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Summary
Cellularity estimation forms an important aspect of the
visual examination of bone marrow biopsies. In clinical
practice, cellularity is estimated by eye under a micro-
scope, which is rapid, but subjective and subject to inter-
and intraobserver variability. In addition, there is little
consensus in the literature on the normal variation of
cellularity with age. Digital image analysis may be used for
more objective quantification of cellularity. As such, we
developed a deep neural network for the segmentation of
six major cell and tissue types in digitized bone marrow
trephine biopsies. Using this segmentation, we calculated
the overall bone marrow cellularity in a series of biopsies
from 130 patients across a wide age range. Using intra-
class correlation coefficients (ICC), we measured the
agreement between the quantification by the neural
network and visual estimation by two pathologists and
compared it to baseline human performance. We also
examined the age-related changes of cellularity and cell
lineages in bone marrow and compared our results to
those found in the literature. The network was capable of
accurate segmentation (average accuracy and dice score
of 0.95 and 0.76, respectively). There was good neural
network-pathologist agreement on cellularity measure-
ments (ICC=0.78, 95% CI 0.58–0.85).
We found a statistically significant downward trend for
cellularity, myelopoiesis and megakaryocytes with age in
our cohort. The mean cellularity began at approximately
50% in the third decade of life and then decreased ±2%
per decade to 40% in the seventh and eighth decade, but
the normal range was very wide (30–70%).
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INTRODUCTION
Bone marrow trephine biopsies are routinely used in
haematology to investigate myeloid diseases and for staging
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lymphomas. During the visual examination of a biopsy,
various aspects of the tissue are evaluated, such as the
marrow architecture and the cellularity of haematopoietic and
stromal components.1 The estimation of cellularity allows for
a biopsy to be roughly categorised as hypo-, normo- or
hypercellular, depending on the age and the clinical cir-
cumstances, which can give an indication of the activity of
haematopoiesis. Many bone marrow diseases are charac-
terised by either hypercellularity (e.g., myeloproliferative
neoplasms) or hypocellularity (e.g., aplastic anaemia).
Therefore, cellularity estimation within the clinical context
helps to guide the differential diagnostic process.
Categorising biopsies as hypo-, normo- or hypercellular

relies on the subjective internal reference frame of the
pathologist and knowledge of the normal variations of bone
marrow cellularity with age. There is a general consensus that
cellularity decreases with age,1 but there is little consensus in
the published literature on the mean and variation of cellu-
larity per age. Several studies published in the last 60 years
found results that disagree on the rate of decrease and at
which ages this decrease takes place.2–5

We attribute these differences in results across studies to
differences in clinical features of the examined cohorts (pa-
tients with and without haematopoietic diseases, necropsies)
and to the wide variety in methods used for determining
cellularity. In histology, cellularity is typically expressed as a
visual estimate of the percentage of surface area in the
marrow cavity occupied by active haematopoietic marrow.
This visual estimation is rapid but semiquantitative in nature.
In contrast, point counting (histomorphometry)6 by using a
microscope eyepiece with a graticule is considered to be a
more accurate method of quantifying cellularity, but is slow
and labour-intensive.
Studies have also used automated (analog) image analysis

systems to quantify cellularity.7,8 A practical alternative is
comparing the tissue to a range of photographic examples of
marrows with different cellularity.9

Quantifying bone marrow cellularity for routine di-
agnostics using digital image analysis offers advantages over
manual microscopy techniques. Areas are easily measured
and compared and cells can be counted quickly and
exhaustively, giving an objective quantification instead of an
lished by Elsevier B.V. on behalf of Royal College of Pathologists of
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estimation of proportions. The latter is more comparable to
the cell counts in the bone marrow smears. Several recent
studies reported cellularity measurement using digital image
analysis techniques on digitised slides that show good
agreement with references of visual estimate or point count-
ing.4,10–12 These studies have used traditional machine
learning techniques, while the field of medical image analysis
has shown a shift towards generally better performing deep
learning systems.13 Deep learning has already been applied to
the segmentation of erythropoiesis and myelopoiesis,14 but
no work has been published on the simultaneous segmenta-
tion of all major cell types in bone marrow, which would
allow for a more detailed analysis of the tissue.
In this paper, we present the first neural network for the

automated segmentation (i.e., pixelwise labelling) of six
major cell and tissue types in diagnostic bone marrow
trephine biopsies: erythropoiesis, myelopoiesis, megakaryo-
cytes, lipocytes, trabecular bone, and erythrocytes. We then
show how this segmentation can be used to quantify overall
bone marrow cellularity in a series of biopsies from 130
patients across a wide age range. We also evaluate the
agreement between the neural network and two pathologists
and compare this to human-level performance. Lastly, we
quantify trabecular bone surface and various other cell ratios
and compare between age groups and gender.

