through all regions of the pelvic area
where lymph node metastases might be located. A modest
number of studies have been published on the development
of such a CAD system, most of them using CT images rather
than MR images.5–7

In a pilot study at our institution, it was shown that a
generic CAD system based on pattern recognition can, after
being properly trained, detect most lymph nodes from a set of
pelvic MRL images. However, the challenge is to reduce the
number of false positive (FP) detections, which currently is
far too high for such a system to be usable in a routine clinical
workflow.8 One of the issues is that false positives are not only
generated in regions where lymph nodes can be expected to
be found but also in areas of the MRI volume that are far away
from all possible pathways of lymphogenic metastatic spread,
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T I. Scan parameters of the MRL sequences. TE: echo time; TR: repetition time.

TE TR Flip angle Pixel size Slice thickness
Description Acronym (ms) (ms) (deg) Matrix (mm) (mm)

T1-weighted spin echo VIBE 2.45 4.95 10 320 × 320 0.8 × 0.8 0.8
T2*-weighted gradient echo MEDIC 11 20 10 320 × 320 0.8 × 0.8 0.8
T2*-weighted FLASH 1.16 2.84 18 384 × 384 1.0 × 1.0 1.0

and even inside tissues that are not expected to contain any
lymph nodes at all, such as muscle tissues, bone structures, or
bowel loops.

Many false positive lymph node candidate detections can
be dismissed by including anatomical information into the
CAD system. When the system can make use of information
defining which structures of the volume are actually pelvic
bones, muscles such as the psoas and iliac muscle, intestinal
structures, or major blood vessels, it cannot only exclude
detections inside those structures but rather use their location
to more accurately detect lymph nodes in the various lymph
node regions of the pelvic area, which are defined by, and
often even named after the surrounding anatomy.

In this study, we developed a CAD system prototype for
detection of pelvic lymph nodes which includes anatomical
information in the form of probabilistic atlas features. We
compared the new CAD system to a generic pattern recog-
nition based CAD prototype that did not include anatomical
information, and evaluated the performance of both systems
with respect to a database of lymph nodes annotated in MRL
images.

2. METHODS
2.A. Summary of the CAD pipeline

In this section, the common CAD pipeline shared by
both the generic CAD prototype and the atlas-enhanced
CAD prototype is discussed. The prototypes are based on
a pattern recognition system that is configured to work
with MRL data sets containing T1-weighted (“VIBE”) and
T2*-weighted (“MEDIC” and “FLASH”) image volumes

(Table I). Flowcharts of the CAD pipeline are shown in
Figs. 1 and 2.

A set of image features are defined, which are implemented
as feature filters, each of which uses one of the available MR
images as input and has a feature map as output. After feature
calculation, a voxel classification is performed which results
in a lymph node likelihood between 0 and 1 for each voxel.
For the voxel classification, a GentleBoost-classifier was used
with regression stumps as weak learners. The number of weak
learners was set to 200.

After voxel classification, a 3D likelihood map is obtained.
Some example slices are shown in Fig. 3. On the likelihood
map, we perform local maxima detection using a spherical
window with a diameter of 10 mm, which is the maximum
size of nonenlarged lymph nodes in MRL. After the local
maxima detection, a merging step was performed to get rid of
plateau-shaped maxima using connected component analysis.
All components bigger than one voxel were reduced to only
the voxel nearest to the center of gravity. The location and
likelihood of the remaining local maxima define the lymph
node detection points.

Once a list of points with high lymph node likelihood has
been detected, it could be used directly in a clinical workflow,
where the radiologist would be presented the list of detections
in a dedicated viewing station and would be able to quickly go
through the list, skipping over any nonlymph node detections,
and appreciate true lymph nodes as normal or aberrant.

2.B. Features

Several types of voxel features were used in the voxel
classification step of the CAD prototype.

