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Abstract—This paper presents and evaluates a fully automatic
method for detection of ductal carcinoma in situ (DCIS) in digi-
tized hematoxylin and eosin (H&E) stained histopathological slides
of breast tissue. The proposed method applies multi-scale super-
pixel classification to detect epithelial regions in whole-slide im-
ages (WSIs). Subsequently, spatial clustering is utilized to delin-
eate regions representing meaningful structures within the tissue
such as ducts and lobules. A region-based classifier employing a
large set of features including statistical and structural texture fea-
tures and architectural features is then trained to discriminate be-
tween DCIS and benign/normal structures. The system is evalu-
ated on two datasets containing a total of 205 WSIs of breast tissue.
Evaluation was conducted both on the slide and the lesion level
using FROC analysis. The results show that to detect at least one
true positive in every DCIS containing slide, the system finds 2.6
false positives per WSI. The results of the per-lesion evaluation
show that it is possible to detect 80% and 83% of the DCIS lesions
in an abnormal slide, at an average of 2.0 and 3.0 false positives
per WSI, respectively. Collectively, the result of the experiments
demonstrate the efficacy and accuracy of the proposed method as
well as its potential for application in routine pathological diagnos-
tics. To the best of our knowledge, this is the first DCIS detection
algorithm working fully automatically on WSIs.

Index Terms—Computer-aided diagnosis, DCIS Detection, H&E
staining, whole-slide imaging.

I. INTRODUCTION

REAST cancer is the second leading cause of cancer death
among women [1]. Approximately 80% of breast can-
cers arise from epithelial cells lining the ducts (ductal carci-
noma). Pathological diagnosis for intraductal proliferative le-
sions comprise a spectrum with increasing malignant potential,
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ranging from usual ductal hyperplasia (UDH), atypical ductal
hyperplasia (ADH), ductal carcinoma in situ (DCIS), to inva-
sive ductal carcinoma (IDC) [2]. In this spectrum, DCIS (with
cancer cells still being contained within the glandular tissue) and
IDC (cancer cells invading the surrounding tissue) are consid-
ered malignant, prompting for immediate treatment [1].

DCIS encompasses a heterogeneous group of lesions with
highly variable morphology, biomarker expression, genomic
profile, and natural progression [3]. Whereas the extremes of
the spectrum are easily discernible, the difference between
UDH, ADH, and low-grade DCIS is subtle and the classifi-
cation of such lesions suffers from significant inter-observer
variability even among expert pathologists. Introduction of
computer aided diagnosis (CAD) systems for breast pathology
will be successful if these difficult cases can be handled, with
sufficient accuracy. CAD can assist the pathologist in two
ways: (1) by detecting all the clinically relevant regions of
interest (ROIs) per slide, allowing the pathologist to only focus
on the interpretation of these regions, or (2) by providing
an accurate assessment of suspicious regions and reducing
the variability in pathologists' interpretations. Several recent
studies have focused on automated discrimination of DCIS
from benign intraductal breast lesions [4]-[6]. Two approaches,
based on identification and segmentation of nuclei and the
quantification of nuclear features by Dong et al. [4] and Dundar
et al. [5] could discriminate DCIS from UDH with area under
the receiver operating characteristic curve (AUC) of 0.86 and
0.93, respectively. Srinivas et al. [6] proposed a simultaneous
sparsity model to automatically evaluate intraductal breast
lesions for cancer diagnosis.

One of the major drawbacks of many published studies on
CAD in pathology is the fact that only manually selected ROIs
(mostly selected by expert pathologists) were used. A fully au-
tomated algorithm that can be used in large-scale histopatho-
logical image analysis should automatically identify ROIs in the
whole-slide-image (WSI) and discriminate DCIS from different
types of benign lesions. This task is particularly challenging for
two main reasons: (1) WSIs are large and may contain hundreds
of structures which need to be analyzed. Therefore, obtaining a
small false positive rate while still retaining a high sensitivity
can be hard, and (2) A CAD system that operates on the WSI
level should be able to handle a larger set of heterogeneous be-
nign structures (e.g., adenosis, UDH, cysts, etc.) and artifacts
(due to staining/cutting) to detect DCIS.

In this paper, we present a fully automated CAD system that
can discriminate DCIS from normal/benign conditions in WSI.
Our proposed system initially detects epithelial regions in the
WSI.A common approach to localize important structures in
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Fig. 1. Overview of the proposed DCIS detection system. (a) Original WSI of a breast tissue slide. (b) Application of multi-scale superpixel classification to
classify the image into epithelium, stroma, and background. (c) Graph-based clustering of the epithelium labeled superpixels for delineation of ROIs. (d) Feature

extraction and classification of each of the candidate ROIs.

WSIs is to divide the image into rectangular patches and clas-
sify them (possibly at multiple resolutions) [7]-[9]. However,
these rectangular patches may contain mixtures of class types
which will lower the accuracy of the classification. To tackle
this problem, our system uses a multi-scale superpixel classi-
fication approach [10] to detect epithelial regions in the WSI.
Superpixels are classified at multiple resolutions to efficiently
detect regions containing epithelium. The superpixels labeled
as epithelium are then grouped into histopathologically mean-
ingful regions by application of a graph clustering algorithm. A
set of texture and spatial distribution features is then extracted
from each candidate region, after which a classifier classifies the
region as either DCIS or benign/normal.

