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Breakthroughs in the field of artificial intelligence (AI) have 
had a major impact on society worldwide in the past 5 years. 
In the field of medicine, and more specifically in diagnostic 

disciplines (for example, radiology and pathology), initial results 
from the application of AI to patient data are very promising1–3. 
Diagnostic disciplines often rely heavily on the recognition of pat-
terns in data, such as images, by physicians and the interpretation 
of such patterns in the wider context of the patient. However, it 
was shown that for many diagnostic tasks, reproducibility among 
physicians is less than optimal4,5. Also, as a result of the increase in 
treatment options, more accurate diagnostics are needed to meet 
the requirements of precision medicine, which may exceed the 
capabilities of human visual inspection6. Detecting and accurately 
quantifying patterns in medical data using AI could therefore aid 
diagnostic processes, making them more efficient and reproducible, 
and increasing accuracy and precision.

An area in which the use of AI is particularly appealing is in 
the analysis of histopathological tissue sections, which currently 
requires specialized doctors, pathologists, to carefully assess (some-
times large numbers of) gigapixel-sized images. Pathologists diag-
nose and grade diseases such as cancer and inflammatory diseases, 
based on a variety of tissue features (for example, disturbed tissue 
architecture, the presence or absence of specific cell characteristics 
or the presence of, for example, an abundance of inflammatory 
cells). While there is a worsening shortage of pathologists, their 
workload is increasing as a result of larger numbers of cases, and 
the requirement for more extensive diagnoses to identify the most 
optimal treatment for patients.

Using AI to analyze tissue sections is often referred to as com-
putational pathology (CPATH)7,8 (see Box 1), the current applica-
tions of which rely heavily on the use of deep neural networks 
(so-called deep learning). Research in this area began as early as 
the 1960s, with the initial application of image analysis algorithms 
to images of cells. Individual cells in blood smears could be classi-
fied into subtypes, on the basis of quantitative cell characteristics 
such as size, shape and chromatin distribution, to analyze the blood 
composition and help diagnose a range of diseases9. Early CPATH 
applications attempted to implement computational features that 
were painstakingly matched to a biological process or shape, and 
were later replaced by radiomics or pathomics approaches using 
generic feature banks of texture descriptors (that is, a quantitative  

description of the characteristics of image textures, such as  
orientation, contrast and so on)10, operating under the assump-
tion that complex classifiers could eventually find the intricate 
relationships among these features for specific classification tasks 
(e.g., ref. 11). For example, Kather et al. showed that combining 
five different types of texture descriptors resulted in a classifier 
that could recognize tumor and stroma in colorectal tissue sec-
tions with 98.6% accuracy12.

The almost complete transition from feature engineering to 
deep learning occurred for several reasons. For medical imaging, 
and thus also for CPATH, perhaps the most important reason is 
the fact that the construction of algorithms (almost) entirely by 
training, rather than by explicit programming or by using pre-
defined filters, yields powerful, hierarchical feature representa-
tions that, in most cases, outperform more traditional image 
analysis methods3. As a consequence, the need to have domain 
knowledge to achieve good results is reduced because feature 
engineering requires the definition of problem-specific features, 
whereas in deep learning the networks learn meaningful fea-
tures autonomously from the data. Automatically learning fea-
tures from the data also leads to reduced implementation time. 
In feature engineering, crafting meaningful characteristics for the 
data at hand generally requires several iterations per feature and 
sometimes lengthy and repeated discussions with pathologists to 
understand what cues are used during their diagnostic process. 
In the era of deep learning, such trajectories can be reduced to 
months, sometimes even weeks, while breaking boundaries in 
terms of diagnostic performance. Lastly, the importance of freely 
available source code for the most successful neural network 
architectures cannot be understated.