F. 1. Flowchart of the CAD pipeline. Solid arrows indicate the generic MRL CAD pipeline. Note that soft classification is performed, which does not output
a hard class label but a likelihood value for each voxel. Dotted arrows indicate the added steps in the atlas-enhanced CAD pipeline.
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F. 2. Flowchart of the classifier training procedure. Solid arrows indicate the training procedure for the generic MRL CAD pipeline. After computing the
feature maps, samples are taken from them at locations inside and outside the annotated lymph nodes and used as training data for the voxel classifier. Dotted
arrows indicate the added steps in the atlas-enhanced CAD pipeline.

2.B.1. Image intensity

In MRL images, as with most MR sequences, the signal
intensity I does not quantitatively reflect a physical property

of the tissue in the concerning voxel, and intensities can vary
between scans. In a study by Wendt, it was shown that scaling
the intensity values using first order statistics such as mean,
median, and standard deviation can be a satisfactory and robust

F. 3. Three example slices of the likelihood maps. (A) coronal view of the VIBE image volume; (B) likelihood map of the generic CAD prototype; (C)
likelihood of the atlas-enhanced prototypes.

Medical Physics, Vol. 43, No. 6, June 2016



3135 Debats et al.: Automated lymph node detection in pelvic MRL images 3135

method of scaling image intensity.9 We applied scaling by
the mean µ and standard deviation σ of the signal intensity
within each image volume and included scaled intensity of
the VIBE, MEDIC, and FLASH images as voxel features.
Iscaled= (I− µ)/σ.

2.B.2. Blobness, vesselness, and sheetness

One important characteristic of lymph nodes in MRL is that
they appear as dark blob-shaped structures on the T1-weighted
images. A common approach to detect blobs in medical
images is by using a blob enhancement filter which determines
the blob likelihood of a voxel x using the eigenvalues λσ,k of
the Hessian matrix Hσ at scale σ, with k = 1,2,3 as described

by Li et al.,10

Pblob(x,σ)=



λσ,3(x)2
|λσ,1(x)| if λσ,k(x)< 0 k ∈ 1,2,3

0 otherwise
. (1)

The Hessian eigenvalues can also be used to detect tube-
like (or vessel-like) and sheet-like structures. Lymph nodes
are connected to the lymph vessels which run alongside the
blood vessels, so the lymph nodes are expected to be found
in the neighborhood of the larger vessels, but the system
should not give a high lymph node likelihood output for
vessel-shaped structures themselves. To enable the classifier
to exclude vessels, the feature set also includes the vesselness
likelihood Pvessel,

Pvessel(x,σ)=



|λσ,2(x)| (|λσ,2(x)|− |λσ,3(x)|)
|λσ,1(x)| if λσ,k(x)< 0 k ∈ 1,2

0 otherwise
. (2)

Also sheet-like structures are included in the imaged
volume, such as the cortical layers of pelvic bones, which
often mimick the low signal intensities of lymph nodes in
the T1-weighted images. Again, these should not generate a
high lymph node likelihood themselves, so also the sheetness
likelihood Psheet was included in the feature set,

Psheet(x,σ)=



|λσ,1(x)|− |λσ,2(x)| if λσ,1(x)< 0
0 otherwise

. (3)

2.B.3. Spatial position

Lymph nodes occur more often in certain areas, such as
locations close to fatty tissue and around the main blood
vessels. To enable the classifier to use this information,
we included the craniocaudal, ventrodorsal, and left–right
position relative to MR world coordinates. In our MRL
studies, the VIBE and MEDIC images are acquired in a
standardized procedure, such that in the craniocaudal direction
they extend from the aortic bifurcation to the pubic bone, in
the left–right direction they are centered on the median plane
of the body, and in the ventrodorsal direction they extend
from the abdominal wall to sacral vertebrae. Because of this
standardized procedure, the origin of MR image space is
linked to reference anatomy.

