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a b s t r a c t 

Recent advances in machine learning yielded new techniques to train deep neural networks, which re- 

sulted in highly successful applications in many pattern recognition tasks such as object detection and 

speech recognition. In this paper we provide a head-to-head comparison between a state-of-the art in 

mammography CAD system, relying on a manually designed feature set and a Convolutional Neural Net- 

work (CNN), aiming for a system that can ultimately read mammograms independently. Both systems are 

trained on a large data set of around 45,0 0 0 images and results show the CNN outperforms the traditional 

CAD system at low sensitivity and performs comparable at high sensitivity. We subsequently investigate 

to what extent features such as location and patient information and commonly used manual features 

can still complement the network and see improvements at high specificity over the CNN especially with 

location and context features, which contain information not available to the CNN. Additionally, a reader 

study was performed, where the network was compared to certified screening radiologists on a patch 

level and we found no significant difference between the network and the readers. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Nearly 40 million mammographic exams are performed in the

S alone on a yearly basis, arising predominantly from screening

rograms implemented to detect breast cancer at an early stage,

hich has been shown to increase chances of survival ( Tabar et al.,

003; Broeders et al., 2012 ). Similar programs have been imple-

ented in many western countries. All this data has to be in-

pected for signs of cancer by one or more experienced readers

hich is a time consuming, costly and most importantly error

rone endeavor. Striving for optimal health care, Computer Aided

etection and Diagnosis (CAD) ( Giger et al., 20 01; Doi, 20 07; 20 05;

an Ginneken et al., 2011 ) systems are being developed and are

urrently widely employed as a second reader ( Rao et al., 2010;

alich et al., 2006 ), with numbers from the US going up to 70% of

ll screening studies in hospital facilities and 85% in private insti-

utions ( Rao et al., 2010 ). Computers do not suffer from drops in

oncentration, are consistent when presented with the same input

ata and can potentially be trained with an incredible amount of
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raining samples, vastly more than any radiologist will experience

n his lifetime. 

Until recently, the effectiveness of CAD systems and many other

attern recognition applications depended on meticulously hand-

rafted features, topped off with a learning algorithm to map it to

 decision variable. Radiologists are often consulted in the process

f feature design and features such as the contrast of the lesion,

piculation patterns and the sharpness of the border are used, in

he case of mammography. These feature transformations provide

 platform to instill task-specific, a-priori knowledge, but cause a

arge bias towards how we humans think the task is performed.

ince the inception of Artificial Intelligence (AI) as a scientific dis-

ipline, research has seen a shift from rule-based, problem spe-

ific solutions to increasingly generic, problem agnostic methods

ased on learning, of which deep learning ( Bengio, 2009; Bengio

t al., 2013; Schmidhuber, 2015; LeCun et al., 2015 ) is its most

ecent manifestation. Directly distilling information from training

amples, rather than the domain expert, deep learning allows us to

ptimally exploit the ever increasing amounts of data and reduce

uman bias. For many pattern recognition tasks, this has proven to

e successful to such an extent that systems are now reaching hu-

an or even superhuman performance ( Cire ̧s an et al., 2012; Mnih

t al., 2015; He et al., 2015 ). 

http://dx.doi.org/10.1016/j.media.2016.07.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
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The term deep typically refers to the layered non-linearities

in the learning systems, which enables the model to represent

a function with far less parameters and facilitates more efficient

learning ( Bengio et al., 2007; Bengio, 2009 ). These models are not

new and work has been done since the late seventies ( Fukushima,

1980; Lecun et al., 1998 ). In 2006, however, two papers ( Hinton

et al., 2006; Bengio et al., 2007 ) showing deep networks can be

trained in a greedy, layer-wise fashion sparked new interest in the

topic. Restricted Boltzmann Machines (RBM’s), probabilistic gener-

ative models, and autoencoders (AE), one layer neural networks,

were shown to be expedient pattern recognizers when stacked

to form Deep Belief Networks (DBN) ( Hinton et al., 2006; Ben-

gio et al., 2007 ) and Stacked Autoencoders, respectively. Currently,

fully supervised, Convolutional Neural Networks (CNN) dominate

the leader boards ( Krizhevsky et al., 2012; Zeiler and Fergus,

2014; Simonyan and Zisserman, 2014; Ioffe and Szegedy, 2015; He

et al., 2015 ). Their performance increase with respect to the pre-

vious decades can largely be attributed to more efficient training

methods, advances in hardware such as the employment of many

core computing ( Cire ̧s an et al., 2011 ) and most importantly, sheer

amounts of annotated training data ( Russakovsky et al., 2014 ). 

To the best of our knowledge, Sahiner et al. (1996) were the

first to attempt a CNN setup for mammography. Instead of raw im-

ages, texture maps were fed to a simple network with two hidden

layers, producing two and three feature images respectively. The

method gave acceptable, but not spectacular results. Many things

have changed since this publication, however, not only with regard

to statistical learning, but also in the context of acquisition tech-

niques. Screen Film Mammography (SFM) has made way for Dig-

ital Mammography (DM), enabling higher quality, raw images in

which pixel values have a well-defined physical meaning and eas-

ier spread of large amounts of training data. Given the advances in

learning and data, we feel a revisit of CNNs for mammography is

more than worthy of exploration. 

