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Abstract

Purpose Tumor-stroma ratio (TSR) serves as an independent prognostic factor in colorectal cancer and other solid malignancies.
The recent introduction of digital pathology in routine tissue diagnostics holds opportunities for automated TSR analysis. We
investigated the potential of computer-aided quantification of intratumoral stroma in rectal cancer whole-slide images.
Methods Histological slides from 129 rectal adenocarcinoma patients were analyzed by two experts who selected a suitable
stroma hot-spot and visually assessed TSR. A semi-automatic method based on deep learning was trained to segment all relevant
tissue types in rectal cancer histology and subsequently applied to the hot-spots provided by the experts. Patients were assigned to
a ‘stroma-high’ or ‘stroma-low’ group by both TSR methods (visual and automated). This allowed for prognostic comparison
between the two methods in terms of disease-specific and disease-free survival times.

Results With stroma-low as baseline, automated TSR was found to be prognostic independent of age, gender, pT-stage, lymph
node status, tumor grade, and whether adjuvant therapy was given, both for disease-specific survival (hazard ratio =2.48 (95%
confidence interval 1.29-4.78)) and for disease-free survival (hazard ratio = 2.05 (95% confidence interval 1.11-3.78)). Visually
assessed TSR did not serve as an independent prognostic factor in multivariate analysis.

Conclusions This work shows that TSR is an independent prognosticator in rectal cancer when assessed automatically in user-
provided stroma hot-spots. The deep learning-based technology presented here may be a significant aid to pathol-
ogists in routine diagnostics.
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eosin (H&E) stained tissue sections. TSR has been shown to
yield prognostic information in a range of solid malignancies,
including breast cancer [3-5] and lung cancer [6, 7].
Generally, TSR is an independent prognostic factor, where a
high content of intratumoral stroma is associated with a poor
prognosis. A number of previous studies showed promising
results on the prognostic relevance of TSR in CRC [8-12].
Despite this evidence, there is no implementation in routine
pathology reporting. This may be attributed to the variety in
methodology and the lack of a standardized procedure for
TSR assessment. Published studies propose visual assessment
(‘eyeballing’), systematic point counting, and the use of
scanned (digitized) tissue sections (whole slide images;
WSI). Although good inter-observer agreement was found in
earlier studies [9, 11, 13], visual assessment of pathological
quantitative features in general may suffer from reproducibil-
ity issues.

To facilitate an objective and standardized TSR assessment,
image analysis and machine learning algorithms have been
applied on H&E-stained sections of CRC before, however,
these algorithms were applied to image regions extracted from
WSI. Computer-aided tumor and stroma quantification has
been proposed based on automated tissue segmentation in
H&E-stained sections using a combination of hand-crafted fea-
tures and machine learning [14]. Furthermore, TSR has been
computed via automated point counting in H&E-stained im-
ages [15]. Similar image analysis techniques based on classical
machine learning have been applied to tissue microarrays for
epidermal growth factor receptor (EGFR) detection by immu-
nohistochemistry [16, 17]. A new branch of machine learning
algorithms, so-called deep learning algorithms, have recently
entered the field of computational pathology and shown prom-
ise for automating certain tasks in histopathology. Detection of
sentinel lymph node metastases [18] and of cancer in prostate
biopsies [19] could successfully be performed using
convolutional neural networks (CNN), a specific type of deep
learning. We recently showed [20] that a deep learning-based
algorithm can distinguish between 9 different types of tissue in
CRC WSI with an overall accuracy of 93.8%.

The present study aims to leverage our previously devel-
oped CNN for automated TSR assessment in the CRC sub-
class of rectal adenocarcinomas. Only a limited number of
studies have been published on TSR for rectal cancers and
in a sub-analysis (n=43) by West et al. [12] its prognostic
value could not be confirmed. Work by Scheer et al. [8] re-
cently showed that TSR has potential as a prognostic factor for
survival in surgically treated rectal cancer patients, however,
TSR was only found to be an independent prognosticator in
lymph node metastasis negative cases. The performance
of the automated TSR system described here will be
compared with data from human experts and its prog-
nostic value will be evaluated in terms of disease-specific and
disease-free survival times.
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2 Materials and methods
2.1 Patients