The history of CPATH before deep learning has been reviewed 
elsewhere13, as has the application of deep learning for histopathol-
ogy from a technical perspective14. Therefore, in this Review we 
provide an application-based approach to the use of deep learning 
in histopathology with an emphasis on clinical value, future devel-
opments and challenges still to overcome before true patient value is 
achieved, as well as briefly retracing the main milestones in CPATH 
from the past decade. We have limited the discussion to studies in 
which computational analysis is applied to digitized bright-field 
microscopic tissue sections in combination with selected metadata, 
as these form the vast majority of current research.
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Trends in CPATH
CPATH has moved forward substantially in the past 10 years as a 
result of strong improvements in microscopic scanning devices, 
which enable the acquisition of whole-slide images (WSIs), progress 
in the development and decreases in the cost of computing hard-
ware, and advances in AI. The field has followed a trend that was 
previously experienced by the computer vision community, which 
focuses its research on computational analysis of natural images 
(that is, real-world photographs and videos). Initial reports in 2011 
of efficiently training convolutional neural networks (CNNs), a par-
ticular type of deep learning algorithm, using graphics processing 
units (GPUs)15, led to the design of much deeper CNNs that out-
performed the state of the art (mostly using machine learning based 
on handcrafted features) in the classification of natural images. 
Specifically, in the ImageNet challenge, which required categori-
zation of one million photographs in a thousand different classes 
ranging from specific breeds of dogs to airplanes and cars, these 
new deep neural networks reduced the error rate from 25% to 4% in 
only 3 years. CPATH researchers took note of the successes of apply-
ing CNNs in computer vision, initially presenting methods that 
solely focused on the analysis of small cropped areas from WSIs, 
such as mitosis counting16. Methods that used entire WSIs fol-
lowed for applications such as breast cancer segmentation17, glioma  

classification18, non-alcoholic fatty liver disease19, assessment of 
renal transplant biopsies20 and prostate cancer detection21.

In parallel with the progression to more advanced AI models 
in histopathology, the complexity of the tasks to be solved and 
the size of publicly available datasets began to grow. In 2016, the 
CAMELYON challenge was proposed with the aim of developing 
CPATH solutions for the detection of breast cancer metastases 
in sentinel lymph nodes22. The introduction of the CAMELYON 
dataset was a game changer in the field of CPATH, as it made 
available for the first time the largest collection (n = 1,399) of fully 
manually annotated WSIs of sentinel lymph nodes of patients 
with breast cancer. Participants in the challenge had to solve two 
tasks designed to mimic routine tasks in pathology diagnostics: 
finding tumor regions in each lymph node and consequently 
predicting the presence of tumors at a WSI level. The impact of 
CAMELYON was similar in magnitude to that of ImageNet on 
the computer vision community. The large set of data and clinical 
focus of CAMELYON stimulated the creativity of both research-
ers and industry, who pushed forward the development of AI 
for metastasis detection, thereby enabling CPATH methods to 
make a leap from both academic and commercial technological 
perspectives. Furthermore, CAMELYON also attracted machine 
learning powerhouses such as Google to the field of CPATH23, 

Box 1 | Definitions

Deep learning
A machine learning approach in which algorithms are trained 
for a specific task (or set of tasks) by exposing a multilayered 
artificial neural network to (typically a large amount of) training 
data, without the need for handcrafted engineering of features to 
be extracted from the data. The resulting algorithm has learned a 
hierarchical representation of the data that is subsequently used 
for tasks such as classification, detection or segmentation. The 
term deep refers to artificial neural networks built using many 
layers, in other words a deep neural network.

Digital pathology
The digitization of the traditional diagnostic process of analyzing 
cells and tissue with a microscope via whole-slide scanners and 
computer screens.

Computational pathology
The computational analysis of digital images obtained through 
scanning slides of cells and tissues.

Radiomics/pathomics
Techniques to extract a (usually very large) set of features from 
radiological or histopathological digital images, respectively, using 
computational algorithms of data analysis. These features are 
successively used to feed (usually supervised) prediction models 
targeting clinically relevant end points, such as prognosis.

End-to-end training
In the context of machine learning models, possibly consisting of 
a pipeline with multiple steps, end-to-end training refers to the 
procedure of learning the optimal value of all parameters of a 
model simultaneously rather than sequentially (that is, one step 
at a time).

Whole-slide images
Digital images obtained by digitizing complete histopathological 
glass slides using a high-resolution scanner.

Convolutional neural networks
Deep learning approach consisting of a series of convolutional 
layers to process data (usually bi-dimensional) from input to 
output. Each layer implements the convolution operation between 
the input data and a set of filters (that is, small matrices), whose 
numerical values are automatically learned in an end-to-end 
training fashion.