Work on CAD for mammography ( Elter and Horsch, 2009;

Nishikawa, 2007; Astley and Gilbert, 2004 ) has been done since

the early nineties but unfortunately, progress has mostly stag-

nated in the past decade. Methods are being developed on small

data sets ( Mudigonda et al., 20 0 0; Zheng et al., 2010 ) which

are not always shared and algorithms are difficult to compare

( Elter and Horsch, 2009 ). Breast cancer has two main manifesta-

tions in mammography, firstly the presence of malignant soft tis-

sue or masses and secondly the presence of microcalcifications

( Cheng and Huang, 2003 ) and separate systems are being devel-

oped for each. Microcalcifications are often small and can easily

be missed by oversight. Some studies suggest CAD for microcal-

cifications is highly effective in reducing oversight ( Malich et al.,

2006 ) with acceptable numbers of false positives. However, the

merit of CAD for masses is less clear, with research suggesting hu-

man errors do not stem from oversight but rather misinterpreta-

tion ( Malich et al., 2006 ). Some studies show no increase in sen-

sitivity or specificity with CAD ( Taylor et al., 2005 ) for masses or

even a decreased specificity without an improvement in detection

rate or characterization of invasive cancers ( Fenton et al., 2011;

Lehman et al., 2015 ). We therefore feel motivated to improve upon

the state-of-the art. 

In previous work in our group ( Hupse et al., 2013 ) we showed

that a sophisticated CAD system taking into account not only local

information, but also context, symmetry and the relation between

the two views of the same breast can operate at the performance

of a resident radiologist and of a certified radiologist at high speci-

ficity. In a different study ( Karssemeijer et al., 2004 ) it was shown

that when combining the judgment of up to twelve radiologists,

reading performance improved, providing a lower bound on the

maximum amount of information in the medium and suggesting

ample room for improvement of the current system. 
In this paper, we provide a head-to-head comparison between

 CNN and a CAD system relying on an exhaustive set of manu-

lly designed features and show the CNN outperforms a state-of-

he-art mammography CAD system, trained on a large dataset of

round 45,0 0 0 images. We will focus on the detection of solid,

alignant lesions including architectural distortions, treating be-

ign abnormalities such as cysts or fibroadenomae as false posi-

ives. The goal of this paper is not to give an optimally concise

et of features, but to use a complete set where all descriptors

ommonly applied in mammography are represented and provide

 fair comparison with the deep learning method. As mentioned

y Szegedy et al. (2014) , success in the past two years in the con-

ext of object recognition can in part be attributed to judiciously

ombining CNNs with classical computational vision techniques. In

his spirit, we employ a candidate detector to obtain a set of sus-

icious locations, which are subjected to further scrutiny, either by

he classical system or the CNN. We subsequently investigate to

hat extent the CNN is still complementary to traditional descrip-

ors by combining the learned representation with features such

s location, contrast and patient information, part of which are not

xplicitly represented in the patch fed to the network. Lastly, a

eader study is performed, where we compare the scores of the

NN to experienced radiologists on a patch level. 

The rest of this paper is organized as follows. In the next sec-

ion, we will give details regarding the candidate detection system,

hared by both methods. In Section 3 , the CNN will be introduced

ollowed by a description of the reference system in Section 4 . In

ection 5 , we will describe the experiments performed and present

esults, followed by a discussion in Section 6 and conclusion in

ection 7 . 

. Candidate detection 

Before gathering evidence, every pixel is a possible center of

 lesion. This approach yields few positives and an overwhelming

mount of predominantly obvious negatives. The actual difficult

xamples could be assumed to be outliers and generalized away,

indering training. Sliding window methods, previously popular in

mage analysis are recently losing ground in favor of candidate de-

ection ( Hosang et al., 2015 ) such as selective search ( Uijlings et al.,

013 ) to reduce the search space ( Girshick et al., 2014; Szegedy

t al., 2014 ). We therefore follow a two-stage classification pro-

edure where in the first stage, candidates are detected and sub-

ected to further scrutiny in a second stage, similar to the pipeline

escribed in Hupse et al. (2013) . Rather than class agnostic and

otentially less accurate candidate detection methods, we use an

lgorithm designed for mammographic lesions ( Karssemeijer and

e Brake, 1996 ). It operates by extracting five features based on first

nd second order Gaussian kernels, two designed to spot the cen-

er of a focal mass and two looking for spiculation patterns, char-

cteristic of malignant lesions. A final feature indicates the size of

ptimal response in scale-space. 

To generate the pixel based training set, we extracted positive

amples from a disk of constant size inside each annotated malig-

ant lesion in the training set, to sample the same amount from

very lesion size and prevent bias for larger areas. To obtain nor-

al pixels for training, we randomly sampled 1 in 300 pixels from

ormal tissue in normal images, resulting in approximately 130

egative samples per normal image. The resulting samples were

sed to train a random forest ( Breiman, 2001 ) (RF) classifier. RFs

an be parallelized easily and are therefore fast to train, are less

usceptible to overfitting and easily adjustable for class-imbalance

nd therefore suitable for this task. 

To obtain lesion candidates, the RF is applied to all pixel loca-

ions in each image, both in the train and test set, generating a

ikelihood image, where each pixel indicates the estimated suspi-
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Fig. 1. Illustration of the candidate detection pipeline. A candidate detector is 

trained using five pixel features and applied to all pixesl in all images, generating a 

likelihood image. Local optima in the likelihood image are used as seed points for 

both the reference system and the CNN. (See Fig. 2 ). 