Empirical evaluation of the performance of the proposed
system is presented in two experiments using two separate
datasets. The first dataset comprises 150 WSIs of breast tissue
sampled from 150 patients (75 benign/normal and 75 containing
DCIS). The second comprises 55 WSIs of breast tissue sampled
from 43 patients which are representative of the daily clinical
routine samples examined by a pathologist during a specific
period of time. The first experiment evaluates the efficacy of
the proposed system in detecting and localizing DCIS regions
in WSIs using the first dataset. The Dice coefficient is used to
evaluate the accuracy of the DCIS segmentation. The second
evaluates the performance of the system in classifying a WSI
as DCIS at the slide level using the second dataset. This is an
important aspect in evaluating the merit of the proposed CAD
system because it highlights its potential for application in
routine pathological diagnostics.

II. DETAILED DESCRIPTION OF THE PROPOSED
DCIS DETECTION SYSTEM

The proposed DCIS detection system takes as input an H&E
stained WSI and yields as output the segmentation of the po-
tential DCIS lesions together with a likelihood estimation for
each lesion to be DCIS. Fig. 1 presents an overview of the pro-
posed DCIS detection system. The proposed algorithm has 3
basic steps:

a) Multi-scale superpixel classification for finding epithelial
areas in the WSIL
Graph-based clustering of the superpixels labeled as ep-
ithelium and delineation of ROIs.

b)

c) Classification of the segmented regions as benign/normal
or DCIS.
Detailed description of the proposed algorithm's steps are dis-
cussed below.

A. Multi-Scale Superpixel Classification for Finding Epithelial
Areas

Detection of epithelial regions in the WSI is based on the
multi-scale superpixel classification algorithm [10]. This al-
gorithm enables subdivision of the WSI into regions which
adapt to the underlying image data, such that every super-
pixel is mostly homogeneous. Accurate classification of the
tissue components within the WSI is thereby facilitated. The
algorithm initially partitions the image at 1.25X magnification
(with pixel size of 3.88 pmx 3.88 um) into a set of non-over-
lapping superpixels using the simple linear iterative clustering
(SLIC) algorithm [11]. The generated superpixels each contain
approximately 5000 pixels. Image regions containing mainly
epithelium or stroma are identified by excluding all the super-
pixels whose content is more than 90% background. A pixel
within a superpixel is classified as background if its overall
optical density (i.e., — log(I/Iy) where I denotes the intensity
of the light source) is lower than 0.2 and the density of its r, g,
and b channels is lower than 0.25.

Fig. 2 presents the next steps in the multi-scale superpixel
classification algorithm. New superpixels are constructed at
5X magnification (pixel size of 0.97 pmx 0.97 pm) within the
areas classified as epithelium or stroma in the previous step (see
Fig. 2(b)). These are then again classified into three distinct
components: stroma, epithelium, and background (non-tissue
containing regions as well as regions containing fat cells and
fluid). The size of each superpixel at this magnification was set
to be approximately 2000 pixels. Identification of background
superpixels is performed similarly to the previous step. For
the classification of the remaining superpixels into stroma or
epithelium, a set of 54 features were extracted for each super-
pixel s, including 8 pixel value statistics (minimum, maximum,
sum, mean, standard deviation, lower quartile, median, and
upper quartile) and 10 uniform local binary pattern features
for radius 1 derived from each of the channels of the hue-satu-
ration-density (HSD) color model [12]. In addition, the mean
and standard deviation of all of these features for the set of
all neighboring superpixels to the superpixel s was included,



EHTESHAMI BEINORDI et al.: AUTOMATED DETECTION OF DCIS IN WHOLE-SLIDE H&E STAINED BREAST HISTOPATHOLOGY IMAGES

2143

Fig. 2. Tllustration of multi-scale superpixel classification. (a) Original Image. (b) Generation of superpixels in the intermediate magnification (5X). (¢) Classifi-
cation of the superpixels into background (white), stroma (pink), or epithelium (blue). Note that gray-colored superpixels are the ones for which the probability
score of the classifier for all of the classes was below 0.7. (d) Generating superpixels on the areas requiring more detailed information in higher magnification
(20X). Note that the smaller superpixels are built on the highest magnification image while the larger ones are the same superpixels computed in the intermediate

magnification. (e) Final classification result.

yielding a total of 162 features. A random forest classifier using
100 decision trees trained on approximately 20,000 manually
annotated superpixels (generated on sample patches taken from
30 WSIs in the training set) was employed for classifying the
superpixels. Fig. 2(c) shows the results of the classification at
the intermediate magnification.