An existing cohort of 154 patients [8] with rectal adenocarcino-
ma stages [-IIT was used. All patients received curative surgery in
the period 1996-2006 at the Medisch Spectrum Twente hospital
(The Netherlands). No patient was neoadjuvantly treated with
radiotherapy and/or chemotherapy or died within 30 days after
surgery. At the time of surgery, none of the patients had known
distant metastases, inflammatory bowel disease, hereditary
nonpolyposis colorectal cancer (HNPCC) or other/earlier can-
cers. Histopathological data were obtained from the Laboratory
for Pathology Eastern Netherlands (LabPON). Clinical data
were obtained from the Medisch Spectrum Twente hospital
and the Netherlands Comprehensive Cancer Organization
(IKNL). Collected clinicopathological data included tumor grade
(differentiation), depth of invasion (pT) and lymph node in-
volvement (pN) according to the Union Internationale Contre
le Cancer/American Joint Cancer Committee (UICC/AJCC)
TNM staging system [1]. Data regarding adjuvant therapy and
local or distant recurrence were also available.

2.2 Tissue slide preparation and scanning

According to standard procedures at LabPON, formalin fixed
and paraffin embedded tissue sections were cut at 2 um and
stained in an automatic stainer with hematoxylin and eosin
(H&E) for routine diagnostic purposes. For the present study, a
single slide per patient was selected which contained the most
invasive part of the tumor and was used in diagnostics to assess
the tumor pT-status. Slides were scanned at x200 total magnifi-
cation (tissue level pixel size ~0.455 um/pixel) using a
Hamamatsu NanoZoomer 2.0-HT (C9600-13) scanner
(Herrsching, Germany).

2.3 Visual estimation of intratumoral stroma

Two observers (GvP, WM; both > 10 years of experience with
TSR scoring) independently scored the slides using a conven-
tional light microscope according to a previously published
protocol for TSR assessment [9, 10]. Briefly, the procedure
consisted of 1) coarse localization of the tissue area with the
highest intratumoral stroma content at low microscope mag-
nification, and 2) selection of one field of view at x100 total
magnification and visual estimation of the tumor-stroma ratio
(TSR-visual) in the selected circular region. Ideally, the select-
ed region should meet the following criteria: high intratumoral
stroma content (predominantly found at the invasive margin
of a tumor); presence of tumor cells at all borders of the field
of view; no large quantities of muscle, mucus, necrosis or
large vessels; and no tears or tissue retraction artefacts.
As much as possible, the region with the highest stroma
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content (stroma hot-spot) was selected that met all the above
requirements. TSR-visual was estimated by both observers
independently, using 10% increments. As a result of the spe-
cific microscope and lenses used, the specimen-level diameter
of the circular region was 1.8 mm at x100 magnification.
There is a lot of variation among published studies concerning
used TSR procedures (e.g. major differences in the location
and size of the assessed tissue regions as well as what was
actually measured: relative tumor or stroma content). For clar-
ity, in this study the tumor-stroma ratio was defined as TSR =
100% x [intratumoral stroma area] / [tumor area +
intratumoral stroma area]. Lumen, tears and other tissue types
in the selected circular region were excluded during visual
estimation. Lastly, the tissue region considered most suitable
for TSR assessment was identified during a consensus meet-
ing between the two observers in which 1) a binary TSR
consensus score was determined: ‘stroma-low’ or ‘stroma-
high’, and 2), the center of the stroma hot-spot was marked
on the glass slide.

2.4 Automated computation of intratumoral stroma

To study the value of applying a deep learning algorithm for
automated TSR assessment (TSR-auto), a CNN was developed
similar to a previously published algorithm [20]. The CNN per-
forms tissue segmentation (i.e. subdivision of tissue areas) of
H&E-stained rectal cancer WSI into nine different classes: tumor,
intratumoral stroma, necrosis, muscle, healthy epithelium, fatty
tissue, lymphocytes, mucus and erythrocytes. The CNN was
trained using manually annotated regions in 74 WSI taken from
the cohort used in this study. Regions to annotate were selected
for covering tissue variety across WSI, rather than producing
exhaustive annotations on a small number of WSI. Annotations
were produced by a pathology researcher (OG) and a medical
student, and were checked and corrected when deemed necessary
by an experienced pathologist (AB). A digital staining normali-
zation method [21] was applied to all WSI as a pre-processing
step to accommodate for typical differences in tissue staining
intensities, caused by variations in slide preparation. Unlike
Ciompi et al. [20], here we used patches of 256 x 256 pixels
for classification, which experimentally showed to improve per-
formance and produce a smoother segmentation map (data not
shown). Performance of the system was assessed by segmenting
all WSI in the dataset in a five-fold cross validation fashion (at
WHSI level) and evaluating accuracy in all annotated regions.