2.C. Probabilistic atlas features

We hypothesized that adding anatomical information to
the CAD system can help in reducing the number of false
positives. We chose multiatlas registration as strategy to
encode the anatomical information as voxel likelihoods of
belonging to a certain organ. Multiatlas registration is not

widely used for abdominal MRI currently, but, for example,
in brain MRI, it is common practice.11

Ten MRL studies were randomly selected to serve as
atlases, for each of which a reference segmentation was
created as follows. The most important anatomical landmarks
of the pelvic region were segmented interactively by one of
the researchers (MM), using the medical image segmentation
tool -.12 First, the osseous structures were segmented:
femur, hip bones (ilium, pubis, and ischium), and spine, as
illustrated in Fig. 4. Second, a number of intrapelvic and
paraspinal structures were segmented: aorta, vena cava, iliac
arteries and veins, psoas major muscles, iliacus muscles, and
urinary bladder (Fig. 5). Also the gluteus maximus muscle
was included. The remaining areas were labeled either as
intra-abdominal space (which included the intrapelvic cavity)

F. 4. A 3D view of the osseous structures in one of the atlases. Structures
shown are the femur, pelvic bones, and spinal column.
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F. 5. A 3D view of one of the atlases, showing the main blood vessels,
iliopsoas muscles, and urinary bladder.

or extrapelvic space. The VIBE images as well as the MEDIC
and FLASH images were used for the interactive segmentation
process.

For a new patient’s MRL study to be processed by the
CAD pipeline, the VIBE images of all ten atlas studies were
deformably registered to the corresponding VIBE image of the
new study, resulting in ten sets of transformation parameters,
one for each atlas. To this end, we used the registration
package , an open source software toolbox for rigid and
nonrigid image registration.13 A two-step registration protocol
was used. First, an affine rigid transformation was applied to
account for coarse differences in the two images. After this,
a nonrigid multiscale B-spline transformation was applied
to align more subtle differences in pelvic anatomy between
patients. Mutual Information was used as similarity measure,
and optimization was performed using an adaptive stochastic
gradient descent optimizer.14

Once the VIBE images of all atlases had been registered to
the VIBE image of the new MR data set, the ten resulting sets
of transformation parameters were used to transform the ten
corresponding atlas label maps, to obtain ten segmentations
for the new MR data set. Instead of using atlas label fusion
to create binary segmentations, as can be done, for example,
by majority voting, best atlas selection, or more advanced
methods based on simultaneous truth and performance level
estimation (STAPLE) or the selective and iterative method
for performance level estimation (SIMPLE), the collection
of atlases was treated as a nonparametric spatial probability
distribution, and a frequency map was computed for each atlas
label.15

The frequency map for each anatomical structure was
defined as the 3D image in which each voxel scalar is
the percentage of transformed atlas label maps in which
the corresponding voxel is labeled with the concerning
anatomical structure. The frequency maps were smoothed
using a gaussian filter with a size of 1.95 mm (2.5 voxel
lengths) to ensure spatial continuity and a smooth continuous
scale. The smoothed frequency maps were used as features
for the voxel classification.

2.D. Validation

2.D.1. Imaging and data collection

The two CAD prototypes (generic and atlas-enhanced)
were evaluated using MRL images of a consecutive set of
patients who fulfilled the following inclusion criteria:

• Biopsy-proven prostate cancer;
• ferumoxtran-10 MRL between January 2008 and April

2010;
• successful acquisition of VIBE, MEDIC, and FLASH

image volumes.

A total of 240 patients were included in the analysis. Each
patient underwent MR imaging enhanced with the USPIO-
based lymph node specific contrast agent ferumoxtran-10
(Sinerem®, Guerbet, Paris, France) at the Radboud University
Medical Center in Nijmegen, The Netherlands, as part of their
clinical evaluation. Administration was done intravenously,
36–24 h before the MR imaging was performed. All patients
received a drip infusion with a duration of approximately
30 min, containing a dose of 2.6 mg Fe per kg body
weight. Immediately before the MR examination, Buscopan
(20 mg i.v. and 20 mg i.m.) and Glucagon (20 mg i.m.)
were administered in order to suppress bowel peristalsis. All
patients provided informed consent for the use of their clinical
images for research purposes. All imaging was performed
using a 3.0 Tesla MR imaging system (Magnetom TrioTim;
Siemens, Erlangen, Germany). Images were acquired in the
coronal plane, covering the whole pelvis. Two MR series,
called VIBE and MEDIC, respectively, were used in this
analysis. The scan parameters are shown in Table I.