Fig. 2. Two systems are compared. A candidate detector (see Fig. 1 ) generates a set 

of candidate locations. A traditional CAD system (left) uses these locations as seed 

points for a segmentation algorithm. The segmentations are used to compute region 

based features. The second system based on a CNN (right) uses the same locations 

as the center of a region of interest. 

c  

a  

d  

t  

h  

F  

o  

l

3

 

l  

s  

t  

e  

a  

t  

s  

h  

d  

p  

s  

b

p  

a  

m  

i  

d  

d  

t  

t  

r  

m

 

c

Y  

w  

f  

t  

H

 

o  

a  

(  

d

a  

w  

i  

f

−  

w  

d  

d  

D  

d  

b  

e

 

v  

D

3

 

d  

f  

p  

s  

s  

t  

2  

l  

t

 

t  

s  

a  

p  

a  

c  

r  

a  

t  

b  

(  

u  

t  

n  

c  
iousness. Non-maximum suppression was performed on this im-

ge and all optima in the likelihood image are treated as candi-

ates and fed as input to both the reference feature system and

he CNN. For the reference system, the local optima in the likeli-

ood image are used as seed points for a segmentation algorithm.

or the CNN, a patch centered around the location is extracted. An

verview of the first stage pipeline is provided in Fig. 1 . Fig. 2 il-

ustrates the generated candidates for both systems. 

. Deep convolutional neural network 

In part inspired by human visual processing faculties, CNNs

earn hierarchies of filter kernels, in each layer creating a more ab-

tract representation of the data. The term deep generally refers

o the nesting of non-linear functions ( Bengio, 2009 ). Multi Lay-

red Perceptrons (MLPs) have been shown to be universal function

pproximators, under some very mild assumptions, and therefore,

here is no theoretical limit that prevents them from learning the

ame mapping as a deep architecture would. Training, however,

as been shown, mostly empirically, to be far more efficient in a

eep setting and the same function can be represented with fewer

arameters. Deep CNN’s are currently the most proficient for vi-

ion and in spite of the simple mathematics, have been shown to

e extremely powerful. 

Contemporary architectures roughly comprise convolutional, 

ooling and fully connected layers. Every convolution results in

 feature map, which is downsampled in the pooling layer. The

ost common form of pooling is max-pooling, in which the max-

mum of a neighborhood in the feature map is taken. Pooling in-

uces some translation invariance and downscales the image to re-

uce the amount of weights with each layer. It also reduces loca-

ion precision, however, rendering it less suitable for segmentation

asks. The exact merit of fully connected layers is still an open
esearch question, but many studies report an increase in perfor-

ance with these in the architectures. 

If we let Y 

k 
L denote the k th feature map of layer L , generated by

onvolution with kernel W 

k , it is computed according to: 

 

k 
L = f (W 

k 
L ∗ Y L −1 + b k L ) (1)

ith ∗ the convolution operator and f ( ·) a non-linear activation

unction and b k 
L 

a bias term. Traditional MLPs use sigmoidal func-

ions to facilitate learning of non-linearly separable problems.

owever, Rectified Linear Units (ReLU): 

f (a ) = max (0 , a ) (2)

f activation a , have been shown to be easier to train, since the

ctivation is not squashed by asymptote in the logistic functions

 Nair and Hinton, 2010 ). The parameters � are typically fit to the

ata using maximum likelihood estimation: 

rg max 
�

L (�, D) = arg max 
�

N ∏ 

n =1 

h (X | �) (3)

here h ( X | �) produces the posterior probability of sample X . Tak-

ng the logarithm and negating it to put it into a minimization

ramework for convenience, will yield the cross-entropy loss: 

ln [ P (D| �)] = −
N ∑ 

n =1 

yh (X ;�) + (1 − y )(1 − h (X ;�))] (4)

here y indicates the class label. This can be optimized using gra-

ient descent. For large datasets that do not fit in memory and

ata with many redundant samples, minibatch Stochastic Gradient

escent (SGD) is typically used. Rather than computing the gra-

ient on the entire set, it is computed in small batches. Standard

ack propagation is subsequently used to adjust weights in all lay-

rs. 

Although powerful, contemporary architectures are not fully in-

ariant to geometric transformations, such as rotation and scale.

ata augmentation is typically performed to account for this. 

.1. Data augmentation 

Data augmentation is a technique often used in the context of

eep learning and refers to the process of generating new samples

rom data we already have, hoping to ameliorate data scarcity and

revent overfitting. In object recognition tasks in natural images,

imple horizontal flipping is usually only performed, but for tasks

uch as optical character recognition it has been shown that elas-

ic deformations can greatly improve performance ( Simard et al.,

003 ). The main sources of variation in mammography at a lesion

evel are rotation, scale, translation and the amount of occluding

issue. 

We augmented all positive examples with scale and transla-

ion transformations. Full scale or translation invariance is not de-

ired nor required since the candidate detector is expected to find

 patch centered around the actual focal point of the lesion. The

roblem is not completely scale-invariant either: large lesions in

 later stage of growth are not simply scaled-up versions of re-

ently emerged abnormalities. The key is therefore to perform the

ight amount of translation and scaling in order to generate re-

listic lesion candidates. To this end, we translate each patch in

he training set containing an annotated malignant lesion 16 times

y adding values sampled uniformly from the interval [ −25 , 25]

0.5 cm) to the lesion center and scale it 16 times by adding val-

es from the interval [ −30 , 30] (0.6 cm) to the top left and bot-

om right of the bounding box. After this, all patches including the

ormals were rotated using simple flipping actions, which can be

omputed on the fly to generate three more samples. This results
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Fig. 3. Examples of scaling and translation of the patches. The top left image is the 

original patch, the second and third image of the top row examples of the smallest 

and largest scaling employed. The bottom row indicates the extrema in the range 

of translation used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A lesion (a), its segmentation (b), areas used for computing contrast features 

(c) and areas used for computing margin contrast (d). 
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in (1 + 16 + 16)4 = 132 patches per positive lesions and 4 per neg-

ative. Examples of the range of scaling and translation augmenta-

tion are given in Fig. 3 . 