To enable comparison, the CNN-based TSR-auto was com-
puted in the same circular region (with 1.8 mm diameter) that
was selected by the observers at the consensus meeting, where
TSR-visual was assessed. The corresponding image data were
extracted from each WSI as circles with a diameter of ~4000
pixels and processed further by the CNN described above
(Fig. 1). Segmentation of a WSI into nine different tissue classes
enabled in- and exclusion of specific tissue types comparable to

the visual assessment procedure. The used definition of TSR-
auto is similar to TSR-visual, expressing the area consisting of
stroma as a percentage of the area occupied by both tumor and
stroma.

2.5 Statistical analyses

In this study, TSR-visual and TSR-auto were compared as
prognostic factors in rectal cancer. Statistical analyses were
performed using IBM SPSS software v24.0 (Armonk, NY,
USA). The intraclass correlation coefficient (ICC) was used
to determine the correlation between TSR assessed by two
observers and by the automated method. To investigate a pos-
sible relationship between clinicopathological variables and
the numerical values of TSR-visual and TSR-auto, Mann—
Whitney U and Kruskal-Wallis tests were performed for
two- and multi-class variables, respectively. For further statis-
tical analysis, TSR-visual and TSR-auto were dichotomized,
subdividing patients into two groups: ‘stroma-low’ and ‘stro-
ma-high’. Dichotomization of TSR-visual was performed
based on a cut-off value previously established [10] on 63
colon cancer cases: stroma-high = TSR-visual > 50% and stro-
ma-low = TSR-visual < 50%. In this study, we analyzed re-
sults for two different cut-off values for TSR-auto since the
optimal cut-off value for the automated approach is not yet
established. One method of dichotomization used the ‘50%
stroma cut-off”, similar to TSR-visual, referred to as TSR-
auto(50%), and the other dichotomization method was based
on the median value for all measured TSR-auto values, re-
ferred to as TSR-auto(median), yielding equal numbers of
patients in stroma-low and stroma-high groups.

Inter-observer agreements were calculated using Cohen’s
Kappa (k) on the dichotomized TSR values. Kaplan-Meier
survival analyses were performed and log-rank statistics were
used to test differences in both disease-specific survival (DSS)
and disease-free survival (DFS) distributions. DSS was de-
fined as the time between the date of surgery and the date of
death attributable to rectal adenocarcinoma. For DFS, the date
of the first event of cancer recurrence was used, which could
be loco-regional or a distant metastasis. In case no event oc-
curred, the time period until the last date of follow-up was
used in the survival analyses. Finally, both uni- and multivar-
iate analyses were performed for TSR-visual and TSR-auto
using the Cox proportional hazards model. Probability values
< 0.05 (2-sided) were considered statistically significant.

3 Results
3.1 Clinicopathological data

Of 154 cases projected for inclusion in this study, twelve
cases with mucinous carcinoma were excluded as these
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TSR-visual® = 60%

TSR-auto = 58%

TSR-auto = 84%

D = Background . = Tumor

Fig. 1 Top row: Stroma hot-spot circles, 1.8 mm across, selected by the
observers for the assessment of TSR-visual® and extracted with a diameter
of ~4000 pixels for processing by the CNN. Bottom row: The same

tumors exhibit largely different TSR values. Twelve other
cases were excluded because, at the time of writing, the re-
quired slides or data were unavailable. One case was excluded
because the corresponding tissue slide did not contain inva-
sive carcinoma.

The median follow-up time for the remaining 129 patients
used in the present study was 5.6 years (interquartile range
2.3-8.3). The median age of the patients at the time of surgery
was 67 years (interquartile range 59—74). Further clinicopath-
ological data can be found in Table 1. There was no significant
correlation between the clinicopathological variables and
assessed values of TSR-visual or TSR-auto (p > 0.05).

3.2 Performance of the deep learning system

Measures of sensitivity and specificity per tissue type as well
as overall accuracy were assessed for the automatic method by
pixel-wise comparison of predicted labels with ground truth
labels in manually annotated regions. We found that the over-
all accuracy was 94.6%, which shows improvement on what
was reported by Ciompi et al. [20]. Values of per-class sensi-
tivity and specificity are reported in Table 2.