2.D.2. Reference standard

To assess the performance of the automated lymph node
detection, reference lymph node annotations were created for
the clinical evaluation of each patient’s MRL, which was
established in a consensus reading by two expert readers: an
MD researcher specially trained in reading MRL scans (OD,
2 yr of MRL experience, >300 MRLs) and an abdominal
radiologist (JB, >10 yr of MRL experience, >1000 MRLs).

The T1-weighted (VIBE) sequence, which is insensitive to
USPIO contrast, was used for localization and assessment
of shape and size of the LNs. Using this sequence, the
individual lymph nodes were interactively segmented using
the application Lymph Node Task Card, developed by
Siemens, Malvern, PA, USA. The T2*-weighted (MEDIC)
sequence was used to assess USPIO uptake for the clinical
diagnosis of the patient, but was not used in our analysis.

2.D.3. Training data

The GentleBoost-classifier was trained with training sets
containing feature data from randomly selected background
voxels and lymph node voxels. Because lymph nodes are small
organs, in their voxel representation after manual or interactive
segmentation, their ratio of edge-voxels to nonedge voxels is

Medical Physics, Vol. 43, No. 6, June 2016
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relatively high. Because of small segmentation errors, edge
voxels but also voxels close to the edges are to be avoided
when selecting training voxels. For reference lymph nodes
with a long-axis diameter greater than 4 mm, we included in
the training set only the voxels within a 4 mm radius of the
center of gravity of the lymph node. Some lymph nodes in the
reference segmentations had a volume less than 0.1 ml and
were excluded from the training.

2.D.4. Registration accuracy

As the quality of the atlas features depends on accurate
atlas registration, the accuracy of the registration (described
in Sec. 2.C) was assessed. To do this, the MR images of the
atlas studies were registered to the corresponding MR images
of all other atlas studies. For each atlas study, the resulting
nine transformation matrices were applied to the label maps
of the other nine atlas studies. The nine resulting label maps
were combined by majority voting. The combined label map
could then be compared to the manually constructed one, in
terms of spatial overlap. As overlap metric we used the Dice
similarity coefficient (DSC),16 derived as a special case of the
kappa statistic by Zijdenbos et al.,17

DSCi =
|SR, i∩SM, i |

1
2 (|SR, i |+ |SM, i |)

, (4)

where SM, i is the manually segmented voxel set for organ
label i, and SR, i is the voxel set for organ label i defined by
the majority voting on the transformed label maps.

2.D.5. Visual inspection of the likelihood maps

The quality of the likelihood maps resulting from the voxel
classification described in Sec. 2.A was evaluated visually,
with special attention to areas of high likelihood in nonlymph
node anatomical structures, such as muscles or bones, which
will result in false positives if they have likelihoods in the same
range as lymph nodes. A comparison was made between the
likelihood maps resulting from the generic CAD prototype
and those produced by the atlas-enhanced CAD prototype,
to assess in a qualitative manner whether adding anatomical
information to the system could be expected to yield a
reduction of false positive detections.

2.D.6. False positive reduction

To quantify the reduction of false positives achieved by
adding anatomical information, a histogram analysis of the
likelihood of FP detection points, grouped by the anatomical
structure in which they occurred, was performed. This was
done by running the CAD system on the atlas studies,
because for these studies, manually annotated label maps
were available, defining the anatomical structures. A leave-
one-case-out strategy was used to generate the atlas features
for the atlas studies. Histograms with 100 bins were generated
for the likelihood values of the FPs from both CAD prototypes
in the labels “femur,” “pelvic bones,” “spinal column,”

“gluteus maximus,” “iliopsoas muscles,” “urinary bladder,”
“blood vessels,” and “intestine.”