Finally, to achieve a more accurate delineation of histopatho-
logical structures, a new set of superpixels was built and clas-
sified at the highest magnification (20X) within the areas re-
quiring more detailed information (see Fig. 2(d)). A region re-
quired more accurate classification (using the highest magnifi-
cation image) if it satisfied either of these two conditions: (1)
The classifier used to classify the region at the intermediate
magnification yielded a low confidence in assigning the output
label. The level of uncertainty was assigned according to the
output probability for the superpixel classification. Superpixels
having a likelihood probability lower than 0.7 for all of the
classes were considered uncertain. (2) The region was labeled
as epithelium by the classifier in the intermediate magnification.
The first condition ensures that a more accurate classification
is achieved by using more detailed information present in the
higher magnification. The second is to obtain more detailed con-
touring of the areas that were labeled as epithelium.

The newly generated superpixels in the corresponding areas
satisfying the two conditions mentioned above had an approxi-
mate size of 1000 pixels. The set of 54 features described previ-
ously were extracted for each superpixel in this magnification.
Moreover, to incorporate more contextual information for the
superpixel s, the set of 162 features previously computed for
the parent superpixel s’ in the intermediate magnification was
appended to the feature list, where s’ is the superpixel which has
the largest overlap with the corresponding area occupied by the
superpixel s. A second stage random forest classifier with 100
decision trees was subsequently utilized to classify these super-
pixels more accurately. Fig. 2(e) shows the final classification
result by the multi-scale superpixel classification approach.

B. Graph-Based Clustering of Superpixels for Delineation
of ROIs

The output of the multi-scale superpixel classification algo-
rithm is a set of superpixels with three possible labels (stroma,
background, and epithelium). To create regions representing
anatomically meaningful structures within the tissue such as
ducts or lobules, the superpixels have to be clustered. The aim

of this step is not only to merge the superpixels neighboring
each other but also splitting distinctive structures lying in the
vicinity of each other. To perform the clustering, we propose an
algorithm based on local graph structure that models the spatial
distribution of the labeled superpixels in the image. Our pro-
posed spatial clustering algorithm prunes the edges of a region
adjacency graph built on the centroids of the epithelium-labeled
superpixels to cluster them into meaningful tissue regions in
the WSI, while still maintaining the overall connectivity of
each cluster. The entire algorithm for delineating ROIs can be
summarized in three major steps:

1) Step 1: Using a relative neighborhood graph to identify
coarse clusters of neighboring superpixels.

2) Step 2: Applying spatial clustering to find spatially ho-

mogenous sub-clusters within clusters from the first step.

3) Step 3: Finding the concave-hull of each sub-cluster as the
outer boundary of the identified ROL.

Detailed description of each of the steps is discussed below.

1) Step 1: Identifying Coarse Clusters: The algorithm for
identifying several isolated groups of coarse clusters can be de-
scribed as follows:

a) Apply the multi-scale superpixel classification algorithm

to the input WSI to obtain labeled superpixels as described
in Section II-A.

b) Construct the relative neighborhood graph RNG(V') [13]
of the pointset V' containing the centroids of the n su-
perpixels with epithelium label in Euclidean space. In
the relative neighborhood graph two points v; and v; are
neighbors if d(v;,v;) < max[d(vs,vs), d(vj, vk)], VEk
=1,...,nand k # i, J.

c) Apply a threshold (T = 200, equivalent to the diameter
of two superpixels) on the maximum edge length of the
graph to partition RNG(V) into several local sub-graphs
(G*) and label the entire group of subgraphs using the
depth-first search (DFS) algorithm [14].

The threshold on maximum edge length was determined based
on the assumption that two superpixels lying further than the
diameter of two superpixels away should not be considered
neighbors.

2) Step 2: Spatial Clustering of Coarse Clusters Into
Anatomically Meaningful Sub-Clusters: The identified coarse
clusters in the previous step may contain multiple anatomically
meaningful structures which are lying in the vicinity of each
other. In this step we cluster each of the identified G* = (N, E)
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Fig. 3. Graph-based clustering of superpixels for delineation of ROIs. (a) Original Image. (b) Delaunay triangulation built on the set of epithelium labeled super-
pixels. (c) Application of the graph-clustering algorithm to cluster the graph into several meaningful sub-graphs. (d) Calculating the concave hull for each of the

sub-graphs. (e) Final contouring of each ROI.

into several anatomically meaningful tissue regions such as
ducts or lobules, where N and E are the set of vertexes and
edges of G* respectively. Fig. 3 shows the processes involved
in the proposed spatial clustering algorithm. Our spatial clus-
tering algorithm utilizes Delaunay triangulation (D7), which is
a suitable tool for spatial clustering as it implicitly encapsulates
vast amount of proximity information (see Fig. 3(b)). The
proposed clustering algorithm eliminates the extra simplexes
of the triangulation according to a local heterogeneity measure.
A DT built on a cloud of points may have both inter- or
intra-cluster simplexes. Inter-cluster simplexes are the ones
connecting two or multiple anatomically meaningful regions
(e.g., ducts or lobules) to each other. Intra-cluster simplexes,
however, are the ones connecting multiple vertexes inside a
single sub-cluster. Our objective is to extract measures from
each simplex in a constructed DT to discriminate between
inter- and intra-cluster simplexes and consequently identify
separate clusters of points each belonging to separate regions.
For this purpose, we define three measures to describe spatial
heterogeneity of the simplexes.