Examples of tissue segmentation by the CNN in four cir-
cular regions selected by the observers are shown in Fig. 1. In
line with the high classification accuracy, good segmentation
of tumor, stroma and other tissues types was observed. Further
qualitative inspection of the circular regions revealed some
minor segmentation errors. Directly at the stroma-tumor inter-
face, a very thin band of stroma pixels is often misclassified as
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TSR-auto = 78%

TSR-auto = 50%

. = Necrosis

regions with tissues segmented by the CNN for the calculation of TSR-
auto. *Observer consensus; ®Other tissue includes classes: muscle,
healthy epithelium, fatty tissue, lymphocytes, mucus and erythrocytes

= Other tissue®

tumor. Likewise, however, small groups of tumor cells (e.g.
tumor buds, or thin tumor structures) were sometimes
misclassified as stroma.

3.3 Inter-observer and computer-observer agreement

The ICC between the two observers for the assessment of TSR
was 0.736 (95% confidence interval (95% CI) 0.646—0.806).
The co-occurrence of TSR scores assessed by the two ob-
servers is depicted in Fig. 2. The ICC’s between TSR-auto
and TSR-visual were 0.475 (95% CI 0.330-0.598) and
0.411 (95% CI 0.257-0.545) for observers 1 and 2,
respectively.

A moderate agreement between the two observers (k =
0.578) was found after dichotomizing TSR-visual on basis
of the 50% cut-off as described in section 2.5. Using the iden-
tical cut-off for TSR-auto, we observed only a fair agreement
between TSR-visual and TSR-auto (k = 0.239). Agreement
improved considerably (k = 0.521) when the median was used
as cut-off for TSR-auto, resulting in: stroma-low = TSR-auto
< 65.47% and stroma-high = TSR-auto > 65.47%. Patients
assigned to stroma-low or stroma-high groups by the ob-
servers and the automatic method are detailed in Tables 3, 4
and 5.

3.4 Survival analyses

Survival analysis generally showed a worse outcome for
stroma-high patients compared to stroma-low patients
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Table 1 Clinicopathological data for 129 rectal cancer patients in relation to TSR-visual” and TSR-auto

Total TSR-visual® TSR-auto(50%) TSR-auto(median)
Stroma-low Stroma-high Stroma-low Stroma-high Stroma-low Stroma-high
n (%) n (%) n (%) n (%) n (%) n (%) n (%)

Gender

Female 43 (34) 30 34) 13 (31) 11 (35) 32(33) 22 (34) 21 (32)

Male 86 (67) 57 (66) 29 (69) 20 (65) 66 (67) 42 (66) 44 (68)
T-status

pT1 4(3) 4(5) 0 (0) 2(6) 2(Q2) 3(5) 12)

pT2 40 (31) 29 (33) 11 (26) 5(16) 35 (36) 18 (28) 22 (34)

pT3 79 (61) 51 (59) 28 (67) 24 (77) 55 (56) 42 (66) 37 (57)

pT4 6 (5) 303 3 0 (0) 6 (6) 1) 5(8)
N-status

pNO 78 (60) 54 (62) 24 (57) 22 (71) 56 (57) 43 (67) 35 (54)

pN1 33 (26) 23 (26) 10 (24) 6 (19) 27 (28) 13 (20) 20 (31)

pN2 18 (14) 10 (11) 8 (19) 3 (10) 15 (15) 8 (13) 10 (15)
Stage

I 33 (26) 26 (30) 7(17) 6 (19) 27 (28) 18 (28) 15 (23)

I 45 (35) 28 (32) 17 (40) 16 (52) 29 (30) 25 (39) 20 (31)

I 51 (40) 33 (38) 18 (43) 9(29) 42 (43) 21 (33) 30 (46)
Tumor grade

Well 3Q) 2(2) 1(2) 13) 2(2) 1(2) 2(3)

Moderate 112 (87) 73 (84) 39(93) 28 (90) 84 (86) 55 (86) 57 (88)

Poor 14 (11) 12 (14) 2(5) 2 (6) 12 (12) 8 (13) 6(9)
Surgery type

APR 62 (48) 39 (45) 23 (55) 10 (32) 52 (53) 26 (41) 36 (55)

LAR 49 (38) 37 (43) 12 (29) 17 (55) 32 (33) 29 (45) 20 (31)

Hartmann 18 (14) 11 (13) 7(17) 4 (13) 14 (14) 9 (14) 9 (14)
Adjuvant treatment

None 86 (67) 59 (68) 27 (64) 24 (77) 62 (63) 45 (70) 41 (63)