FPs with a likelihood value below the likelihood range of
the true positive detection points do not affect the accuracy of a
CAD system. In our case, likelihood values of 0.75 and below
were irrelevant. Therefore, not only the median likelihood
and the total number of FPs were compared between the two
prototypes but also the number of FPs with likelihood values
above 0.75. Since a normal distribution could not be expected,
the statistical significance of the differences was tested using
Wilcoxon’s rank sum test.18

2.D.7. Lymph node detection performance

To evaluate the performance of the two CAD prototypes,
a free-response receiver operating characteristic (FROC)
analysis was conducted, using a fivefold cross validation
scheme. In each fold, 192 studies were used to train the
classifier and 48 studies were used for evaluation. A detection
point was considered a true positive if it was inside the
boundaries of one of the reference lymph nodes; if not, it
was considered a false positive. Each reference lymph node
with a size of 0.1 ml or greater that was not “hit” by a detection
point was considered a false negative.

2.D.8. Sensitivity analysis

As the number of atlases was a key design parameter
of the atlas-enhanced CAD prototype, a sensitivity analysis
was performed to assess its relative contribution to the
performance of the system. For this purpose, a random subset
of 20 MRL studies was selected, and the system was trained
and evaluated as described above, but with different sets of
atlas features, constructed using either 1, 3, 5, or 10 atlases.

3. RESULTS
3.A. Registration accuracy

The results of the analysis of registration accuracy are
summarized in Table II. Registration proved to be more
accurate for some anatomical structures than for others. Of the
structures analyzed, the femur had the highest accuracy (mean
DSC 0.868), followed by the other musculoskeletal structures.
For the blood vessels, a lower mean DSC was achieved, and
the intestinal structures show the lowest value (0.155). The
standard deviation over the ten randomly selected atlas studies
was lowest for the musculoskeletal structures and the blood
vessels (range 0.03–0.06). The highest standard deviation
was found for the urinary bladder (0.17). An example of a
registered pelvic anatomy atlas is presented in Fig. 6, which
shows that a good visual alignment was achieved for the
musculoskeletal structures.

3.B. Visual inspection of the likelihood maps

Three example slices of VIBE images with their likelihood
maps as overlay are shown in Fig. 3. As can be seen, the
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T II. Registration accuracy. The highest Dice similarity is achieved for
the osseous structures in general and, more specifically, the femur. µ: mean;
σ: standard deviation.

DSC

µ σ

Femur 0.868 0.05
Pelvic bones 0.773 0.04
Spinal column 0.741 0.06
Gluteus maximus 0.816 0.03
Iliopsoas muscles 0.831 0.03
Urinary bladder 0.781 0.17
Blood vessels 0.544 0.05
Intestine 0.155 0.10

likelihood map of the generic CAD prototype [Fig. 3(B)]
contains a number of high likelihood areas in anatomical
structures such as the cortex of the pubic bones and the
surrounding muscles. In the likelihood map of the atlas-
enhanced CAD prototype [Fig. 3(C)], these areas are much
less abundant.

3.C. False positive reduction

The histograms showing the likelihood distribution of
the FPs of both CAD prototypes are displayed in Fig. 7.
The results of the histogram analysis are summarized in
Tables III and IV. The atlas-enhanced prototype achieves a
strong reduction of FPs compared to the generic prototype,
as shown by the reduction of detection points inside almost
all anatomical structures in the reference segmentations. The
urinary bladder, which shows an increase of the number of

F. 6. Example of a registration result, showing that a good visual alignment
was achieved. The gray scale image is a coronal example slice of the VIBE
image of one of the MRL data sets. The color overlay shows a label map
generated by registration of one of the atlases to the VIBE image. Anatomical
structures shown are the femur (blue), pelvic bones (green), spinal column
(yellow), and iliopsoas muscles (orange).

F. 7. Histograms of false positives in various anatomical structures. For
most anatomical structures (femur, pelvic bones, spinal column, iliopsoas
muscles, urinary bladder, and intestine), the addition of atlas-based anatom-
ical information strongly reduces the number of false positives in the high
likelihood (>0.8) domain. In the gluteus maximus muscles, almost no false
positives with high likelihoods are generated. The only type of anatomical
structure where high likelihood false positives are not substantially reduced,
are the blood vessels.