4. Reference system 

The large majority of CAD systems rely on some form of seg-

mentation of the candidates on which region based features are

computed. To this end, we employ the mass segmentation method

proposed by Timp and Karssemeijer (2004) , which was shown

to be superior to other methods (region growing ( te Brake and

Karssemeijer, 2001 ) and active contour segmentation ( Kupinski and

Giger, 1998 )) on their particular feature set. The image is trans-

formed to a polar domain around the center of the candidate and

dynamic programming is used to find an optimal contour, subject

to the constraint that the path must start and end in the same

column in order to generate a closed contour in the Cartesian do-

main. A cost function incorporating a deviation from the expected

Grey level, edge strength and size terms is used to find an optimal

segmentation. One of the problems with this method and many

knowledge driven segmentation methods for that matter, is that it

is conditioned on a false prior : the size constraint is based on data

from malignant lesions. When segmenting a candidate, we there-

fore implicitly assume that this is a malignant region, inadvertently

driving the segmentation into a biased result. Many of the manual

features described below rely on a precise segmentation but in the

end, it is an intermediate problem. For a stand-alone application,

we are interested to provide the patient with an accurate diagno-

sis, not the exact delineation. A huge advantage of CNNs is that no

segmentation is required and patches are fed without any interme-

diate processing. 

After segmentation, we extract a set of 74 features. These can

broadly be categorized into pixel level features , used by the can-

didate detector, contrast features , capturing the relation between

the attenuation coefficients inside and outside the region, texture

features describing relations between pixels within the segmented

region, geometry features summarizing shape and border informa-

tion location features, indicating where the lesion is with respect to

some landmarks in the breast, context features, capturing informa-

tion about the rest of the breast and other candidates and patient

features, conveying some of the subjects background information. 

4.1. Candidate detector features 

As a first set of descriptors, we re-use the five features em-

ployed by the candidate detector, which has been shown to be

beneficial in previous work in our group. On top of this, we com-

pute the mean of the four texture features within the segmented
oundary and add the output of the candidate detector at the

ound optimum. This gives us a set of nine outputs we call can-

idate detector features. 

.2. Contrast features 

When talking to a radiologist, a feature that is often mentioned

s how well a lesion is separated from the background. Contrast

eatures are designed to capture this. To compute these, we apply

 distance transform to the segmented region and compare the in-

ide of the segmentation with a border around it. The distance d

o the border of the segmentation is determined according to: 

 = ρ
√ 

Aπ (5)

ith A the area of the segmented lesion. An illustration is provided

n Fig. 4 . An important nuisance in this setting is the tissue sur-

ounding the lesion. In previous work, we have derived two model

ased features, designed to be invariant to this factor ( Kooi and

arssemeijer, 2014 ), which were also normalized for size of the le-

ion. The sharpness of the border of the lesion is also often men-

ioned by clinicians. To capture this, we add two features: the acu-

ance ( Rangayyan et al., 1997 ) and margin contrast, the different

etween the inside and outside of the segmentation, using a small

argin. Illustrations of contrast features are provided in Fig. 4 .

ther contrast features described in te Brake et al. (20 0 0) were

dded to give a set of 12 features. 

.3. Texture features 

The presence of holes in the candidate lesion often decrease

heir suspiciousness, since tumours are solid, with possibly the ex-

eption of lobular carcinoma. To detect this, we added the two iso-

ensity features proposed by te Brake et al. (20 0 0) . Linear struc-

ures within a lesion can indicate an unfortunate projection rather

hen cancer, for which we used four linear texture features as de-

cribed by the same authors ( te Brake et al., 20 0 0 ). On top of this

e added two features based on the second order gradient im-

ge of the segmented lesion. The image was convolved with sec-

nd order Gaussian derivative filters and the optimal location in

cale space was selected for each pixel. We subsequently took the

rst and second moment of the segmented lesion of the maximum

agnitude, which is expected to be high for lesions with much line

tructure. Secondly, we computed gradient coocurence, by count-

ng the number of times adjacent pixels have the same orienta-

ion. Ten less biophysical features in the form of Haralick features
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Table 1 

Overview of the data. Pos refers to the amount of malignant lesions and neg to 

the amount of normals. 

Cases Exams Images Candidates 

Pos Neg Pos Neg Pos Neg Pos Neg 

Train 296 6433 358 11,780 634 39,872 634 213,450 

Valid. 35 710 42 1247 85 4218 85 19,460 

Test 124 2064 124 5317 271 18,182 271 180,777 
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s  
 Haralick et al., 1973 ) at two different scales ( entropy, contrast, cor-

elation, energy and homogeneity ) were added to give a set of 21

exture descriptors. 