MATERIALS AND METHODS
Materials

For this retrospective study, 157 bone marrow trephine biopsies performed for
staging of lymphoid or solid cancers in the period 2017–2020 were selected
from the archive of the Radboud University Medical Center. The biopsies
were obtained from the posterior iliac crest and processed according to a
previously published protocol.15 All biopsies were negative for disease.
Eleven biopsies were irretrievable. Biopsies were excluded if they were
severely fragmented, consisted predominantly of cortical bone, showed
extensive artifacts (crush/tears) or did not have sufficient identifiable marrow
for visual estimation of cellularity by the pathologists. This excluded 16 bi-
opsies, resulting in 130 biopsies from patients with an age range of 6–83
years (mean of 57 years, 69 male and 61 female patients; Table 1). The
majority of patients was diagnosed with lymphoproliferative disease (n=113),
while some were diagnosed with mastocytosis (n=9), solid tumour metastases
(n=4), or Langerhans cell histiocytosis (n=3). A stem cell donor without
disease was also included. The need for informed consent was waived by the
institutional review board of the Radboud UMC (2020–6483).
For each patient, the routine periodic acid–Schiff (PAS) stained glass slide

was used. The PAS stain allows for better differentiation between myelo-
poietic cells (PAS positive) and erythropoietic cells (PAS negative) than an
H&E stain,1 thus facilitating the annotation that was needed for training the
Table 1 Demographic data and bone marrow cellularity per age category

Age, years No. cases Male/female

0–9 1 1/0
10–19 2 1/1
20–29 7 5/2
30–39 10 5/5
40–49 12 5/7
50–59 33 18/15
60–69 37 22/15
70–79 23 9/14
80–100 5 3/2

a Reported values are mean ± standard error of mean (SEM), measured via neu
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neural network. All slides were scanned with a Panoramic Flash II 250
scanner (3DHistech, Hungary) using a 40× objective, resulting in digital
whole-slide images (WSIs) with a pixel resolution of 0.25 mm.
The annotations used to train the neural network were made by an expe-

rienced pathologist (KMH) and two trained students. In the training and
tuning set, erythropoiesis, myelopoiesis, lipocytes, and megakaryocytes were
randomly selected and sparsely annotated with point annotations at their
approximate cell centres. To fully cover cells, the point annotations were
extended to circles with a diameter equal to the approximated dataset-wide
average diameter for that particular cell type. Trabecular bone and fields of
erythrocytes were annotated with polygon masks. In the test set, all cells in
randomly spaced bounding boxes were exhaustively point annotated and
extended to circles. Cells inside the bounding boxes that did not belong to one
of the six classes (for example plasma cells) were not included in the
evaluation.
For estimation of the cellularity by the pathologists and the neural network,

coarsely marked regions of interest (ROIs) were annotated. The two trained
students marked ROIs that were free of major haemorrhage, cortical bone,
lymphoid aggregates and crush artifacts in all WSIs. Non-fat unstained spaces
in the ROIs, such as large vessel lumens, sinuses or tissue tears were excluded
by the use of a tissue segmentation network,16 which treated white structures
greater than approximately 200 mm as background. A typical biopsy could
contain multiple ROIs, each multiple millimeters in length. An example of the
annotation and ROIs is shown in Fig. 1.

Methods

Training and evaluation of neural network for segmentation

We developed a neural network for the segmentation of six major cell and
tissue types in bone marrow biopsies: erythropoiesis, myelopoiesis, mega-
karyocytes, lipocytes, trabecular bone, and erythrocytes. For the selection of
the network architecture, we chose a fully convolutional17 neural network
with a VGG16-like18 architecture, as this was most suitable for the sparse
point annotation available for training the neural network. The network
consisted of 10 convolutional layers separated by ReLU non-linearities, and a
softmax function at the end for classification. Details are given in the sup-
plementary data (Appendix A). The network was trained using patches
sampled from areas annotated in the training set. During training, extensive
data augmentation was applied to the patches according to the HSV-Light
method published by Tellez et al.19 to improve the ability of the neural
network to generalise to the stain variation found in the dataset. The neural
network was developed using Python 3.6 with Keras (2.3.0) as a
framework.20