Radiotherapy 43 (33) 28 (32) 15 (36) 7 (23) 36 37) 19 (30) 24 (37)

Chemoradioth.” 5@4) 33 2(5) 13) 44 23) 30)

Mann—-Whitney U and Kruskal-Wallis tests showed no significant correlation (p > 0.05) between the listed variables and TSR-visual or TSR-auto
LAR: Low anterior resection; APR: Abdominoperineal resection; pT: Pathological tumor status; pN: Pathological nodal status
 Observer consensus

® Chemoradiotherapy

(Fig. 3), independent of the method of TSR assessment used ~ versus stroma-high cases were 86.6% versus 60.7% for DSS
(visual versus automated). For TSR-visual, the 5-year survival and 76.8% versus 54.9% for DFS. For TSR-auto(median), the
rates for stroma-low versus stroma-high cases were 71.0%  5-year survival rates for stroma-low versus stroma-high cases,
versus 58.8% for DSS and 65.6% versus 49.1% for DFS.  were 76.1% versus 58.4% for DSS and 70.0% versus 50.7%
For TSR-auto(50%), the 5-year survival rates for stroma-low for DFS.

Table 2 Quantitative
performance of the CNN at pixel Tumor Stroma Necrosis Muscle Healthy  Fat Mucus  Lympho-  Blood

classification per tissue class epl. cytes

Sensitivity  91.1%  91.7%  90.8% 95.5% 94.1% 98.1%  96.4%  98.4% 97.9%
Specificity  99.4%  97.7%  99.6% 99.6% 99.5% 99.9%  98.7%  99.6% 99.9%

CNN: Convolutional Neural Network; Healthy epi.: Healthy epithelium

@ Springer
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Fig. 2 Scatter plot of assessed stroma percentages in 129 patients for
Observer 1 and Observer 2. The co-occurrence of assessed percentages
is indicated by circles with areas proportional to the amount of patients
scored with the corresponding TSR value. The dashed lines represent the
boundary between stroma-low and stroma-high cases according to the
cut-off value determined in Mesker et al. [10]. Green circles indicate cases
where the observers agreed (105 in total) and red circles indicate disagree-
ment (24 in total)

For TSR-visual, a significantly lower DSS was seen in the
stroma-high group compared to the stroma-low group (p =
0.042), but not for DFS (p =0.182). Similarly, for TSR-au-
to(50%) this difference was significant for DSS (p =0.018),
but not for DFES (p = 0.066). For TSR-auto(median), both DSS
and DFS were found to be significantly lower in the stroma-
high group compared to the stroma-low group (p =0.007
and p =0.021, respectively). After stratification for TNM
stage, stroma-high was also found to be associated with
worse survival in stage II rectal cancer patients (n=45),
but this result was only significant for TSR-auto(median)
(DSS p =0.003 and DFS p=0.015).

Hazard ratios (HR) and 95% CIs were determined for both
DSS and DFS (Tables 6 and 7). In univariate analysis, all

Table 4  Cross-tabulation of TSR-visual (consensus) versus TSR-au-
to(50%) after dichotomisation

k =0.239 TSR-auto(50%)
Stroma- Stroma- Total
low high
TSR-visual (consensus) Stroma-low 30 57 87
Stroma-high 1 41 42
Total 31 98 129

methods for TSR assessment were found to be prognostic
for DSS: TSR-visual HR =1.83 (95% CI 1.01-3.30); TSR-
auto(50%) HR=2.71 (95% CI 1.14-6.40); and TSR-
auto(median) HR =2.31 (95% CI 1.24-4.30). For DFS,
only TSR-auto(median) was found to be prognostic with
HR=1.96 (95% CI 1.10-3.51). After stratification for
TNM stage, only TSR-auto(median) was found to be
prognostic for stage Il rectal cancer patients, both for
DSS (univariate HR =4.13 (95% CI 1.53-11.16)) and DFS
(univariate HR = 3.05 (95% CI 1.19-7.81)).

In multivariate analysis, automated TSR assessment was
found to be prognostic independent of age, gender, pT-stage,
lymph node status, tumor grade, and whether adjuvant
therapy was given, both for DSS: TSR-auto(50%)
HR=3.11 (95% CI 1.26-7.70) and TSR-auto(median)
HR =248 (95% CI 1.29-4.78), and for DFS: TSR-au-
to(50%) (HR=2.39 (95% CI 1.07-5.38)) and TSR-
auto(median) (HR =2.05 (95% CI 1.11-3.78)). TSR-visual
was not found to serve as an independent prognostic factor.