The perimeter of the simplex is taken as the first measure
describing local topography of DT. According to the den-
sity-based definition of clusters, intra-cluster edges are much
shorter compared to inter-cluster edges [15], [16]. Conse-
quently, it can be inferred that inter-class simplexes have higher
perimeter values than the intra-cluster ones.

The second measure quantifies the elongation of the sim-
plex. Inter-cluster simplexes of a DT tend to have more elon-
gated shapes. To measure the elongation £ L(s) of the triangle s,
we compute the ratio between the major and minor axes of s's
Steiner circumellipse [17]. Steiner's Circumellipse is a unique
ellipse whose center coincides with the centroid of the triangle
and passes through the vertexes of the triangle. For equilateral
triangles, the measure EL({s) = 1, and for all other conditions
EL(s) > 1.

Our final measure quantifies the local shape heterogeneity
around the simplex. In this way we can evaluate the tendency of
the current simplex to be in the same cluster as its neighboring
ones. For this purpose, we compute the standard deviation of the
elongation measures over the set s\ N (s), where N(s) denotes

the set of neighboring simplexes of simplex s. Finally, the entire
simplex analysis is captured in a criterion function F'(s), which
is defined as: F'(s) = Perimeter(s)x EL(s)xStd(1+EL(sU
N(s)). This function takes into account spatial heterogeneity of
the simplexes and primarily penalizes large simplex perimeters.
The two elongation terms are used as weighting factors that fur-
ther penalize simplexes that have large elongation and/or neigh-
boring simplexes with heterogeneous elongations. For each sim-
plex s in DT, if F(s) is bigger than a predetermined threshold
the simplex is removed from the graph. We found the threshold
value of 250 suitable. After eliminating inter-class simplexes
and noises, only positive nodes and edges of the graph remain.
Through depth-first search we then infer the number of isolated
clusters and correspondingly the list of points in each cluster.

As a result of pruning the inter-cluster simplexes we may
lose the points lying on the hull of each cluster. To reassign
these points to the appropriate cluster we start an iterative graph
growing process. Let S C G* be a clustered graph within the
local sub-graph G* = (N, E), and let V (i), {i € N} denote the
set of points neighboring the vertices at the hull of S7. At each
iteration, a point i in V(i) is assigned to 57 under two condi-
tions; (1) if the Euclidean distance between the node ¢ and it's
neighboring node in 57 is less than the maximum edge length in
S7.(2) ifi is not neighboring the hull of another clustered graph
87" < G*. The first rule reduces the possibility of assigning a
noisy node to a cluster, and the second will prevent the merging
of two isolated clusters. The assignment of new nodes to the
graph is repeated for 3 iterations. Because of the two constraints
applied, mostly there are no new nodes added to the sub-graphs
after 2 or 3 iterations.

3) Step 3: Finding the Outer Contour of Each Sub-Cluster:
The final step is to extract the boundary of the clustered graphs.
Let G* = (N, E) denote a sub-graph created in step 1 of our al-
gorithm and let $7 = (N(j), E(j)) denote a clustered graph ob-
tained in step 2 satisfying S7 C G*. To find the actual boundary
of the S7 graph which corresponds to the concave hull created
by the edges E(j) on the point set N(j) we first compute DT
of the point set N'(j). The boundary of the exterior face of the
DT is the convex hull of the point set. Let I' p denote the set
of edges of the convex hull. By traversing along the edges of
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Fig. 4. Illustration of the selected steps required for computation of some of the architectural features. (a) Original image of a DCIS region. (b) The result of pixel
classification using the algorithm proposed in [18]. (¢) Euclidean distance transform of the inverse DCIS mask. The mask is computed using the output of the ROI
delineation algorithm in step 1I-B3. (d) Portions of (c¢) cut-out by the mask of the hematoxylin stained pixels. These cut-out distances are subsequently used for
computation of margination features. (e) Division of the DCIS mask into 10 zones. The ratio between the area of the hematoxylin stained pixels in each zone to
the area of that zone are used as measures to characterize the distribution of the nuclei within the candidate ROI.

T'pr and removing and replacing the edges not present in E(j)
with the other two edges of the simplexes in DT to which the
removed edges belong to, we can find the concave hull of the
57 graph. Traversing along the edges in T pr is continued until
the condition I'pyr C F(j) is met. The edges remained in T pr
correspond to the outer boundary of the S7 graph. At the end of
this step, a more accurate delineation of the ROI is obtained by
taking the union of the binary masks of the superpixels lying on
the concave hull and within the binary mask of the concave hull
itself.

C. Region-Based Feature Extraction and Classification

Cellular and architectural features are the major characteris-
tics considered by a pathologist for diagnosing DCIS. There-
fore, the features used in this study to distinguish DCIS from
different benign/normal regions are a combination of statistical
and structural texture features, and features describing the spa-
tial distribution of the components inside the ROI. A classifier
is employed to classify each of the segmented ROIs using the
extracted features.