FPs, is the only exception. The median likelihood value of
the false detection points was significantly decreased in all
anatomical structures except for the gluteus maximus and the
blood vessels. (Table III). The number of FPs with likelihood
values above a threshold of 0.75 is strongly reduced in most
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T III. Reduction of FPs. The number of FPs is strongly reduced in all anatomical structures except for the
urinary bladder. The median likelihood value of the FPs is significantly decreased in all anatomical structures
except for the gluteus maximus and the blood vessels.

No. of FPs/scan Median likelihood

Generic Atlas-enhanced Generic Atlas-enhanced p

Femur 187 160 0.256 0.114 <0.001
Pelvic bones 649 539 0.630 0.592 <0.001
Spinal column 320 295 0.692 0.554 <0.001
Gluteus maximus 950 919 0.090 0.101 <0.001
Iliopsoas muscles 940 824 0.693 0.533 <0.001
Urinary bladder 92 109 0.814 0.669 <0.001
Blood vessels 111 75 0.753 0.791 <0.001
Intestine 107 87 0.832 0.747 <0.001

anatomical structures. The number of thresholded FPs in the
gluteus maximus was paradoxically increased, although their
absolute number, at 2.3 per scan, remained fairly low. The
number of thresholded FPs in the blood vessels remained
essentially the same. In all other anatomical structures, the
number of thresholded FPs was reduced by at least 48.8%
(Table IV).

3.D. Detection performance

The results of the FROC analysis are summarized in Figs. 8
and 9. The atlas-enhanced prototype shows a strong improve-
ment of detection performance. The maximum sensitivity is
similar for both prototypes, approximately 96%. However,
in the sensitivity range from 20% to 80%, the number of
false positives is reduced by a factor 2.5. For example, at
80% sensitivity, the nonenhanced CAD prototype produces
43.4 FPs/lymph node (509 FP/scan). With the atlas-enhanced
prototype, the number is reduced to 17.6 FP/LN (207 FP/scan).
The sensitivities at a FP level of 10 FP/LN (117 FP/scan) were
0.703 and 0.531 for the systems with and without atlas-based
anatomical information, respectively.

T IV. Reduction of FPs with likelihood values above 0.75. The number
of FPs is strongly reduced in all anatomical structures except for the gluteus
maximus and the blood vessels. The number of FPs in the gluteus maximus
was paradoxically increased, although their absolute number, at 2.3 per scan,
remained fairly low. The number of FPs in the blood vessels remained
essentially the same.

No. of FPs/scan

Generic Atlas-enhanced % difference

Femur 9.9 0.2 −98.0
Pelvic bones 204 88.3 −56.7
Spinal column 108 39 −63.9
Gluteus maximus 0.7 2.3 +229
Iliopsoas muscles 335 129 −61.5
Urinary bladder 77.2 20.9 −72.9
Blood vessels 56.5 54.3 −3.9
Intestine 84.4 43.2 −48.8

3.E. Sensitivity analysis

The results of the sensitivity analysis are summarized in
the FROC plots in Fig. 10. The plots reveal that the detection
performance improves with the number of atlases but levels
off at 5 atlases. Adding more atlases does not improve the
performance [Fig. 10(A)].

Varying the choice of atlases did not have a substantial
influence on CAD performance. An example of this is shown
in Fig. 10(B), where the FROC curves are plotted for three
systems, each trained with atlas features constructed using a
different set of three randomly selected atlases.

4. DISCUSSION

Our results showed that adding anatomical information
in the form of probabilistic multiatlas features improved the
CAD prototype by reducing the number of FPs. The generic
and atlas-enhanced CAD prototypes were evaluated on a
large number of lymph nodes, for all of which a reference

F. 8. FROC plot of detection performance. AFs: atlas features; FPs: false
positives; LN: lymph node. At 80% sensitivity, the nonenhanced CAD pro-
totype produces approximately 40 FPs/lymph node. With the atlas-enhanced
prototype, the number of FPs is reduced by a factor 2.5.
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F. 9. Variability analysis of detection performance. To visualize the variability, separate FROC curves are plotted for each of the folds of the fivefold cross
validation.