Multiple pre- and postprocessing steps were taken before and after the
application of the neural network. The tissue segmentation network was used
to differentiate between background and bone marrow; the neural network
was only applied to the bone marrow. During application, noise was reduced
by test time augmentation (averaging over the segmentation output of 8 ro-
tations/flips of the input patch) followed by median filtering (5×5 pixels).
Lastly, connected component analysis was used to remove spuriously
detected objects that were smaller than 50% of the dataset-wide average
diameter of the predicted cell/tissue type.
Bone marrow cellularity (%)a Min Max

56.5 56.5 56.5
53.9 ± 16.6 37.3 70.5
51.6 ± 4.6 32.3 65.7
48.0 ± 4.0 25.1 68.5
46.5 ± 3.5 20.4 63.9
42.5 ± 2.0 16.1 62.5
39.2 ± 1.9 15.3 62.8
39.5 ± 2.1 24.7 68.2
33.9 ± 6.8 6.8 52.3

ral network.
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Fig. 1 An overview of the annotation used for training the neural network for estimating the cellularity in biopsies. Two trained students selected regions of interest
(ROIs) of representative PAS-stained marrow (marked in blue), that were free of large areas of haemorrhage, cortical bone or crush artifacts. A tissue segmentation
network was used to exclude white space larger than approximately 200 mm, such as tissue tears or large vessel lumen: all tissue included in the calculation of cellularity
by the tissue segmentation network is shown in green. Note the heterogeneous distribution of cellularity within ROIs A and C. The inset shows the sparse annotation used
to train the neural network. Cells were annotated at their approximate centre. This point annotation was extended to circles of an average diameter for that particular cell
type. Myelopoiesis is shown in purple, megakaryocytes are shown in yellow, and lipocytes are shown in orange.

DEEP LEARNING TO QUANTIFY BONE MARROW CELLULARITY 3
Experiments

In total, 130 bone marrow biopsies were used for this study. Fig. 2 shows the
study design, detailing which biopsies were used for which experiments.
Twenty-one randomly selected WSIs were used for the development and

evaluation of the neural network, split in a training, tuning, and test set of 14,
5, and 2 WSIs, respectively. The tuning set was used to tune the hyper-
parameters of the neural network and monitor for overfitting during training.
In total, 7864 annotations were made across the training and tuning set. The
network weights that performed best on the tuning set were applied as a final
model on the test set. The full annotation for the test consisted of nine
bounding boxes (on average 500×500 mm) across the two WSIs with a total
number of 11,444 annotations. The test set was used after the finalisation of
the neural network to evaluate its segmentation performance. This perfor-
mance was evaluated per cell type on a pixelwise basis by measuring accuracy
and Dice score.21 We also evaluated each cell type on an objectwise basis by
measuring the number of annotated cells that were segmented as one class for
50% or more of their area. If this class was correct, the prediction was counted
as a true positive, else it was counted as false positive. We report this object
detection rate in a normalised confusion matrix with values ranging from
0 (no detected objects) to 1 (all objects detected).
To quantify the cellularity of biopsies with the neural network, we applied

the network to all ROIs in the WSIs, resulting in a prediction of the cell/tissue
type of every pixel. Then, within the ROIs, all pixel occurrences of haema-
topoiesis (erythropoiesis, myelopoiesis, megakaryocytes) and fat were
counted. For each WSI, the total cellularity of the bone marrow over all ROIs
was calculated as:

C = # haematopoiesis/(# haematopoiesis + # fat) * 100

One pathologist (KMH) performed visual estimation of bone marrow
cellularity in all 130 WSIs. For WSIs with heterogeneous cellularity (deter-
mined visually), the median cellularity of all ROIs was taken. The agreement
between the network and the pathologist was measured on 109 WSIs, kept
separate from the 21 WSIs used for the development of the neural network to
avoid bias. Overall agreement was measured for the 109 WSIs and in three
Please cite this article as: van Eekelen L et al., Using deep learning for quantificatio
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subgroups, stratified according to cellularity: low (<40%), normal (40–60%)
or high (>60%), as determined by the neural network. To establish a baseline
for human performance, we also measured the agreement between two pa-
thologists (KMH and MVDB) on five of the 109 WSIs (randomly selected).
To increase the number of available data points for the statistical analysis, we
measured agreement on a per-ROI basis (39 ROIs total, 8 ROIs per WSI on
average). The pathologists each performed independent visual estimation
twice with a washout period of 1 month, allowing us to measure both inter-
and intra-rater agreement. We also measured the agreement between the
network and the median of the pathologists. All visual estimation was done in
increments of 5%, while the pathologists were blind to the age and sex of the
patient.
The cellularity measurements by the neural network and the pathologist on

all 130 WSIs were used to create separate age-related trendlines for cellu-
larity, which were compared to trendlines in the literature. We also made an
age-related trendline for trabecular bone surface (TBS). TBS was calculated
as the percentage of bone pixels in the ROIs as predicted by the neural
network.