.4. Geometrical features 

Regularity of the border of a lesion is often used to classify le-

ions. Again, expedient computation relies heavily on proper seg-

entations. Nevertheless, we have incorporated five simple topol-

gy descriptors as proposed by Peura and Iivarinen (1997) in the

ystem. These are eccentricity, convexity, compactness, circular vari-

nce and elliptic variance . In order to capture more of the 3D shape,

e extended these descriptors to also work with 3 dimensions.

he lesion was smoothed with a Gaussian kernel first and 3D ec-

entricity : the ratio between the largest and smallest eigenvalue of

he point cloud, 3D compactness : the ratio of the surface area to

he volume, spherical deviance , the average deviation of each point

rom a sphere and elliptical deviance : the average deviation of each

oint to an ellipse fitted to the point cloud were computed. Since

onvex hull algorithms in 3D suffer from relatively high computa-

ional complexity, this was not extended. Op top of this, we added

 feature measuring reflective symmetry. The region is divided into

adial and angular bins and average difference pixel intensity be-

ween opposing bins is summed and normalized by the size of the

egion. Lastly the area of the segmented region is added, giving us

 set of 10 geometric features. 

.5. Location features 

Lesions are more likely to occur in certain parts of the breast

han others and other structures such as lymph nodes are more

ommon in the pectoralis than in other parts of the breast. To cap-

ure this, we use a simple coordinate system. The area of the breast

nd pectoral muscle are segmented using thresholding and a poly-

omial fit. We subsequently estimate the nipple location by taking

he largest distance to the chest wall and a central landmark in

he chest wall is taken as the row location of the center of gravity.

rom this, we extract: (1) the distance to the nipple (2) the same,

ut normalized for the size of the breast, (3) the distance to the

hest wall and (4) the fraction of the lesion that lies in the pec-

oral muscle. 

.6. Context features 

To add more information about the surroundings of the le-

ion, we added three context features as described by Hupse and

arssemeijer (2009) . The features again make use of the candidate

etector and assume the posterior of pixels in the rest of the breast

onvey some information about the nature of the lesion in ques-

ion. The first feature averages the output around the lesion, the

econd in a band at a fixed distance from the nipple and a third

akes the whole segmented breast into account. On top of this, we

dded the posterior of the candidate detector, normalized by the

um of the top three and top five lesions in the breast, to give us

ve context features in total. 

.7. Patient features 

Lastly, we added the age of the patient, which is an important

isk factor. From the age, we also estimate the screening round by

ubtracting 50 (the age at which screening starts in The Nether-

ands) and dividing by 2 (the step size of the screening). This gives

s two features. 

Note that the last three sets of features provide information

utside of the patch fed to the CNN. Even if the network is able

o exploit all information in the training set, these could still sup-

ly complementary information regarding the nature of the lesion.
. Experiments 

.1. Data 

The mammograms used were collected from a large scale

creening program in The Netherlands ( bevolkingsonderzoek

idden-west ) and recorded using a Hologic Selenia digital mam-

ography system. All tumours are biopsy proven malignancies

nd annotated by an experienced reader. Before presentation

o a radiologist, the manufacturer applies some processing to

ptimize it for viewing by a human. To prevent information loss

nd bias, we used the raw images instead and only applied a log

ransform which results in pixel values being linearly related to

he attenuation coefficient. Images were scaled from 70 micron to

00 for faster processing. Structure important for detecting lesions

ccur at larger scales and therefore this does not cause any loss of

nformation. 

An overview of the data is provided in Table 1 . With the term

ase, we refer to all screening images recorded from a single pa-

ient. Each case consists of several exams taken at typically a two

ear interval and each exam typically comprises four views, two

f each breast, although these numbers vary: some patients skip

 screening and for some exams only one view of each breast is

ecorded. For training and testing, we selected all regions found

y the candidate detector. The train, validation and test set were

ll split on a patient level to prevent any bias. The train and vali-

ation set comprise 44,090 mammographic views, from which we

sed 39,872 for training and 4218 for validation. The test set con-

isted of 18,182 images of 2064 patients with 271 malignant an-

otated lesions. A total of 30 views from 20 exams in the test set

ontained an interval cancer that was visible in the mammogram

r were taken prior to a screen detected cancer, with the abnor-

ality already visible. 

Before patch extraction in the CNN system, we segmented all

esions in the training set in order to get the largest possible le-

ion and choose the patch size with an extra margin resulting in

atches of size 250 × 250 (5 × 5 cm). The pixel values in the

atches were scaled using simple min-max scaling, with values

alculated over the whole training set. We experimented with scal-

ng the patches locally, but this seemed to perform slightly though

ot significantly worse on the validation set. All interpolation pro-

esses were done with bilinear interpolation. Since some candi-

ates occur at the border of the imaged breast, we pad the im-

ge with zeros. Negative examples were only taken from normal

mages. Annotated benign samples such as cysts and fibroadeno-

ae were removed from the training set. However, not all be-

ign lesions in our data are annotated and therefore some may

ave ended in the train or validation set as negatives. After aug-

entation, the train set consisted of 334 , 752 positive patches and

53 , 800 negatives. When combining the train and validation set,

his amounts to 379 , 632 positive and 931 , 640 negative patches. 

.2. Training and classification details 

For the second stage classification, we have experimented with

everal classifiers (SVMs with several different kernels, Gradient
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Fig. 5. Illustration of the network architecture, The numbers indicate the amount 

of kernels used. We employ a scaled down version of the VGG model. To see the 

extent to which conventional features can still help, the network is trained fully 

supervised and the learned features are subsequently extracted from the final layer 

and concatenated with the manual features and retrained using a second classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Overview of results of individual feature sets 

along the 95% confidence interval (CI) obtained 

using 50 0 0 bootstraps. 