Graphics processing units
Microprocessor specifically designed to process many data 
samples simultaneously, such as parts of digital images or features 
extracted from images.

Image segmentation
The operation of decomposing the semantic content of an image 
into multiple segments, where each segment contains pixels 
belonging to the same semantic category (for example, the tumor 
region).

U-Net models
Deep learning models based on two convolutional neural networks, 
one that encodes the input image into a set of features, and one 
that decodes those features to produce a segmentation output. The 
name, introduced in 2015 by Ronneberger et al.145, indicates the U 
shape that the two convolutional neural networks form, where the 
encoder and decoder are connected via skip connections.

Data augmentation
The operation of artificially modifying some properties of input 
data (for example, image contrast, orientation, color and so on) 
with the aim of feeding a computational model with multiple 
variations of the same piece of data.

Model regularization
In machine learning, indicates the process of constraining a 
model’s parameters to small values, discouraging complex models, 
therefore reducing the risk of overfitting the training data.
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contributed to establishment of several CPATH start-up compa-
nies and influenced government policy in the USA24. Today, many 
research papers are published on CPATH developments, focus-
ing on a whole array of clinical applications. These applications 
are often found to approach or even surpass the performance of 
pathologists for specific tasks. To facilitate the development of 
such applications, ever larger datasets with associated annota-
tions are required, posing challenges in terms of data collection 
and annotation production.

CPATH for clinical practice. The CAMELYON challenge provided 
a stimulus for researchers and industry to focus on the actual impact 
of CPATH applications in pathology clinical practice. Current appli-
cations include tumor detection and classification (often by sub-
type23,25–39), image segmentation40–50, cell detection and counting51–55, 
mitosis detection56–60, analysis of kidney transplant biopsies20 and 
tumor grading61–63 among others. An example of a CPATH applica-
tion for automatic tissue segmentation using a combination of U-Net 
models20, as well as the corresponding ground truth, is shown in Fig. 1. 
Figure 1a shows a zoomed-in region of a periodic acid–Schiff-stained 
kidney biopsy, in which glomeruli, tubuli, capillaries and so on can be 
recognized. In Fig. 1b, the expert annotation is shown, which is used 
to validate the output of the CPATH solution (purple, glomeruli; blue, 
proximal tubuli; orange, distal tubuli; green, atrophic tubuli; and so 
on). Figure 1c shows the output of the CPATH models, which clearly 
corresponds very well with the human annotation.

In the context of clinical practice, automating repetitive and 
time-consuming tasks such as the analysis of tissue samples obtained 
by biopsy and excised lymph nodes can have a tremendous impact 
on the optimization of the clinical workload of pathologists. Tissue 
samples from the breast, colon and cervix are taken in large num-
bers as a consequence of population screening programs, and large 
numbers of lymph nodes per patient are resected during surgery, 
resulting in large numbers of (mostly negative) slides to be checked 
by pathologists. In these situations, AI algorithms could flag suspi-
cious regions or slides for inspection or, in the future, assess cases 
autonomously.

In addition to automating current diagnostic tasks, CPATH 
methods can also be used to support pathologists with additional 
information; for example, by showing the 2-mm2 hotspots of mitotic 
cells in breast cancer WSIs that are required for tumor grading as 
advised by guidelines for treatment of patients with breast cancer 
(for example, as published by the American Society of Clinical 
Oncology)64. This approach performs similarly to pathologists and 
can reduce inter-observer variability65. Highlighting regions of 
prostate cancer using different colors to represent different Gleason 
grades4,66 and highlighting lung cancer growth patterns by adeno-
carcinoma subtype38,67 using CPATH methods have produced simi-
lar results. Furthermore, a combination of segmentation, detection 
and classification methods can enable the objective quantification of 
established biomarkers that are used in clinical practice. One exam-
ple is the assessment of tumor-infiltrating lymphocytes68, which can 
be achieved by segmenting stromal regions of a slide and detecting 
intrastromal lymphocytes by hematoxylin and eosin (H&E) stain-
ing53,69 or by immunohistochemistry (IHC)52. Using this method, 
the presence of tumor-infiltrating lymphocytes was shown to cor-
relate with recurrence and genetic mutations in lung adenocarci-
noma70. Other examples of biomarkers include those related to the 
amount of intratumoral stroma71, such as the tumor–stroma ratio72, 
which can be assessed by computing the ratio between the tumor 
and tumor-associated stroma obtained via image segmentation, and 
the quantification of programmed death-ligand 1 (PD-L1)-positive 
cells, which is used to stratify patients for immunotherapy and 
can be achieved via the detection of positive (and possibly nega-
tive) cells, by segmentation of PD-L1-positive and PD-L1-negative 
regions73 or even predicted from H&E slides74.