Statistical analysis

For all agreement analyses, we calculated the intraclass correlation (ICC) using a
two-way random effect model with absolute agreement [ICC(2,1)]. ICC values
below 0.5 were considered poor, between 0.50 and 0.75moderate, between 0.75
and 0.90 good and above 0.90 excellent, according to guidelines proposed by
Koo and Li.22 Data normality was tested using D’Agostino’s K:2 this suggested
that cellularity (both visually estimated and algorithmically) was distributed
normally, but the age of patients was not. To determine the correlation between
age and cellularity in different age categories, a Kruskal-Wallis H-test was used
(the non-parametric equivalent of a one-way ANOVA F-test). A significance
level of 0.05 was chosen for all statistical tests. Because few patients at the ex-
tremes of the age spectrum were in the cohort, we excluded patients below 20
years and above 80 years from any statistical tests, regression or conclusions
regarding age-cellularity correlation. All statistical tests were performed using
Python 3.6 with the NumPy (1.17.2),23 pandas (0.25.1),24 scipy (1.3.1),25

pingouin (0.3.5),26 matplotlib (3.1.1)27 and statsmodels (0.11.1)28 packages.
n of cellularity and cell lineages in bone marrow biopsies and comparison to
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Fig. 2 Study design. (*) Cases were stratified according to cellularity as measured by the neural network.
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RESULTS
Bone marrow segmentation

The pixelwise accuracy and Dice scores for each cell type/
tissue are shown in Table 2. Overall, the average accuracy
and Dice score were 0.95 and 0.76, respectively. Trabecular
bone was segmented best with a pixelwise accuracy and Dice
score of 0.9964 and 0.9896, respectively. The lowest pixel-
wise accuracy was achieved on lipocytes with 0.8796, while
the lowest Dice score was obtained on megakaryocytes:
0.4769.
Table 2 Pixelwise performance metrics for the bone marrow segmentation per ce

Pixelwise accur

Erythropoiesis 0.9626
Myelopoiesis 0.9251
Megakaryocytes 0.9862
Trabecular bone 0.9964
Lipocytes 0.8796
Erythrocytes 0.9882

Please cite this article as: van Eekelen L et al., Using deep learning for quantificatio
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The average object detection rate was 0.83. The detection
rates of objects (segmented for�50% of their area by a single
class) are shown in Fig. 3. The detection rates for erythro-
poiesis, myelopoiesis, and megakaryocytes were good (0.86,
0.76 and 0.95, respectively). When incorrectly detected,
erythropoiesis was mostly confused with myelopoiesis, and
vice versa. All areas of trabecular bone were correctly
detected. For erythrocyte accumulations (haemorrhages),
which are barely PAS stained, the detection rate was low
(0.43), often being confused for megakaryocytes, lipocytes,
or myelopoiesis.
ll type

acy Pixelwise Dice score

0.7053
0.8106
0.4769
0.9896
0.8800
0.7104
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Fig. 3 The detection rate of objects (segmented for �50% of their area by a
single class) in the test set is shown in a confusion matrix. True labels are the
annotations by the pathologist, predicted labels are by the neural network. The
average detection rate was 0.83. When incorrectly detected, erythropoiesis and
myelopoiesis were most often misclassified as one another. Erythrocyte accu-
mulations were often mistaken for megakaryocytes, lipocytes, or myelopoiesis,
resulting in a low detection rate for erythrocytes.

DEEP LEARNING TO QUANTIFY BONE MARROW CELLULARITY 5
In visual examples of the segmentation it can be seen that
erythropoietic islands were segmented well. Bone, lipocytes,
and megakaryocytes were generally segmented well, but
were often oversegmented at their borders, meaning that
smaller cells surrounding these structures may be incorrectly
segmented. Visual examples of the segmentation are shown
in Fig. 4, alongside the annotations and the original images.
Fig. 4G–I shows that dark, uniform patches of plasma and the
tightly clustered cells were sometimes mistaken for
megakaryocytes.