1) Texture Features: To extract texture features, each candi-
date region identified through our spatial-clustering method is
first divided into several superpixels having an approximately
equal size of 5000 pixels using the SLIC algorithm (the ana-
lyzed image has pixel size of 0.486 pmx 0.486 pum). For each
of the superpixels 5 different types of texture features are ex-
tracted from the gray-scale intensities of the image. These fea-
tures are statistics of the gray level histogram (mean, standard
deviation, median, first and third quartiles, interquartile range),
14 statistics calculated from the co-occurrence matrix [19], uni-
form local binary patterns for radii 1 and 2 [20], and gray level
histogram statistics extracted from responses to filter banks in
particular Laplacian of Gaussian (LoG) at 5 scales, and Gabor
filters at 4 scales and 8 orientations are extracted. These texture
features have shown strong discriminatory power in character-
izing histopathology images [7], [21], [22]. In total 256 features
were extracted for each superpixel. The mean, standard devi-
ation, 5th and 95th percentile of each feature over all super-
pixels in an ROI yielded a total of 1024 region-based features.
Computation of the texture features at the superpixel level rather
than pixel level was done to reduce the computation cost of the
statistics which are finally derived from them. Moreover, using

super-pixels it is possible to extract regions that contain homo-
geneous tissue structures, therefore the extracted features from
these regions tend to be more meaningful and discriminative.

2) Architectural Features: An initial step before computa-
tion of the architectural features is classifying the region into
different tissue components. For this purpose, we use our re-
cently proposed algorithm [18] for robust stain classification
which makes use of spatial information. This algorithm oper-
ates at the WSI and automatically extracts training samples for
each stain class (the class absorbing mostly hematoxylin and
the class absorbing mostly eosin) from the image, obviating the
need for manually labeled training data. This algorithm is an in-
termediate step in the published stain standardization algorithm
[18]. Fig. 4(b) shows an example classification result for a de-
tected ROI. The classified image is median filtered (kernel size
5 x 5) for removing noisy labels from the result.

Following extraction of the masks for different stain classes,
we compute the area of the hematoxylin stained, eosin stained
and background pixels. These three area measures implicitly
include information about the size of the ROI. For this reason,
three additional features were included that were normalized to
the total area of the ROI.

A subset of features were designed to measure the margina-
tion of the nuclei. The margination features characterize the dis-
tances of the nuclei to the ROI boundary. The steps required
for computation of the margination features are illustrated in
Fig. 4. First, the Euclidean distance transform of the inverse
mask of the ROI is computed as shown in Fig. 4(c). Next, por-
tions of this image are cut out by the mask of the hematoxylin
stained pixels (see Fig. 4(d)). The distribution of the cut-out dis-
tances were quantified at five percentiles (10th to 90th in ten
percentile steps). Five additional features were included by nor-
malizing the percentile values to the maximum value of the dis-
tance transform of the ROI.

A subset of architectural features have been com-
puted to describe the distribution of the nuclei within
the ROIL. To compute these features, the area inside
the ROI is first divided into ten different zones Z, =
{i€ROI | Dyax * (k — 1)/10< D(i) < Dppax * k/10} where
i is an arbitrary pixel inside the ROI, k € {1,2,3,...,10},
D(i) denotes the distance of the pixel ¢ to the boundary of the
ROI and Dy, the maximum distance from the ROI boundary.
Fig. 4(e) shows example of the division of the DCIS mask into
10 zones using this approach. The ratio between the area of the
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hematoxylin stained pixels in region Z; to the area of 7 are
defined to characterize the distribution of the nuclei within the
ROL.

The final subset of architectural features include three mea-
sures to quantify the clustering of background and eosin stained
pixels. These features are the maximum of the distance trans-
form of the inverse eosin mask, inverse background mask, and
the inverse of the union of the two masks.

3) Classification of Anatomically Meaningful Regions: The
extracted texture and architectural features yielded a total of
1054 features. The performance of three classifiers were eval-
uated: logistic regression (LR) with L1 regularization (A
1), support vector machine (SVM) with a radial basis function
(RBF) kernel (gamma = 10° and cost = 10%), and gra-
dient boosted classifier with decision trees (GBC) [23] (with
1000 estimators and learning rate of 0.1). The three classifiers
were trained and evaluated on separate training and test sets.
The parameters of the classifiers were optimized with cross-val-
idation on the training set. All the parameters of the multi-scale
superpixel classification algorithm and the graph-clustering al-
gorithm were defined using a subset of images in the training
set.

III. EMPIRICAL EVALUATION

A. Whole-Slide Histopathological Images of Breast Tissue
and Ground Truth

Two image datasets were used in this study for empirical
evaluation of the proposed DCIS detection system. The first
dataset originates from 150 digitized H&E stained breast tissue
slides sampled from 150 patients. Each slide was reviewed in-
dependently by two expert breast pathologists (RH and PB) and
assigned a pathological diagnosis. 75 of the WSIs contained
DCIS (grade I (9), grade II (35), grade III (31)) and 56 con-
tained different types of benign lesions (usual ductal hyper-
plasia (11), adenosis (8), fibrosis (7), duct ectasia (5), fibro-
cystic (5), hamartoma (4), pseudoangiomatous stromal hyper-
plasia (3), sclerosing lobular hyperplasia (2), fibroadenoma (1),
and mixed benign lesions (14)) and 19 normals. This dataset
was taken from the archives of the department of Pathology.
To be able to train and test our algorithm on different benign
lesions that may occur in routine diagnostics, we enriched the
benign class with cases containing all types of benign lesions as
listed in the national Dutch breast cancer guidelines. Relative
occurrence of these lesions in our dataset is comparable to that
encountered in routine diagnostics.