Large-scale datasets. Following the promising results of the early 
CPATH applications, the size of datasets has increased, leading to 
an increasing number of multicentric efforts to cope with the large 
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Fig. 1 | CPATH for tissue segmentation. A CPATH algorithm for kidney 
tissue segmentation based on CNNs has been applied to a periodic acid–
Schiff-stained section of kidney tissue. a, Original image. b, Original image 
that has been manually annotated by an expert. c, The result of processing the 
original image using a deep learning algorithm20,144. No added color indicates 
interstitium; purple indicates glomerulus; red indicates sclerotic glomerulus; 
dark blue indicates proximal tubule; orange indicates distal tubule; green 
indicates atrophic tubule; and turquoise indicates artery or arteriole.
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variability in staining, image quality, scanning characteristics and 
tissue preparation across different laboratories. One example of how 
datasets have grown is in the use of AI for prostate cancer detection, 
one method of which was developed using a dataset of 254 prostate 
tissue samples in 201621, whereas a method proposed in 2019 used a 
dataset with >24,000 prostate tissue samples75. As the scale of data-
sets grew, CPATH methods began to approach and even surpass the 
performance of pathologists4,5,76.

However, although collecting a large number of WSIs is a man-
ageable task for pathology laboratories and medical centers, collect-
ing annotations remains an obstruction to the scaling of CPATH 
algorithms. Annotations can mean both the manual annotation 
of image regions (such as the identification of regions of tissue or 
the location of specific cells types) and clinical annotations (such 
as assessment of molecular subtypes, treatment response and sur-
vival). Acquiring manual annotations of images is a tedious task 
that requires domain expertise and is typically performed by (resi-
dent) pathologists. By contrast, clinical annotations require access 
to pathology reports and electronic patient records, either from a 
hospital (to retrieve information about grades, molecular subtypes 
or treatment responses) or from a regional or national registry (to 
retrieve information about survival), and can be provided only by 
authorized clinical researchers or data managers. Clinical annota-
tion of WSIs tends to be easier to achieve than manual annotation, 
and has resulted in large datasets in several studies (for example, 
for prostate cancer75, lung cancer26 and colorectal cancer77). Still, 
building CPATH models using only clinical annotations will not 
be possible or efficient for every application in histopathology. For 
instance, if the feature that is critical for arriving at a certain diag-
nosis is present only in very small regions of the WSI, it may require 
a very large number of cases before the CPATH model has learned 
to perform the task. Therefore, manual annotations will still be 
needed, necessitating development of techniques to facilitate effi-
cient production of these annotations.

Several approaches have been proposed to address the need for 
manual annotations in large-scale datasets. One straightforward 
approach is to simply scale the number of annotators with the 
data by involving a large number of experts. This approach has the 
advantage of guaranteeing high-quality annotations, but it is very 
expensive as it involves a fairly large number of experienced physi-
cians. This solution was adopted by a study in 202078, in which 12 
senior pathologists were involved in exhaustively manually annotat-
ing >2,000 WSIs of gastric cancer; the agreement among all experts 
involved was used as a reference standard. A similar approach was 
used in the TUPAC challenge in 2016 to define a reference stan-
dard for mitosis detection by combining the opinions of a panel of 
pathologists56. An alternative approach to using pathologists is to 
assign manual annotations to a set of people with different amounts 
of expertise, ranging from medical students to junior and senior 
pathologists53,79,80. In previous studies that used this approach, 
manual annotations were crowdsourced using web-based platforms 
such as Mechanical Turk79,80. However, in all cases, manual annota-
tions were finally reviewed and approved by (resident) pathologists.