Agreement of cellularity quantification

We plot the cellularity measurements by the network in all
109WSIs against the estimations of the pathologist (KMH) in
Fig. 5A. The associated agreement metrics are summarised in
Table 3. Overall, there was a strong correlation (R2=0.7) and
moderate to good agreement (ICC=0.78, 95% CI 0.58–0.85).
The mean difference between the two values was –4.68 (95%
CI –21.09–11.73), indicating that the neural network sys-
tematically measured a lower cellularity than the patholo-
gist’s estimations.
Agreement was substantially lower when biopsies were

stratified into low (<40%), normal (40–60%) and high
(>60%) cellularity subgroups (as measured by the neural
network). However, the ICC 95% confidence intervals of the
three subgroups were comparable, as were their mean dif-
ferences, indicating that the difference between the network
and pathologist was not associated with the cellularity of the
biopsy.
The agreement metrics for the two pathologists and the

neural network on ROIs in five randomly selected WSIs are
shown in Table 4. Individual measurements and estimations
are shown in Fig. 5B,C. Overall, intra-rater agreement was
Please cite this article as: van Eekelen L et al., Using deep learning for quantificatio
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good to excellent (ICC=0.98 for both pathologists) and the
mean difference between rounds was approximately 1%. The
inter-rater agreement of the pathologists was lower in both
rounds (ICC=0.887, 95% CI 0.61–0.99; and ICC=0.934,
95% CI 0.67–1.0) and lower still for the inter-rater agreement
of the neural network and the median of the pathologists’
estimation (ICC=0.818 and 0.797). We show the agreement
of the network with the individual pathologists in Table 4. As
was the case for the whole-slide level measurements, the
neural network systematically measured a lower cellularity
than the pathologists (approximately –10%).

Age and gender-related changes of cellularity

For the analysis of age-related changes in cellularity, we
divided the 130 patients into age categories according to
decade (Table 1). Fig. 6A shows the age-related cellularity,
both by the pathologist (KMH) and the neural network, and in
Fig. 6B we compare this to age-related cellularity measured
by Hartsock et al.,2 Ogawa et al.3 and Hagiya et al.4 We
found a steady downward trend of cellularity with age. An H-
test confirms that the median cellularity differs between the
age categories (H=13.1, p=0.02). Fig. 6C shows age-related
cellularity stratified by gender. Ignoring the few cases at
the extremes of the age spectrum, the male patients showed
no age-related change in cellularity (H=3.96, p=0.6), while
female patients showed higher levels below 50 years and a
continuous downward trend throughout life (H=13.6,
p=0.02). We show the age-related cellularity, proportions of
cell types and other metrics of individual biopsies in scat-
terplots in Supplementary Fig. 2–4 (Appendix A).

Age and gender-related changes of trabecular bone
surface

The age-related changes of TBS were examined using the
same age categories as for cellularity. Results are shown in
Fig. 6D, both for all patients and stratified per gender. There
was a significant downward trend for all patients taken
together (H=21.1, p<0.001) and for female patients (H=12.2,
p=0.03), but not for male patients (H=10.3, p=0.07).

DISCUSSION
In this study we presented a neural network capable of
segmenting clinically relevant cell lineages and tissue in
digitised PAS-stained bone marrow trephine biopsy slides.
We used the segmentation output to investigate the rela-
tionship between bone marrow cellularity and age and
compared to sources in the literature that used different
techniques of quantification. We also quantified agreement
between the neural network and visual estimates of different
pathologists and compared to human-level performance. In
addition to the haematopoietic cellularity, we quantified
trabecular bone surface and various cell ratios, and compared
these between age groups and gender. The technique shown
here is one small example of the potential of machine learning
in future clinical reporting of bone marrow trephine biopsies.
The neural network performed well at segmenting cells and