Feature group AUC CI 

Candidate detector 0 .858 [0 .827, 0.887] 

Contrast 0 .787 [0 .752, 0.817] 

Texture 0 .718 [0 .681, 0.753] 

Geometry 0 .753 [0 .721, 0.784] 

Location 0 .686 [0 .651, 0.719] 

Context 0 .816 [0 .781, 0.850] 

Patient 0 .651 [0 .612, 0.688] 

Equal information 0 .892 [0 .864, 0.918] 

All 0 .906 [0 .881, 0.929] 

Fig. 6. Comparison of the CNN with the reference system using equal information, 

i.e., only information represented in the patch used by the CNN, excluding context, 

location and patient information. 

Fig. 7. Comparison of the CNN without any augmentation, with augmentation and 

with added manual features. 
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f  
Boosted Trees, MLPs) on a validation set, but found in nearly all

circumstances the random forest performed similar or better than

others. To counteract the effect of class imbalance, trees in the RF

were grown using the balance corrected Gini criterion for split-

ting and in all situations we used 20 0 0 estimators and the square

root heuristic for the maximum number of features. The maxi-

mum depth was cross-validated using 8 folds. We employed class

weights inversely proportional to the distribution in the particu-

lar bootstrap sample. The posterior probability output by the RF

was calculated as a mean of the estimated classes. The systems are

trained using at most the ten most suspicious lesions per image

found by the candidate detector, during testing no such threshold

is applied to obtain highest sensitivity. 

We implemented the network in Theano ( Bergstra et al., 2010 )

and pointers provided by Bengio (2012) were followed and very

helpful. We used OxfordNet-like architectures ( Simonyan and Zis-

serman, 2014 ) with 6 convolutional layers of {16, 32, 64, 128, 128}

with 3 × 3 kernels and 2 × 2 max-pooling on all but the fourth

convolutional layer. A stride of 1 was used in all convolutions. Two

fully connected layers of 300 each were added. An illustration of

the network is provided in Fig. 5 . 

We employed Stochastic Gradient Descent (SGD) with RMSProp

( Dauphin et al., 2015 ), an adaption of R-Prop for SGD with Nesterov

momentum ( Sutskever et al., 2013 ). Drop-out ( Srivastava et al.,

2014 ) was used on the fully connected layers with p = 0 . 5 . We

used the MSRA ( He et al., 2015 ) weight filler, a learning rate of

5 × 10 −5 with a weight decay of 5 × 10 −5 . To battle the strong

class imbalance, positive samples were presented multiple times

during an epoch, keeping a 50/50 positive/negative ratio in each

minibatch. Alternatively, the loss function could be weighted, but

we found this to perform worse, we suspect this is because re-

balancing maintains a certain diversity in the minibatch. All hy-

perparameters were optimized on a validation set and the CNN

was subsequently retrained on the full training set using the found

parameters. All test patches were also augmented using the same

augmentation scheme. On the validation set, this gave a small im-

provement. The best validation AUC was 0.90. 

5.3. ROC analysis 

To first get an understanding of how well each feature set per-

forms individually, we trained different RFs for each feature set and

applied them separately to the test set. In all cases, the training

procedure as described above was used. AUC values along with a

95% confidence interval, acquired using bootstrapping ( Efron, 1979;

Bornefalk and Hermansson, 2005 ) with 5000 bootstrap samples are

shown in Table 2 . 

The CNN was compared to the reference system with equal

amount of information (i.e., excluding location, context and patient

information) to get a fair performance comparison. Fig. 6 shows a

plot of the mean curves along with the 95% confidence interval

obtained after bootstrapping. Results were not found to be signif-

icantly different p = 0 . 2 on the full ROC. Fig. 7 shows a plot com-
aring the CNN with data augmentation to the network without

ata augmentation and with data augmentation and added man-

al features. Again bootstrapping was used to obtain significance. It

s clear that the proposed data augmentation methods contributes

reatly to the performance, which was also found to be significant

 p � 0.05). 

To combine the CNN with other descriptors, we extracted the

eatures from the last fully connected layer and appended the

ther set (see Fig. 5 ). For each augmented patch, the additional

eatures were simply duplicated. Table 3 shows results of the CNN
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Table 3 

Overview of results of the CNN combined with individual 

feature sets. 

Feature group added to CNN AUC CI 

CNN Only 0 .929 [0 .897, 0.938] 

Candidate detector 0 .938 [0 .919, 0.955] 

Contrast 0 .931 [0 .91, 0.949] 

Texture 0 .933 [0 .912, 0.950] 

Geometry 0 .928 [0 .907, 0.946] 

Location 0 .933 [0 .913, 0.950] 

Context 0 .934 [0 .914, 0.952] 

Patient 0 .929 [0 .908, 0.947] 

All 0 .941 [0 .922, 0.958] 

Table 4 

AUC values obtained when training the 

network on subsets of malignant lesions 

in the training set, keeping the same 

amount of normals. 

Data Augmentation 60% All 

With 0 .842 0 .929 

Without 0 .685 0 .875 
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Fig. 8. Lesion based FROC of the three systems. Please note that this concerns the 

full reference system, where context, location and patient features are incorporated. 

Fig. 9. Case based FROC of the three systems. In areas of high specificity, the CNN 

and the addition of manual features is particularly useful. Please note that this con- 

cerns the full reference system, where context, location and patient features are 

incorporated. 
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ombined with different feature sets, again with confidence inter-

al acquired by bootstrapping with 50 0 0 samples. 

To investigate the degree to which a large data set is really

eeded, we trained several networks on subsets, removing 40% of

he malignant lesions. Results are provided in Table 4 . Since the

ifferences are rather large, we did not perform significance test-

ng. For all settings, we optimized the learning rate but kept all

ther hyperparameters equal to the ones found to be optimal for

he full training set. 