segmentation was available, created in consensus by two
expert readers who annotated all MRL data sets that met
the inclusion criteria in a consecutive set of patients. A total
of 240 MRLs was included, all of which were successfully
processed by the two CAD prototypes. The registration
procedure proved to be robust as it achieved an acceptable
result for all 240 MRLs. A result was considered to be
acceptable when it contained no serious misregistrations on
visual inspection, as was the case for all MRL studies except
for the fact that the exact shape of the intestines in the target
study could generally not be captured by the registration
procedure. However, this is considered to be inevitable, due
to the large differences in shape and location of the intestinal
structures between individuals.

A satisfactory registration accuracy was achieved for
most anatomical structures. This was appreciated by visual
inspection of the registered atlases and confirmed by the Dice
overlap values for almost all pelvic anatomical structures that

were labeled in the atlases. The accuracy was higher for some
organs than for others, as shown in Table II. Partly, this can
be explained by the fact that some structures (e.g., intestine)
are more challenging in registration than other structures (e.g.,
bone, muscle), because they show more variation in location
between subjects. The size and shape of an organ may not
only influence the registration process itself but will also
determine how much the DSC value decreases for certain
types of misregistration. For example, blood vessels, being
elongated structures, will lose relatively much Dice overlap
when the registration result is a little off in the transverse
plane.

We assumed that in general, for any one of the anatomical
structures studied, a higher registration accuracy would lead
to a better false positive reduction. However, this was not a
topic of investigation in our study. Note that we did not assume
a correlation between registration accuracy and FP reduction
across different anatomical structures.

F. 10. (A) FROC plot of the sensitivity analysis of the number of atlases used to build the probabilistic atlas features. The differences in detection performance
while varying the number of atlases are relatively small. Although the curve for the 10-atlas system lies clearly above the curve for the 1-atlas system, the
performance with 5 and with 10 atlases is essentially the same. (B) FROC plot of CAD systems with atlas features based on three atlases: three sets of three
randomly selected atlases were used to build the probabilistic atlas features and train a CAD system.
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While FP reduction and detection performance were
evaluated on all 240 MRL studies, registration accuracy was
evaluated on the ten atlas studies, because these were the
studies for which manual segmentations of the anatomical
structures were available. The ten atlas studies were randomly
selected, and the variation in registration accuracy between
them was low (see the σ values in Table II), indicating that
they are sufficiently representative as a subset.

Our registration results are comparable to the scarce
literature on pelvic atlas registration. A number of studies
have been published on automatic prostate segmentation
and registration,19–21 but since many of the subjects in our
population have undergone radical prostatectomy, the prostate
is not one of the organs included in our atlases. Only a few
studies are available in which similar organs are segmented. In
the work of Acosta et al.,22 a DSC value of 0.58 is reported for
the urinary bladder. Dowling et al.23 report a slightly higher
value of 0.64, which is lower than our result (DSC 0.781).
Their Dice overlap for pelvic bones (DSC 0.79) is comparable
to our value (0.773). Also Will et al.24 report a Dice overlap
for the pelvic bones (0.719) that is similar to our result.

The likelihood maps were strongly improved by the
addition of anatomical information. Visual inspection of the
likelihood maps indicated that, particularly inside muscle
tissue and bone cortex, many high-likelihood areas that
were present in the output of the generic prototype were
not visible in the likelihood maps of the atlas-enhanced
system. In a histogram analysis of the likelihood values of the
detected lymph node candidates, it was shown that adding the
atlas-based anatomical information resulted in a significant
decrease of the median likelihood of the false positive
detections in most anatomical structures. False positives with
likelihood values above 0.75 were reduced by a factor two or
more in six of the eight annotated structures in the atlases.

The atlas-enhanced CAD prototype reduced the number
of false positives by a factor 2.5. At a sensitivity level of
80%, the generic system showed 43.4 false positives per
lymph node, while the enhanced system reached the same
sensitivity at only 17.6 FPs/LN. Both systems were able to
find 96% of the reference lymph nodes. Closer inspection of
the 1% highest-likelihood false positive detections revealed
that some of them were actually true lymph nodes that were
missing in the reference annotations. This means that our
results may have underestimated the true performance of the
CAD prototypes.