The second dataset used in this study is representative of the
daily clinical practice of breast pathology examined by a pathol-
ogist during a specific period of time. We took all cases from
routine diagnostics of one breast pathologist involved in this
study (PB) during the period June 2015 to September 2015, con-
taining either DCIS or normal/benign conditions. This dataset
consisted of 55 digitized H&E stained breast tissue slides sam-
pled from 43 patients. This dataset contained 20 slides with
DCIS diagnosis (grade I (5), grade II (7), grade III (8)) and
35 benign/normal slides (normal (12), calcification (9), usual
ductal hyperplasia (5), fat necrosis (5), cyst (4)). Because the
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second dataset is taken consecutively from our routine diagnos-
tics, in comparison to the first set which is enriched for benign
abnormalities, the second set contains much fewer of the var-
ious benign lesion categories present in the first set.

In this study, we excluded the slides containing atypical
ductal hyperplasia (ADH). The major problem with ADH is
the difficulty in achieving acceptable levels of concordance
or consistency in diagnosis [24]. Due to the use of different
criteria for defining the characteristics of ADH in the literature
[25]-27] and the difficulty in obtaining reliable ground truth,
we chose to exclude this category in our study.

All slides were stained in our laboratory and digitized using
the 3DHISTECH Pannoramic 250 Flash II digital slide scanner
with a 20X objective lens. Each image has square pixels of size
0.243 pmx 0.243 pm in the microscope image plane.

A total of 823 regions containing DCIS in abnormal slides
from the first dataset were annotated. All the annotations were
verified by two pathologists (RH and PB) independently. We in-
cluded a lesion as ground truth in case both pathologists were in
agreement. No annotation was provided for the slides with be-
nign/normal diagnosis, as the training samples from these slides
were automatically extracted using our automatic ROI detection
algorithm. The ground truth data for the second dataset is only
available at the slide level.

B. Experiments

To evaluate the performance of the proposed DCIS detection
system two experiments were performed. The first experiment
evaluates the efficacy of the proposed system in detecting and
localizing DCIS regions in WSIs using the first dataset. The
second evaluates the performance of the system in classifying a
WSI as DCIS at the slide level using the second dataset.

1) Experiment 1: For this experiment, the first dataset was
split into two independent subsets for training and testing. The
train set comprises of 50 DCIS slides and 50 benign/normal
slides (attempting to balance different DCIS grades and benign
lesion categories over train and test sets). The test set comprises
25 DCIS slides and 25 benign/normal slides.

The training samples from the benign/normal category were
automatically extracted using the ROI detection and delineation
step of our proposed system. The training samples for the DCIS
lesions, however, were taken directly from the annotated ROIs.

The performance of the proposed system was evaluated in
terms of detecting and localizing the lesion in the slide. A
ground truth DCIS lesion was deemed to have been detected
if its intersection with the segmentation of the DCIS region
performed by the proposed algorithm was non-empty. For
the evaluation, free-response receiver operating characteristic
(FROC) curve [28] was used. The FROC curve is defined
as the plot of sensitivity versus the average number of false
positives per image. The FROC curve is computed by varying
thresholds on DCIS classification confidence. Considering
that not all the DCIS lesions present in abnormal slides may
have been annotated, the false positives were only counted in
benign/normal slides.

In this experiment, we also evaluate the segmentation per-
formance of the proposed system by computing Dice's overlap
measure at the slide level.
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Fig. 5. Lesion-based FROC curve of the proposed DCIS detection system for
experiment 1.

2) Experiment 2: The aim of this experiment was to eval-
uate the performance of the proposed detection system on an
independent dataset representing the daily clinical practice of
breast pathology examined by a pathologist. Each of the classi-
fiers was trained independently on the entire slides present in the
first dataset and evaluated on the second dataset. The parame-
ters of the classifiers were kept the same as the first experiment.

This experiment evaluates the performance of the system in
differentiating between the slides containing DCIS and benign/
normal slides. To achieve a slide-based score, the highest scored
region in a slide is used as the likelihood score that the case
contains DCIS.

Slide-based FROC analysis was performed to evaluate the
efficacy of the system. The FROC curve in this experiment plots
the fraction of slides classified as DCIS divided by the total
number of slides with DCIS versus the average number of false
positives per WSI.

C. Results

Fig. 5 presents the FROC curve of experiment 1 for the
three classifiers. Note that the false positive rate plotted on the
horizontal axis is counted on benign/normal slides only. The
FROC curve for the GBC is also presented when only texture
features or architectural features were used. Table I summarizes
the DCIS detection (sensitivity) levels at different average
numbers of false positives per WSI, for different classifiers.
Overall, the three classifiers achieved comparable performance.
SVM and GBC yielded higher sensitivities at smaller numbers
of false positives while LR performed better at larger number
of false positives. Fig. 6 shows examples of true positives,
false positives, as well as false negatives obtained by the CAD
system trained by GBC when the performance was fixed at
80% sensitivity.