4 Discussion

For different cancer types, TSR has been shown to yield prog-
nostic information. Visual assessment of TSR requires train-
ing, and may be difficult for cases close to the decision thresh-
old of 50%. The present study shows that specifically for
rectal adenocarcinoma the observer agreement is only moder-
ate. Recent advances in slide scanning technology and ma-
chine learning have opened up new possibilities for comput-
erized assessment of TSR. To the best of our knowledge, the

Table 3  Cross-tabulation of Observer 1 versus Observer 2 after Table 5 Cross-tabulation of TSR-visual (consensus) versus TSR-
dichotomisation auto(median) after dichotomisation
k=0.578 Observer 2 k=0.521 TSR-auto(median)
Stroma- Stroma- Total Stroma- Stroma- Total
low high low high
Observer 1 Stroma-low 75 8 83 TSR-visual (consensus) Stroma-low 60 27 87
Stroma-high 16 30 46 Stroma-high 4 38 42
Total 91 38 129 Total 64 65 129

@ Springer



Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer

da C
1.0 TSR-visual (consensus) 1.0 TSR-auto(median) 1.0 TSR-auto(median)
_ DSS - All cases _ DSS - All cases _ DSS - Stage Il
© © ©
> > >
E 0.8 ; 0.8 E 0.8
» ) stroma-low (n=64) ) stroma-low (n=25)
© 0.6 stroma-low (n=87) © 0.6 © 0.6
£ £ £
[3] [%] [%]
2 a a
@ 0.47 ¢ 0.4 stroma-high (n=65) @ 0.4
% stroma-high (n=42) % §
& 027 & 027 % 027 stroma-high (n=20)
a p=0.042 a p=0.007 a p=0.003
0.0 0.0 0.0
1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 U
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Years after surgery Years after surgery Years after surgery
d . e . f .
1.0 TSR-visual (consensus) 1.0 TSR-auto(median) 1.0 TSR-auto(median)
DFS - All cases DFS - All cases DFS - Stage Il
.g 0.8+ .g 0.8+ _g 0.8+
g g g t low (n=25)
_ _ -l = ] stroma-low (n=
2 06 stroma-low (n=87) 2 0.6 stroma-low (n=64) 2 06
L 2 e
b . iy -hi =i iy
z 0.4+ stroma-high (n=42) z 0.4 stroma-high (n=65) § 0.4+
(] [ [ H —
@ @ @ stroma-high (n=20)
a 0.2+ a 0.2 a 0.2
p=0.182 p = 0.021 p=0.015
0.0+ 0.0+ 0.0+
L L L L L L L L L L L L L L) L L L L L L L)
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Years after surgery

Fig. 3 Kaplan-Meier curves for disease-specific survival (top row) and
disease-free survival (bottom row) of stroma-low versus stroma-high pa-
tients. Results based on all patients (n = 129) are shown for TSR-visual (a,

present study shows for the first time that TSR can reliably be
assessed by an automatic deep learning algorithm. The agree-
ment of the automated system (using median cut-off) with the
observer consensus (kappa=0.521) was comparable to the
inter-observer agreement (kappa=0.578). The TSR assessed
in this manner appeared to be a strong independent prognostic
factor both for DSS and DFS in rectal adenocarcinoma. The
prognostic value of the automated TSR was comparable to
that assessed in consensus by two experienced observers
for DSS in univariate analysis, but not in multivariate
analysis. For DFS, only the automatically assessed TSR
was significantly associated with outcome, both in univariate
and multivariate analysis.

Interestingly, automated TSR (using the median as cut-off)
showed prognostic value for TNM stage Il patients.
Clinically, this is a subgroup of patients for which
post-operative treatment is still under debate and more
research is needed [22, 23]. TSR can potentially help to direct
this discussion and add information for a more personalized
treatment of this patient category.