tissue, with an average pixelwise accuracy and Dice score of
0.95 and 0.76, respectively, and an average object detection
rate of 0.83. Erythropoiesis, myelopoiesis, bone, and lipo-
cytes were segmented well, but the segmentation perfor-
mance on megakaryocytes and erythrocyte aggregates
n of cellularity and cell lineages in bone marrow biopsies and comparison to
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Fig. 4 An overview of segmentation and cellularity estimation results from the neural network compared to the annotations and cellularity estimation by the pathologist
(KMH) From left to right, the original PAS-stained biopsies (A,D,G,J), annotation (B,E,H,K) and segmentation results (C,F,I,L) are shown. Erythropoiesis (light blue)
was generally well segmented, as were lipocytes (orange), megakaryocytes (yellow) and trabecular bone (green). Performance on intercellular space (no annotation) was
low, often segmented as megakaryocytes or lipocytes, as intercellular space was not included in annotations for the training of the network. Tightly clustered cells were
regularly incorrectly segmented as megakaryocytes.
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DEEP LEARNING TO QUANTIFY BONE MARROW CELLULARITY 7
(haemorrhage) was lower than average: the Dice score for
megakaryocytes was 0.4769 and the detection rate of eryth-
rocyte aggregates was 0.43. For megakaryocytes, the network
had the tendency to incorrectly segment tightly clustered,
dark cells as megakaryocytes, possibly because the network
mistook those cells as the nuclei of megakaryocytes. The low
detection rate of erythrocytes reflected the fact that segmen-
tation performance of intercellular space was low: light
coloured tissue cavities were often predicted as lipocytes and
darker coloured patches of plasma/erythrocytes were often
predicted as megakaryocytes. We believe this is a conse-
quence of the sparse point annotation used for training the
neural network. This annotation method does not offer the
neural network any information on what is between cells,
causing it to be unreliable in these areas.
When using the segmentation output to measure the bone

marrow cellularity of biopsies at a whole-slide level, there
was moderate to good agreement with visual estimation by
the pathologist (KMH) (ICC=0.78, 95% CI 0.58–0.85). At a
A B
Fig. 5 Scatter plots depicting the (A) inter-rater agreement on a whole slide level of th
region of interest (ROI) level of both pathologists, and (C) the inter-rater agreement on
median of the pathologists’ predictions.

A

CB
Fig. 6 (A) The relationship between age and mean cellularity per age category determ
percentage of haematopoiesis in the total marrow in the resulting segmentation, and (i
significant difference between the median cellularity of the age categories (H=13.1, p=0.
by gender, a downward trend in cellularity for females was seen, but not for males, whic
The relationship between age and mean trabecular bone surface (TBS) per age category
the regions of interest. An H-test found a significant difference between the median TBS
p=0.07). For Fig. 6C,D, age categories are labelled with the number of males (M) and fe
Points in all plots are slightly offset around their corresponding age category to increa
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ROI level, results were similar but with a larger confidence
interval (ICC=0.818, 95% CI 0.63–1.0, in round 1; and
ICC=0.797, 95% CI 0.61–0.98, in round 2). The intra-rater
agreement of both pathologists was very high and their
inter-rater agreement was slightly lower but still moderate to
good (ICC=0.887, 95% CI 0.61–0.99, in round 1; and
ICC=0.934, 95% CI 0.67–1.0, in round 2). It should be noted
that the pathologists both specialise in haematopathology,
were from the same medical centre, and regularly align their
method of estimation with each other. The inter-rater agree-
ment of the neural network was slightly lower than the inter-
rater agreement of the pathologists.
The neural network systematically measured a lower

cellularity than the estimation of the pathologists, as indicated
by a mean difference of approximately –5% at a whole-slide
level and –10% at a ROI level. We attribute this lower pre-
diction to oversegmentation of lipocytes at their border,
leading to a larger area measurement for fat tissue. This was
caused by the fact that extending the point annotation to
C
e neural network and the pathologist (KMH), (B) the intra-rater agreement on a
a ROI level of both pathologists over the first round, and the algorithm and the

D
ined by (i) applying the neural network to 130 biopsies and measuring the
i) visual estimation by a pathologist (KMH). A Kruskal–Wallis H-test found a
02). (B) Age trends found in literature. (C) For the present study, when stratified
h was confirmed by H-tests (male: H=3.96, p=0.6; female: H=13.6, p=0.02). (D)
calculated as the percentage of pixels predicted as bone by the neural network in
of the age categories for females (H=12.2, p=0.03), but not for males (H=10.3,

males (F). Error bars in all plots represent the standard error of the mean (SEM).
se legibility.
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Table 3 Intraclass correlation values (ICC) and mean differences between the cellularity estimation of the neural network and the pathologist (KMH) on a whole-
slide level (n=109) and stratified according to cellularity

Selection ICC (95% CI) Mean difference, % (95% CI)

All (n=109) 0.775 (0.58–0.87) –4.68 (–21.09–11.73)
Low cellularitya (<40%, n=47) 0.500 (0.19–0.70) –4.86 (–20.67–10.94)
Normal cellularitya (40–60%, n=53) 0.401 (0.15–0.60) –4.06 (–21.92–13.81)
High cellularitya (>60%, n=9) 0.220 (0.00–0.67) –7.61 (–15.35–0.13)

CI, confidence interval.
a As measured by the neural network.