For the evaluation of the performance of the segmentation
algorithm we used Dice's overlap measure. The Dice score at
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TABLE I
RESULTS OF THE EXPERIMENT 1: SENSITIVITY OF DCIS LESION
DETECTION IS PROVIDED AT FIVE LEVELS OF AVERAGE
NUMBERS OF FALSE POSITIVES (FPs) PER WSI

FPs/WSI | 172 | 1 2 3 7
GBC | 0.66 | 0.73 | 0.80 | 0.81 | 0.81
SVM | 0.68 | 0.73 | 0.78 | 0.80 | 0.80

IR 0.50 | 0.63 | 0.76 | 0.83 | 0.84

the slide level when considering only the detected DCIS lesions
(sensitivity was fixed at 80% in experiment 1) was 0.9243 £+
0.0187 (mean =+ std) over the entire slides in the test set of the
first dataset.

In the second experiment GBC yielded the best performance.
The FROC curve of Experiment 2 for GBC is shown in Fig. 7.
The 95% confidence interval was generated using patient-strat-
ified bootstrapping with 1000 replications. Table II summarizes
the slide-based DCIS classification sensitivity at different av-
erage numbers of false positives per WSI, for different classi-
fiers. Overall, GBC yielded the best performance, achieving a
sensitivity of 95% and 100% at average false positive rates of 2
and 2.6, respectively.

IV. DISCUSSION AND CONCLUSION

In this paper, we presented a CAD system for DCIS detection
in digitized H&E stained histopathological breast tissue slides.
The proposed algorithm is fully automated, does not require
any human interaction, and therefore yields objective and re-
producible results. Lesion-based and slide-based evaluation of
the performance of the proposed CAD system was presented.
Collectively, the results of the experiments demonstrate the ef-
ficacy and accuracy of the proposed CAD system as well as its
potential for application in routine pathological diagnostics.

To the best of the authors' knowledge, this is the first fully
automated DCIS CAD system that operates at the WSI level
and has been evaluated on a dataset collected from routine clin-
ical practice. WSI analysis of histopathological slides remains
a challenging medical image analysis problem due to technical
complexities in dealing with large WSIs and the requirement to
have highly specific algorithms to avoid large numbers of false
positives. The focus in developing CAD systems for histopatho-
logical images, in particular for the task of recognizing DCIS
from different types of benign abnormality, has been mainly
limited to analyzing small patch images selected by a patholo-
gist [4]-[6]. Existing approaches to localize diagnostically rel-
evant regions in WSIs either analyze the WSI at lower mag-
nification or divide the image into rectangular patches and clas-
sify them (possibly at multiple resolutions) [7]-[9]. In this study
we proposed a multi-scale superpixel classification scheme for
finding epithelial areas in WSIs.

Detection and contouring of diagnostically relevant regions
was based on a spatial clustering approach operating on the
graphs built on the centroids of epithelium labeled superpixels.
Several algorithms have been published for the segmentation of
glandular structures with application to prostate and colon tissue
[29]-[32]. All of these methods assume an architectural regu-
larity in glandular structure and have detection of lumen as an
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Fig. 6. Examples of true positives, false positives, as well as false negatives. (a) Shows examples of two correctly detected DCIS lesions. (b) Two false positive
examples. (c) Examples of two missed DCIS lesions. The image on top shows a DCIS lesion with large amount of necrosis, and the image in bottom shows an

example of a DCIS lesion (lobular cancerization) surrounded by lymphocytes.
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Fig. 7. Slide-based FROC curve and the 95% confidence intervals of the pro-
posed DCIS detection system for experiment 2.

TABLE II
RESULTS OF THE EXPERIMENT 2: SLIDE-BASED SENSITIVITY OF DCIS
DETECTION IS PROVIDED AT FIVE LEVELS OF AVERAGE
NUMBERS OF FALSE POSITIVES (FPS) PER WSI

FPs/WSI | 1/2 | 1 2 3 1
GBC 055 | 080 | 0.95 | 1.0 | 1.0
SVM 0.70 | 070 | 0.85 | 0.85 | 0.85

LR 055 | 0.75 | 0.90 | 0.95 | 0.95

essential step for segmenting the gland. The intraductal prolif-
eration in the breast, however, usually obliterates and distends
the ductal lumen [33] which limits the effectiveness of these
methods in detecting DCIS lesions of the breast. The approach
proposed by Sirinukunwattana et al. [34] does not have this lim-
itation as it does not necessitate any strict assumption regarding
the arrangement of granular components. However, inferring
the number of glands in a clustered population of glands is based
on the number of isolated connected components resulted from
thresholding the glandular probability map. This means partially
connected glands may fall in the same connected component
and there is no mechanism in the utilized random polygon model
(RPM) to further split these glands. Moreover, although the pro-
posed algorithm yields good results in segmenting glands in
colon tissue, due to the stochastic modeling nature of RPM, the
proposed model has high computational complexity and may
not be suitable for application to WSIs. Our proposed spatial
clustering algorithm, in contrast, is robust, efficient and well
suited for accurate detection and delineation of breast glandular
structures in WSIs. Evaluation of the segmentation performance
in experiment 1 demonstrate that our spatial clustering algo-
rithm yields a Dice score of 0.9243 + 0.0187 for segmenting
DCIS regions.