In a recent study, Scheer et al. [8] analyzed TSR on the same
cohort of patients as used in the present study. However, rather

Years after surgery

Years after surgery

d) and TSR-auto(median) (b, e). Results for patients with stage II rectal
cancer (n = 45) are shown for TSR-auto(median) only (¢, f). Log-rank test
p-values are shown in the graphs

than a hot-spot measure, the authors applied a scoring proce-
dure in which an average TSR was assessed based on the entire
tumor area in a slide. Also, they defined TSR as the carcinoma
percentage (CP) and the estimated percentages were grouped
using three categories (low-CP, intermediate-CP and high-CP).
In univariate survival analysis, CP was found to be prognostic for
DSS and DFS. With CP-high as baseline and after correction for
age, grading, pathological T-stage, and adjuvant treatment, CP-
intermediate was found to be correlated with worse DSS
and DFS, however, this result was obtained only in the
subset of lymph node metastasis negative cases (n=94).
In the present study, the prognostic value of TSR
remained intact for the entire cohort of patients after
correction for clinicopathological variables, including
lymph node status. The most probable cause for this
difference is the TSR scoring method. In the present
study we decided to follow a more widely accepted
scoring system, which appears to outperform methods
where the overall tumor area is scored by averaging.
The results of our observer study indicate that TSR obtained
by visual estimation serves as a prognostic factor of DSS (al-
though not reaching statistical significance when correcting for
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Table 6  Uni- and multivariate Cox regression analysis for disease-specific survival
Univariate Multivariate
TSR-visual® TSR-auto(50%) TSR-auto(median)
HR 95% C1 HR 95% CI HR 95% C1 HR 95% CI

Age® 1.01 0.98-1.04 1.01 0.98-1.04 1.00 0.98-1.03 1.01 0.98-1.04
Gender

Female 1.00 1.00 1.00 1.00

Male 1.16 0.61-2.17 1.64 0.83-3.24 1.67 0.83-3.34 1.62 0.83-3.18
T-status®

pT1-pT2 1.00 1.00 1.00 1.00

pT3-—pT4 4.52 1.91-10.72 3.75 1.56-9.03 4.80 1.96-11.75 4.48 1.84-10.91
LN metastases”

No 1.00 1.00 1.00 1.00

Yes 2.93 1.35-6.32 1.64 0.53-5.08 1.43 0.45-4.57 1.26 0.42-3.76
Tumor grade®

Well-Moderate 1.00 1.00 1.00 1.00

Poor 2.86 1.32-6.20 2.87 1.24-6.69 2.29 0.96-5.47 2.63 1.14-6.08
Adjuvant therapy

No 1.00 1.00 1.00 1.00

Yes 231 1.284.15 1.28 0.39-4.17 1.25 0.37-4.22 1.42 0.44-4.54
TSR-visual®

Stroma-low 1.00 1.00

Stroma-high 1.83 1.01-3.30 1.76 0.93-3.34
TSR-auto(50%)

Stroma-low 1.00 1.00

Stroma-high 2.71 1.14-6.40 311 1.26-7.70
TSR-auto(median)

Stroma-low 1.00 1.00

Stroma-high 2.31 1.24-4.30 2.48 1.29-4.78

# Observer consensus

b Age was used as a continuous variable

¢ Due to low numbers, pT1 (n=4) and pT2 cases were grouped together as well as pT3 and pT4 (n = 6) cases

d Lymph node metastases

¢ Due to low numbers, cases with well (n = 3) and moderately differentiated tumors were grouped together

Significant results (p > 0.05) are indicated in bold

other clinicopathological features), but not of DFS. Furthermore,
only a moderate agreement was found between observers. These
results are in contrast with previous studies [9, 10, 13] on TSR
assessment on colon cancer. This discrepancy may be explained
by the fact that compared to colon, the rectum bowel wall has a
thicker muscle layer and in, some cases, it may be difficult to
distinguish between stromal tissue and smooth muscle cells, es-
pecially with darker H&E-stained slides. Muscle tissue, which
should be excluded from scoring, may therefore be interpreted as
stromal tissue by one observer and not by the other. Furthermore,
as shown in Fig. 2, most discrepancies (15/24 cases) are found
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around the cut-off point of 50%. Especially for these cases,
computer-aided TSR assessment may be very useful.

For the automated method two different stroma cut-off
values have been investigated in this study: the value used
for the visual estimation (50%), and the median of measured
TSR-auto values. We found comparable results for the two
cut-offs, with a slightly higher hazard ratio for the 50% cut-
off at the cost of a wider 95% confidence interval. However,
since in general automated assessment of TSR yields higher
stroma percentages than visual assessment, the use of a 50%
cut-off for TSR-auto corresponded much less to TSR-visual
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Table 7  Uni- and multivariate Cox regression analysis for disease-free survival
Univariate Multivariate
TSR-visual® TSR-auto(50%) TSR-auto(median)
HR 95% CI HR 95% C1 HR 95% C1 HR 95% CI

