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No pixel-level annotations needed
A deep-learning model for cancer detection trained on a large number of scanned pathology slides and associated 
diagnosis labels enables model development without the need for pixel-level annotations.

Jeroen van der Laak, Francesco Ciompi and Geert Litjens

Recent developments in machine 
learning have resulted in algorithms 
that perform certain complex (yet 

narrow) tasks at levels that are comparable 
(or exceeding) those of experts. One such 
type of task relates to anatomic pathology: 
deep learning is suitable for the detection 
and classification of disease in scanned 
microscopic tissue sections (whole slide 
images; WSIs)1. The development and 
training of deep-learning algorithms 
for histopathology generally requires a 
large amount of WSIs that encompass the 
spectrum of patterns typical of different 
tissue components. Moreover, to construct 
algorithms that generalize well to new 
situations, it is advisable to include training 
data with as much technical variability 
as possible (such as variabilities caused 
by tissue processing and staining, and by 
slide scanning). The construction of deep-
learning models that generalize well to 
different clinical situations is hampered 
by the need for strongly labelled WSIs. 
These consist of scanned tissue sections in 
which experienced human observers have 
visually delineated a large number of areas 
containing different tissue components. For 
instance, the 400 WSIs of sentinel lymph 
nodes of patients with breast cancer used 
in the CAMELYON16 challenge included 
exhaustive annotations defining tissue 
regions with metastases2. Yet having trained 
pathologists annotate large numbers of 
cases is often infeasible (Fig. 1). Hence, 
most published work has described 

promising results on the basis of datasets 
of limited size, which has prevented the 
deep-learning models from reaching clinical 
implementation. Reporting in Nature 
Medicine, Thomas Fuchs and colleagues now 
show that training deep-learning models 
with a multiple-instance-learning (MIL) 
approach (a form of weakly supervised 
learning) by using more than 10,000 cases 
of weakly labelled WSIs — that is, labels 
describing only the presence or absence 
of disease in the WSI, rather than the 
location and extent of disease — collected 
from multiple clinical centres obviates the 
need for strongly labelled images in certain 
applications3.

Fuchs and co-authors focused on 
three applications: the detection of 
adenocarcinoma in prostate biopsies, of basal 
cell carcinoma in biopsies and excisions of 
neoplastic and non-neoplastic skin lesions, 
and of breast-cancer metastases in axillary 
lymph nodes. The authors show that, 
for these applications, the MIL approach 
achieves excellent performance (an area 
under the receiver operating characteristic 
curve (AUC) larger than 0.98 for the three 
applications), provided that a sufficient 
amount of weakly labelled images is available 
(earlier work on MIL for WSIs reached a 
performance that was clearly inferior to 
the use of strongly labelled images4). They 
conclude that more than 10,000 WSIs are 
typically required to reach performances 
comparable to those of deep-learning models 
trained with strongly labelled WSIs.

Because of the variation already present 
in Fuchs and co-authors’ WSI dataset, they 
did not use data augmentation — a widely 
used technique for artificially increasing 
variability in the training data that strongly 
increases generalizability5. However, when 
training the deep-learning model by using a 
large number of WSIs from a single centre, 
the model did not generalize well: the AUC 
dropped by 6% when the model was trained 
on images from one single centre rather 
than images from many centres, and by 3% 
when the model trained on data produced 
by one type of scanner was applied to images 
produced by another type of scanner. The 
authors show that their approach generalizes 
better than a model trained on a small 
set of fully annotated slides, yet they do 
not address how this compares to simpler 
strategies (such as colour augmentation or 
normalization) for improving generalization. 
Although the inclusion of slides from 
multiple centres relieves this problem, it 
is unclear whether the model would work 
on WSIs from centres not included in the 
training dataset. In this respect, the MIL 
approach is not different from the training 
of models with strongly labelled WSIs. Also, 
the inclusion of data from multiple centres 
is not straightforward: the authors had 
access to a high-quality and well-structured 
pathology archive; yet in most pathology 
laboratories, structured reporting is not 
common, diagnostic information is mostly 
available at the case level rather than at 
the slide level, and such information may 
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Fig. 1 | Manual pixel-level annotations are challenging to perform at scale. Diagnoses based on haematoxylin-and-eosin-stained slides (here from a biopsy of 
prostatic adenocarcinoma) can rely on small foci (rightmost image) of cancer (accounting for less than 1% of the tissue surface). px, pixels. Figure reproduced 
from ref. 3, Springer Nature America, Inc.
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contain a variety of diagnoses and even 
errors. Furthermore, for all samples of basal 
cell carcinoma a pathologist had to assess 
free-text reports in order to determine 
the slide-level labels. It remains to be seen 
whether this relatively moderate level of 
data curation for a very large number of 
cases (especially when limited information 
in reports requires a pathologist to review 
multiple slides per case) is more feasible 
than producing pixel-level annotations for a 
much smaller number of cases.

Fuchs and colleagues explored a two-
stage approach to MIL (Fig. 2). A learned 
‘tile-level’ feature representation assigns a 
tumour-probability score to every image 
tile in the WSI. A second trained classifier 
then calculates the tumour probability 
for the entire WSI on the basis of the tile-
level information. More powerful MIL 
approaches, especially those where WSI-
level classification is directly integrated with 
learning tile-level feature representations, 
may substantially reduce the size of the 
required weakly labelled dataset6. Still, 
MIL approaches are not well-suited for 
applications in which the positive fraction 
(such as a tumour) is much smaller than the 
amount of negative data, especially if this 
rate is variable between samples7. Hence, 
very small tumours may be missed because 
of such a ‘witness rate’ phenomenon. This 
may be reflected in the fact that the MIL 
approach for breast-cancer lymph-node 
metastases scored considerably lower 

(AUC = 0.965) than the current best deep-
learning model based on strong labels (best 
CAMELYON16 result, AUC = 0.996; ref. 8).

In Fuchs and colleagues’ work, the task 
(the detection of prostate cancer, basal cell 
carcinoma and lymph-node metastases) is 
relatively well-defined. How well the MIL 
approach would perform on tasks that 
are inherently more complex, such as the 
automation of Gleason grading for prostate 
cancer (a multiclass problem rather than 
a binary ‘absence or presence of disease’ 
problem) is unclear. Class boundaries 
are relatively poorly defined, and ‘label 
noise’ (arising from the incorrect labelling 
of training data) can be a big problem. 
Nevertheless, the authors’ approach is a 
significant addition to the computational-
pathology toolbox, as it relieves the burden 
of obtaining strong annotations. Largely 
removing the involvement of experts 
in algorithm training reduces costs and 
decreases the time required for data 
collection. Also, weak labels are readily 
available for many of the cases stored in 
pathology archives, and therefore collecting 
large amounts of such data is achievable, 
and the inclusion of data from a larger 
number of clinical centres can yield 
models that generalize better. Especially 
for relatively straightforward applications, 
this may result in powerful and clinically 
useful deep-learning models with enhanced 
generalizability. Moreover, the algorithm 
could be trained against an end point for 

which no clear morphological biomarker 
is known. For instance, a deep-learning 
model could be trained to predict 5-year 
cancer-free survival directly from the WSIs, 
and could thus help discover image-based 
histopathological biomarkers9. ❐
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Fig. 2 | tumour diagnosis via Mil in the absence of pixel-level annotations. The trained MIL model finds and orders the tiles according to the probability 
of tumour features, which are passed to a recurrent neural network (RNN) that integrates the information and provides a diagnosis. Figure reproduced with 
permission from ref. 3, Springer Nature America, Inc.
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