Following the segmentation of the diagnostically relevant re-
gions in the WSI, a set of texture-based and architectural fea-
tures were extracted from the epithelial structure. Fig. 5 pre-
sented the contribution of the proposed architectural features to
the performance of the detection system. Our proposed features
are efficient to compute and obviate the need to perform nu-
clear segmentation for describing the distribution of the struc-
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tures inside the potential DCIS region. Our evaluations on the
first dataset demonstrate the efficacy of the proposed method in
detecting and localizing DCIS. Using the proposed system, it is
possible to detect 80% of the DCIS lesions in an abnormal slide
at an average number of 2 false-positive per WSI. Practically,
we expect the time gain in automatically detecting 80% of the
DCIS lesions in WSIs outweighs the time lost for looking at the
false positives.

In this study, we also presented an evaluation on a dataset
collected from routine clinical practice during a four month pe-
riod. This dataset contains large categories of benign lesions
that the pathologist encounters in routine diagnostics. Unlike
the previous studies which mainly focus on discrimination of
DCIS from UDH, the proposed system was designed to handle
a large set of heterogeneous benign categories. Evaluation of the
slide-based DCIS detection on this dataset shows that at an av-
erage number of 2.6 false-positive per WSI, 100% of the slides
that contained DCIS could be detected. This suggests the po-
tential of the proposed method for application in routine patho-
logical diagnostics. Moreover, further reduction of the average
number of false positives per WSI can significantly reduce the
workload of the pathologist as it would mean that a large number
of normal/benign slides can be put aside without the risk of
missing slides containing DCIS.

The proposed system has several components, of which
only a small number may impact the performance. The
multi-resolution superpixel classification algorithm utilizes
two classifiers trained on manually labeled superpixels. By
using our recently proposed algorithm for standardization
of WSIs [18], we can obviate the need for re-training these
classifiers when applied to new datasets. However, the im-
ages in this study were not standardized as the slides were
stained using the same protocol and scanned using the same
scanner. We have found that the specific choice of parameters
for many components of our system such as the threshold
applied to determine the uncertainty of the classification
of superpixels, the number of iteration for graph growing
operation, and the threshold applied for coarse clustering the
structures in the WSI, are relatively unimportant, and serve
mainly to reduce computational cost. Moreover, the designed
architectural features are based on an initial classification of
the image into different stain classes. The utilized method
is an intermediate step in our whole slide standardization
algorithm and as shown in our paper [18] it is very robust
against variations in histopathological images.

The computation time for different steps of the proposed
system to analyze a WSI is as follows. The multi-scale su-
perpixel classification algorithm for finding epithelial regions
on the WSI takes between 20 to 45 minutes depending on the
amount of tissue (in particular epithelial tissue) on the slide.
The graph-clustering algorithm is very efficient and takes on
average less than two minutes to generate segmented ROIs.
The feature extraction and classification stage together take on
average 10 minutes. The implementation is done in C++ and
the experimental platform was a laptop with an Intel Core i7
CPU (2.4 GHZ) and 16 GB of Ram.

Several limitations of the proposed method must be ac-
knowledged. First, the multi-scale superpixel classification
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algorithm puts lymphocytic infiltrates within the same category
as the epithelial class. This may occasionally cause the system
to classify the lesions surrounded by lymphocytes as normal.
The major reason for this is that the graph clustering algorithm
for delineation of the candidate may result in a region including
both lymphocytes and DCIS nuclei, hence polluting the statis-
tics of the DCIS region. Lymphocytes are frequently abundant
in benign slides, and less-existent in the annotation of the DCIS
regions. A region containing a large number of lymphocytes
may therefore be characterized as normal by the system (see
Fig. 6(c) for a false negative). Another limitation of the pro-
posed system is in dealing with lesions having large areas of
necrosis and very little epithelium. Fig. 6(c) shows an example
of a DCIS lesion with such characteristics. Possible reasons
explaining the difficulty of the proposed system in dealing with
these lesions are the lack of training data for such lesions and
the significant deviation of the characteristics presented by
these lesions compared to the majority of the DCIS lesions.

The proposed system was primarily designed to aid the
pathologist in detecting and localizing the lesions in the WSI
and giving a second opinion on the malignancy likelihood of
the findings. The proposed system, however, has the poten-
tial to be applied to related problems, such as detecting and
classifying glands in prostate tissue WSIs. In addition, it has
provided another important implication for future research.
The proposed system can serve as an important first step for
development of systems that aim at finding prognostic and
predictive biomarkers within malignant lesions, requiring an
accurate delineation of such regions. This will be the major
direction for future research.
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