.4. FROC analysis 

In practice, a CAD system should ideally be operating at a refer-

al rate similar to that of a radiologists. To get a better understand-

ng of the system’s performance around this operating point, we

ompute the Partial Area Under the Curve (PAUC) on a log scale: 

AUC = 

1 

ln [1] − ln [0 . 01] 

∫ 1 

0 . 01 

s ( f ) 

f 
d f (6) 

nd generate Free Receiver Operator Characteristic (FROC) curves,

o illustrate the numbers of false positives per image. 

Plots of the FROCs of the full reference system (last line in

able 2 ), the CNN only and the CNN plus manual features are

hown in Figs. 8 and 9 . To further investigate which features are

elpful at high specificity, we compute PAUC for each feature set

ndividually. Results are shown in Table 5 . We see a significant dif-

erence comparing the CNN with additional features to the refer-

nce system P = 0 . 015 on a lesion level and P = 0 . 0 0 02 on a case

evel. 

.5. Human performance 

In previous work in our group, performance of the CAD sys-

em was compared to the performance of a radiologists at an exam

evel, a collection of four images, which contains more information

han only a patch, such as context in the mammogram, symmetri-

al difference between two breast, the relation between the CC and

LO views. To get a better understanding of how close the CNN

s to human performance on a patch level and how much more

oom there is for improvement in this sub part of the pipeline, we

erformed a study where we measured the performance of experi-

nced readers on a patch level, providing the reader with the same
nformation as the CNN. The group of readers consisted of one ex-

erienced reader (non-radiologist) and two experienced certified

adiologists. To get an idea of the performance that can at least be

btained on this set, the mean of the three readers was also com-

uted by simply averaging the scores that each of the three readers

ssigned to each patch. 

Patches were extracted from the mammogram processed by the

anufacturer for optimal viewing and were shown at a normal

omputer screen at a resolution of 200 micron. Microcalcifications

re difficult to see in this setting, but all structures relevant for soft

issue lesions are intact and readers did not report difficulties. The

eaders were provided with a slider and instructed to score the

atch between zero and one hundred based on their assessment

f the suspiciousness of the patch. 

As a test set, we used all masses that were used in

upse et al. (2013) and selected an equal amount of negatives, that

ere considered the most difficult by the candidate detector, re-

ulting in 398 patches. This gives a representative set of difficult

amples and allows for larger differences between readers and the

NN, but is biased towards a set difficult for the reference system,

hich was therefore left out of the comparison (obtained AUC was

.64 on this set). Fig. 12 shows the ROC curves resulting from the
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Table 5 

Partial Area under the FROC of different systems. P-values are refer- 

ring to the comparison between the CNN with additional features 

and the CNN without the specific feature group. In this case, the 

reference system is the full system, including context, location and 

patient information. 

Lesion Case P, lesion P, case 

CNN 0 .550 0 .684 1 1 

Reference system 0 .547 0 .594 0 .451 0 .013 

CNN + candidate det. 0 .590 0 .701 < 0 .0 0 01 0 .026 

CNN + contrast 0 .571 0 .704 0 .011 0 .0758 

CNN + texture 0 .574 0 .705 0 .0062 0 .067 

CNN + topology 0 .561 0 .700 0 .0286 0 .132 

CNN + location 0 .576 0 .707 0 .0038 0 .0516 

CNN + context 0 .578 0 .700 0 .0028 0 .121 

CNN + patient 0 .576 0 .704 0 .0034 0 .0784 

CNN + all features 0 .594 0 .711 < 0 .001 0 .04 

Fig. 10. Top misclassified negatives by the CNN. The second sample in the first row 

is simply the nipple and the third sample in the second row displays fat necrosis. 

Both are obviously normal patches and are filtered out using additional feature sets. 

Fig. 11. Top misclassified positives by the CNN, most samples are very large lesion 

unlikely to be found in the screening population and therefore under represented 

in the training set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Comparison between the CNN and three experienced readers on a patch 

level. 
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reader study. Again, to test significance we used bootstrapping and

two sided testing to get a significance score. We found no signifi-

cant difference between the CNN and any of the readers: CNN vs

reader 1: p = 0 . 1008 , CNN vs reader 2: p = 0 . 6136 , CNN vs reader

3: p = 0 . 64 , but found a significant difference between the CNN

and the mean of the human readers ( p = 0 . 001 ). 

6. Discussion 

To get more insight into the performance of the network, ex-

amples of the top misclassified positives and negatives are shown

in Fig. 11 and 10 respectively. A large part of the patches deter-

mined as suspicious by the network are benign abnormalities such

as cysts and fibroadenomae or normal structures such as lymph

nodes or fat necrosis. Cysts and lymph nodes can look relatively

similar to masses. These strong false positives occur due to the ab-

sence of benign lesions in our training set. In the future we plan
o add these to the training set and perform three-class classifi-

ation or train a separate network to discriminate these lesions

roperly. 

The majority of ‘misclassified’ positives are lesions ill-

epresented in the training data, either very subtle or extremely

arge. When using CAD as a second reader, these will not influence

he referral decision much, as they are clearly visible to a human,

ut when using the computer as an independent reader, these is-

ues need to be solved. In preliminary experiments, we have seen

hat many of these misclassifications can be prevented by con-

idering the contralateral breast and plan to work on this in the

uture. 