The sensitivity analysis showed that a too low number of
atlases (1 or 3) used for the construction of the probabilistic
atlas features negatively affected CAD performance. We
conclude that at least five atlases are required.

A limited number of studies have been published on
automated lymph node detection, and almost all of them
have used computed tomography (CT) data rather than MR
data. In 2007, Kitasaka et al. of Nagoya University, Japan,
presented a system for lymph node detection in CT images
by extracting blob-like structures using a 3-D minimum
directional difference filter.5 They applied their method to
only five cases of 3D abdominal CT images. For lymph nodes
with a diameter of 5 mm or more, they report a sensitivity of

0.89 at a false positive (FP) rate of 17 000 FP’s/case, before
FP reduction. After a number of different FP reduction steps,
the performance was increased to a FP rate of 58 FP’s/case
at a remaining sensitivity of 0.57. In 2009, the same group
presented a method for detection of mediastinal lymph nodes,
based on Hessian eigenvalue analysis. Evaluating on a set
of five contrast-enhanced chest CT datasets, they report an
average sensitivity of 82.1%, with a PPV of 13.3% and a FP
rate of 113.4 FP/case.

To the best of our knowledge, the study by Yan et al. is
the only published study on automated lymph node detection
in MR images.25 They combined mean shift clustering
with region-based pattern recognition using a support vector
machine (SVM) to detect the lymph nodes. They evaluated
their method on 14 MRL cases, and report an average positive
predictive value (PPV) of 0.64, which in their text is somewhat
confusingly called “specificity.” However, this value does not
take into account the lymph nodes in their “unsure” category
which, when included, reduces the PPV to 0.60. The FP rates,
excluding and including the unsure detections, are 6.5 FP/scan
and 8.1 FP/scan respectively. Unfortunately, no sensitivity was
reported and no info on the number of missed lymph nodes
was given, which makes it difficult to interpret their results.
After all, the merit of any FP rate (or specificity) can only be
appreciated in relation to the corresponding sensitivity.

At a sensitivity of 80%, our atlas-enhanced prototype
might already be useful when combined with automated
segmentation of the lymph node candidates, as described in
previous work,26 helping reduce search time for the human
observer. However, a lower number of FPs would be preferred
for clinical application.

This study has some limitations. The atlases contained
a relatively low number of separate labels. Adding more
anatomical structures to obtain a more detailed atlas would
provide the classifier with more anatomical information,
which might improve classification performance. Atlas regis-
tration worked poorly for some structures: for blood vessels as
well as intestines, the DSC values were lower than expected.
For the intestines, this might be due to the fact that these
structures have a high variation in position and shape among
patients. The position and shape of the segmented blood
vessels do not vary so much, but may still be the cause of
their poor Dice overlap: as they are elongated and relatively
thin compared to voxel size, a registered atlas that is slightly
shifted in the plane perpendicular to the vessel, will induce
a large decrease in DSC value. Another limitation is that
the CAD prototypes included only voxel-based classification.
A more elaborate CAD pipeline, including also a region-
based classification step, would be able to further improve
performance.

In the future research, we aim to follow two strategies:
improving the anatomical information, and extending the
CAD prototype by adding region segmentation and clas-
sification. Improvement of the anatomical information, by
improving the anatomy features, may further reduce the
number of false positive lymph node detections and may
also increase sensitivity. This might be achieved by applying
more advanced methods of atlas label fusion, and/or by
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combining atlas techniques with other segmentation methods.
Such an approach would be valuable especially for anatomical
structures for which the atlas method is not optimal, such as the
blood vessels and the intestines. Extending the CAD prototype
by adding a region classification stage can further reduce FPs
by improving discrimination of true lymph nodes from other
blob-like structures.

In conclusion, we developed a prototype CAD system that
detects 96% of the lymph nodes visible in MRL images. We
showed that adding anatomical information can reduce FPs
significantly and thereby improve performance.
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