Age® 1.00 0.97-1.02 1.00 0.97-1.02 0.99 0.96-1.02 0.99 0.97-1.02
Gender

Female 1.00 1.00 1.00 1.00

Male 1.35 0.73-2.52 1.87 0.96-3.63 1.80 0.92-3.52 1.81 0.94-3.49
T-status®

pT1-pT2 1.00 1.00 1.00 1.00

pT3-—pT4 4.09 1.83-9.12 3.52 1.55-8.01 433 1.87-10.04 4.1 1.78-9.48
LN metastases®

No 1.00 1.00 1.00 1.00

Yes 243 1.38-4.28 1.89 0.68-5.25 1.78 0.63-5.00 1.55 0.58-4.19
Tumor grade®

Well-Moderate 1.00 1.00 1.00 1.00

Poor 2.24 1.05-4.80 2.02 0.88-4.62 1.65 0.70-3.87 1.78 0.78-4.06
Adjuvant therapy

No 1.00 1.00 1.00 1.00

Yes 222 1.26-3.89 1.07 0.37-3.10 0.98 0.33-2.90 1.11 0.39-3.15
TSR-visual®

Stroma-low 1.00 1.00

Stroma-high 1.47 0.83-2.61 1.42 0.77-2.61
TSR-auto(50%)

Stroma-low 1.00 1.00

Stroma-high 2.01 0.94-4.29 2.39 1.07-5.38
TSR-auto(median)

Stroma-low 1.00 1.00

Stroma-high 1.96 1.10-3.51 2.05 1.11-3.78

# Observer consensus

b Age was used as a continuous variable

¢ Due to low numbers, pT1 (n=4) and pT2 cases were grouped together as well as pT3 and pT4 (n = 6) cases

d Lymph node metastases

¢ Due to low numbers, cases with well (n = 3) and moderately differentiated tumors were grouped together

Significant results (p > 0.05) are indicated in bold

compared to the use of the median cut-off (as is reflected in the
kappa values). The optimal cut-off value for TSR-auto should
be further investigated and validated in an independent cohort.

It is worth noting that one of the patient inclusion criteria
for the cohort that was used in this study was the absence of
neoadjuvant treatment. The reason for this design choice, orig-
inally made by Scheer et al. [8], was that both chemotherapy
and radiotherapy modifies the tissue architecture and, as such,
may hamper the assessment of TSR or its prognostic value.
The proposed method can, therefore, aid clinicians in selecting
the right treatment options for rectal cancer patients who did
not receive preoperative (chemo)radiotherapy. Furthermore,

given the fact that the colon and the rectum are parts of the
same continuous organ and have a similar histological appear-
ance, the presented deep learning algorithm has the potential
to be successfully applied to the analysis of colon cancer as
well.

The deep learning-based approach proposed in this work
needs the position of a user-provided stroma hot-spot as input
in order to assess TSR. After this manual input is provided, the
proposed method can process the hot-spot area in the whole-slide
image automatically. As such, human input is still required, mak-
ing the method only semi-automatic. It is worth noting that in
Ciompi et al. [20] a computer model similar to the one used in
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this work has shown a high performance at segmenting several
tissue types in rectal cancer at the whole-slide image level, i.e.,
beyond the limited area of the selected hot-spot. As a conse-
quence, this method has the potential to be used to assess TSR
both at whole-tumor level and at whole-slide image level. Such
an approach would overcome the need for a user-provided stro-
ma hot-spot and, therefore, allow investigating TSR at very large
scale via fully-automatic computation. Future work will be di-
rected towards further automation of TSR assessment and vali-
dation in a large independent cohort.

Although, to the best of our knowledge, TSR assessment (vi-
sual or automated) has not yet been implemented in routine pa-
thology diagnostics, it was recently reported [24] that the TNM
Evaluation Committee (UICC) and the College of American
Pathologists (CAP) have discussed TSR and acknowledged its
potential for integration with the TNM staging system. To achieve
this for colon cancers, we are currently investigating the repro-
ducibility of (visual) TSR assessment in a large European multi-
center study [25]. The results of the present study suggest that
automated TSR can potentially be of significant aid to patholo-
gists in routine diagnostics. However, validation of the proposed
technology on a larger and independent data set is essential and,
therefore, among our future research goals. The objectiveness of a
deep learning-based method, which allows obtaining accurate and
reproducible quantification of TSR, has the potential to pave the
way to implementation of TSR in clinical practice.
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