From the results in Tables 3 and 2 we can see that individually,

part from the candidate detector, contrast and context are useful

eatures. Although age and screening round are some of the most

mportant risk factors, we do not see clear improvements when

dded as features, which is slightly disappointing. To get training

ata, we took negative patches only from normal images, but not

nly from normal exams, to get as many data points as possible.

 possible explanation for the disappointing performance may be

hat the relation between age and cancer is more difficult to learn

n the setting, since it is a relation that exist on an exam level. 

To add features, we have used a second classification stage. This

as the advantage it is easy to evaluate which features add infor-

ation, without retraining a network and re-optimizing the pa-

ameters, which can take several weeks to do properly. On top of

his, the learned feature representation of the CNN is the same in

ll situations, rendering comparison more reliable. A major disad-

antage, however, is that the training procedure is rather compli-

ated. Other more elegant methods such as coding features as a

econd channel, as done by Maddison et al. (2014) or adding the

eatures in one of the fully connected layers of the network during

raining could be better strategies and we plan to explore this in

uture work. 

We have made use of a more shallow and scaled down ver-

ion of the networks proposed by Simonyan and Zisserman (2014) ,

ho obtain best performance on ImageNet with a 19 layer ar-

hitecture with four times the amount of kernels in each layer.

n initial experiments, we have worked with Alexnet-like archi-

ectures, which performed worse on our problem, obtaining and

UC of around 0.85 on the validation set. We have also experi-

ented with deeper networks and increasing the amount of ker-

els, but found no significant improvement on the validation set

0.896 vs 0.897 of the network with larger capacity and 0.90 of

 layer network). We suspect that with more data, larger capacity
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etworks can become beneficial. The problem could be less com-

lex than classifying natural images since it concerns a two-class

lassification in the current setting and we are dealing with gray

cale images, contrary to the thousands of classes and RGB data in

mageNet ( Russakovsky et al., 2014 ). Therefore, more shallow and

ower capacity networks than the one found optimal for natural

mages could suffice for this particular problem. 

In our work, we made extensive use of data augmentation in

he form of simply geometric transformations. We have also ex-

erimented with full rotation, but this creates lesions not expected

uring testing, due to the zero padding. This could be prevented

sing test time augmentation, but when used in a sliding win-

ow fashion this is not convenient. The ROC curves in Fig. 7 show

 clear increase in performance for the full data set. The results

n Table 4 show the current data augmentation scheme improves

erformance for large amounts of data but not for small amounts

f data. We suspect in the latter setting, the network overfits

nd more regularization is needed. These results may be differ-

nt when fully optimizing the architecture and augmentation pro-

edure for each setting individually. More research is needed to

raw clear conclusions. However effective, data augmentation is a

ather computationally costly procedure. A more elegant approach

ould be to add the invariance properties in the network architec-

ure, which is currently being investigated in several papers ( Gens

nd Domingos, 2014; Jaderberg et al., 2015 ). On top of the geomet-

ic transforms, occluding tissue is an important source of variance,

hich is more challenging to explicitly code in the network archi-

ecture. In future work, we plan to explore simulation methods for

his. 

In this work, we have employed a previously developed can-

idate detector. This has two main advantages: (1) it is fast and

ccurate (2) the comparison with the traditional CAD system is

traightforward and fair, since exactly the same candidate locations

re trained with and evaluated on. The main disadvantage is that

he sensitivity is not hundred percent, which causes lesions to be

issed, although the case-based performance is close to optimal.

n future work, we plan to explore other methods, such as the

trategy put forth by Cire ̧s an et al. (2013) , to train the system end-

o-end. This will make training and classification less cumbersome

nd has the potential to increase the sensitivity of the system. 

In this work we have compared the CNN to a state-of-the art

AD system ( Hupse et al., 2013 ), which was combined with sev-

ral other features commonly used in the mammography CAD lit-

rature. A random forest was subsequently used, that performs fea-

ure selection during its training stage. We think the feature set we

sed is sufficiently exhaustive to include most features commonly

sed in literature and therefore think similar conclusions hold for

ther state-of-the art CAD systems. To the best of our knowl-

dge, the Digital Database of Screening Mammography (DDSM) is

he only publicly available data set, which comprises of digitized

creen film mammograms. Since almost all screening centers have

igrated to digital mammography, we have elected not to run our

ystem on this data set, because we think the clinical relevance

s arguable. On top of this, since this entails a transfer learning

roblem, the system may require retraining to adapt to the older

odality. 

The reader study illustrates the network is not far from the ra-

iologists performance, but still substantially below the mean of

he readers, suggesting a large performance increase is still pos-

ible. We suspect that some other augmentation methods as dis-

ussed above could push the network a bit further, but expect

ore training data, when it becomes available will be the most im-

ortant factor. Also, we feel still employing some handcrafted fea-

ures that specifically target weaknesses of the CNN may be a good

trategy and may be more pragmatic and effective than adding

housands of extra samples to the training set. 
. Conclusion 

In this paper we have shown that a deep learning model in

he form of a Convolutional Neural Network (CNN) trained on a

arge data set of mammographic lesions outperforms a state-of-

he art system in Computer Aided Detection (CAD) and therefore

as great potential to advance the field of research. A major ad-

antage is that the CNN learns from data and does not rely on

omain experts, making development easier and faster. We have

hown that the addition of location information and context can

asily be added to the network and that several manually designed

eatures can give some small improvements, mostly in the form of

common sense’: obviously false negatives will no longer be con-

idered as such. On top of this, we have compared the CNN to a

roup of three experienced readers on a patch level, two of which

ere certified radiologist and have show that the human readers

nd CNN have similar performance. 
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