Table 4 Intraclass correlation values (ICC) and mean differences for cellularity estimation in regions of interest (n=39) across 5 WSIs by two pathologists and the
neural network

Selection ICC (95% CI) Mean difference, % (95% CI)

Intra-rater agreement
Pathologist #1 (KMH) 0.978 (0.81–1.0) –0.897 (–12.19, 10.39)
Pathologist #2 (MVDB) 0.976 (0.83–1.0) –1.154 (–15.27–12.96)

Intra-rater agreement Round 1 Round 2 Round 1 Round 2
Pathologist #1 and #2 0.887 (0.61–0.99) 0.934 (0.67–1.0) 6.026 (–7.14–19.19) 5.769 (–8.19–19.72)
Neural network and median of pathologists 0.818 (0.63–1.0) 0.797 (0.61–0.98) –9.574 (–22.52–3.38) –10.60 (–22.16–0.96)
Neural network and pathologist #1 0.713 (0.59–0.97) 0.729 (0.59–0.97) –12.587 (–24.28–0.87) –13.49 (–26.94–0.03)
Neural network and pathologist #2 0.884 (0.68–0.99) 0.852 (0.67–0.98) –6.562 (–23.45–10.33) –7.715 (–21.2–5.83)

Inter-rater values are shown for round 1 and 2.
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circles resulted in varying degrees of over/undersized anno-
tation. This may have also caused the network to sometimes
fail to recognise haematopoiesis from lipocytes, especially in
marrow regions of low cellularity.
The problem of unreliable performance in intercellular

space and the oversegmentation of lipocytes could be solved
by using more sophisticated ways to extend point annotations
to full annotation (e.g., NuClick29 or region-growing algo-
rithms) or by training with fully annotated areas of bone
marrow. Thereby, we offer the network more information on
intercellular space and the border of cells. This is also one of
many important prerequisites for applying this technique on
biopsies where morphology and cell diameter can vary
significantly due to the presence of a pathology. For this,
purpose-made annotation on slides containing the pathology
of interest could also be made.
Our results are comparable to previous studies that

investigate agreement between digital image analysis and
visual estimation. Hagiya et al.4 compared automatic
cellularity measurements by a proprietary HALO Imaging
algorithm to visual estimates of three pathologists and found
good agreement between both methods (ICC=0.81). Kim
et al.12 developed a technique to count the nucleated cells
per unit area in a manually selected region of a digital scan
of bone marrow and found a high correlation (R2=0.816)
with visual estimation. Both studies4,12 also found inter-rater
agreement of visual estimation by pathologists comparable
to our study (ICC=0.88–0.91 and 0.870, respectively).
Nielsen et al.10 trained a support vector machine to segment
biopsies in red (haematopoiesis) and yellow (lipocytes)
marrow and used this in a similar way to the present paper to
calculate cellularity, with good agreement with visual esti-
mation (ICC=0.799). They reported a higher Dice score for
lipocytes (0.9001 versus our 0.88), possibly because they
Please cite this article as: van Eekelen L et al., Using deep learning for quantificatio
normal age-related variation, Pathology, https://doi.org/10.1016/j.pathol.2021.07.
used full segmentation over point annotation. For red
marrow, they did not distinguish between erythropoiesis,
myelopoiesis, and megakaryocytes, prohibiting direct com-
parison of the segmentation performance. Most recently,
Tratwal et al.11 developed a semi-automatic technique for
determining cellularity via segmenting biopsies into bone,
nucleated cells (haematopoiesis), lipocytes and interstitium
and found good correlation (R2=0.85 for human trephine
biopsies). In contrast to our approach, theirs requires manual
background/artifact delineation as a preprocessing step in
addition to ROI selection.
Using the segmentation output of the neural network, we

found a statistically significant downward trend for bone
marrow cellularity and trabecular bone volume with age in a
cohort of 130 (predominantly) lymphoma patients.
According to the observed trend, mean cellularity begins at

approximately 50% in the third decade of life and then de-
creases ±2% per decade to 40% in the seventh and eighth
decade. The trend found by the pathologist (KMH) in the
same 130 cases is consistently 5% higher, but follows a
similar rate of decrease. When stratifying by gender, females
over 20 years old showed a similar (significant) age-related
decrease in cellularity, while this was not apparent in male
patients over 20 years old. Although it is tempting to spec-
ulate that this effect is caused by activation of the marrow by
menstrual blood loss or hormonal influences, this difference
between genders should be interpreted with caution, given
the relatively small number of patients in some age cate-
gories. We are also hesitant to interpret the age-related trend
of TBS. While the TBS trend was in the same order-of-
magnitude as previous papers,30–32 the used ROIs did not
ensure that bone was proportionally sampled since the focus
of the project was on the marrow and not on the bone,
possibly giving skewed values.
n of cellularity and cell lineages in bone marrow biopsies and comparison to
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A steady downward trend of age-related bone marrow
cellularity was not observed in previous studies. Hartsock
et al.2 found that cellularity progressed in three distinct pe-
riods: cellularity steadily decreased from 80% to ±50% in the
first three decades, then remained constant until the eighth
decade, and then decreased to approximately 30%. Ogawa
et al.3 found no definite age-related change: their results
indicate cellularity remains constant between 60% and 55%
throughout the first eight decades of life and only signifi-
cantly decreases to 40% in the ninth and tenth decade. Both
Hagiya et al.4 and Schnitzler et al.5 found no decrease in
cellularity with age over an adult population.
We attribute this lack of consensus in the literature on the

relationship between bone marrow cellularity and age to the
differences in clinical features of the examined cohorts and
the wide variety in methods used for determining cellularity.
Ogawa et al.,3 Hagiya et al.,4 and the present study all
measured cellularity in patients without haematopoietic ma-
lignancies, while Hartsock et al.2 measured cellularity in
cases of sudden death. Ogawa et al.3 studied bone marrow
biopsies predominantly taken from the sternum, while other
studies used biopsies taken from the iliac crest, two sites with
different marrow distributions with age.33 Ethnic origin
seems to matter as well.5 Perhaps most importantly, some
papers investigated cellularity by visual estimation,34 while
some used point counting2,5 and others applied analog or
digital image analysis.3,4 There is a noticeable difference in
accuracy between these methods.35

Taken together, the present study and previous literature on
bone marrow cellularity show that the cellularity range in bi-
opsies considered to be normal (negative staging biopsies) is
extremely broad, roughly ranging from 30 to 70% in the age
range 50–80 years, the general population of patients
requiring a bone marrow biopsy. Therefore comparing indi-
vidual patients or characterising biopsies as ‘hypo’ or
‘hypercellular’ requires caution and consideration of the
clinical context.
This study was subject to a number of limitations. Our

cohort consisted predominantly of lymphoma patients, which
may inadvertently have affected haematopoiesis, for example
by cytokine production or autoimmune effects. We did not
control for other factors that might affect haematopoiesis,
such as smoking, alcohol consumption, pharmaceutical
agents or systemic illness. An inevitable technical limitation
is that the neural network had to be evaluated on exhaustively
annotated areas, while it is impossible to determine the
lineage of each cell in a biopsy with certainty (as opposed to
an aspirate, because of the sectioning of the tissue). There-
fore, some predictions of the neural network that were
incorrect according to the annotation could indeed be correct.
Due to the current availability of digital pathology in an

increasing number of pathology departments,36 the quantifi-
cation of cells in bone marrow using digital image analysis
techniques will become feasible to support routine di-
agnostics in the near future. This analysis can be rapid and
high-throughput, exhaustive and quantify all different cell
types present within the marrow. We show how this quanti-
fication can be used to calculate relevant diagnostic metrics
such as bone marrow cellularity. Future work includes
adapting this technique for more routinely used stains such as
H&E (possibly with the use of a stain-transforming Cycle-
GAN),37 using it for tasks such as the detection of deviant
Please cite this article as: van Eekelen L et al., Using deep learning for quantificatio
normal age-related variation, Pathology, https://doi.org/10.1016/j.pathol.2021.07.
morphology in primary bone marrow disease or subtyping
cells according to their morphology (similar to how Sirinu-
kunwattana et al.38 use megakaryocyte morphology for
phenotyping), detecting the presence of infiltrating cells and
performing longitudinal studies.
To conclude, a neural network was developed for the

segmentation of cells and tissues, and the quantification of
cellularity in digitised bone marrow biopsies. Cellularity
measurements agreed well with visual estimates by experi-
enced pathologists. The relationship between age and cellu-
larity was examined in a cohort of 130 patients, showing a
significant downward trend from an average of 50% in the
third decade of life to approximately 40% in the seventh and
eighth decade with a steady decrease rate of ±2% per decade.
The wide normal range of bone marrow cellularity in the
adult population (30–70%) has to be taken into account
during clinical consideration of hypo- and hypercellularity.
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