Staining techniques such as IHC, in which antibodies can be 
used to target specific types of tissue or cells, may also provide valu-
able support to manual annotations. This strategy was used to make 
manual annotations of breast cancer metastases to lymph nodes 
in the CAMELYON challenge, in which two serial sections were 
stained with cytokeratin (CK) and H&E, and CK was used to guide 
the manual annotation procedure22. This approach has the advantage 
of providing strong supervision to the annotator and avoiding false 
negatives and false positives in the annotated reference standard. 
Another useful technique is restaining, which provides an alterna-
tive to serial sections and enables the same slide to be subsequently 
stained with, for example, H&E and IHC, and the two digitized slides 
to be aligned via registration algorithms. This technique guarantees 

that exactly the same cells and tissue compartments are present in 
both slides, and that the positive marker in IHC can be transferred 
to H&E, de facto producing a strong basis for making accurate 
annotations automatically. This approach has been adopted for the 
detection of mitotic figures using phosphohistone H3 as a reference 
standard57, for the segmentation of prostate epithelium using CK as a 
reference standard81 and for the detection of epithelial cells in breast 
cancer using CK and Ki67 (ref. 82). Restaining techniques enable the 
number of cases to be scaled at relatively low cost and with only a 
minimal interaction from human experts, thus reducing variability 
due to inter-observer disagreement, which is a well-known limita-
tion in applications such as the detection of mitotic figures57.

Weakly supervised learning. Another approach to reduce the 
burden of manual annotations is to consider CPATH algorithms 
that are trained in a weakly supervised fashion. In the context of 
image segmentation, weak supervision can come in the form of 
sparse manual annotations (for example, annotation of only small 
regions using dots or scribbles, as opposed to full supervision via 
dense annotations, in which all pixels of the image are manually 
labeled)83,84. Several groups have shown that weak supervision com-
bined with advanced learning strategies in model development can 
approach the performance of fully supervised systems, particularly 
when sparse and dense annotations are combined. On the basis of 
this idea, weak supervision has been used to address several seg-
mentation and detection problems in CPATH methods43,50,60,85–87.

In weakly supervised WSI classification (for example, making a 
single prediction for the entire WSI), only a single label per image 
is available for model development, and methods based on manual 
annotations are no longer applicable. This setting is appealing in 
terms of scalability because information contained in clinical anno-
tations is often sufficient to define the image-level target (such as 
the presence of cancer in WSIs) without the need to make manual 
annotations of cancer regions. Furthermore, clinical annotations can 
often be extracted from pathology reports and health records88,89, 
opening a new avenue for automated analysis of those reports and 
for extraction of labels, with the potential to scale up to several thou-
sand cases, which would be impossible to manually annotate. As an 
example, this type of challenge was proposed as one of the tasks in 
the TUPAC competition in 2016, in which participants were asked to 
predict a proliferation score derived from clinical annotations, such 
as molecular tests, for WSIs of breast cancer, which is impossible to 
manually delineate with annotations in the WSIs56.

Technically speaking, WSI classification would not be differ-
ent from the image classification performed in computer vision, 
in which CNNs are trained end-to-end to predict the presence of 
categories in natural images using image-level labels. However, 
end-to-end approaches cannot straightforwardly be applied to WSI 
classification, mainly because gigapixel WSIs are too large in size 
and do not fit into the memory of modern GPUs. Even switching 
to central processing unit computation would not resolve this prob-
lem, as a single WSI can easily require tens of gigabytes of memory 
at full resolution. Researchers have tried to overcome this limitation 
through different methodological innovations. A simple approach 
to tackle this problem is to assume that all patches in the WSI con-
tain morphological information that correlates with the WSI-level 
label; for example, all patches extracted from a WSI that contains 
tumor also contain tumor. Despite the simplicity of this assumption, 
it can be effective for some applications26,90, although it will not work 
when rare or small objects have to be found91, such as small metas-
tases in lymph nodes. The previous assumption can be refined by 
adopting a multiple instance learning approach92, in which at least 
one small region in the image is considered to contain morphologi-
cal information that is needed to classify the image; for example, the 
presence of a single small region containing cancer is sufficient to 
label the entire WSI as containing cancer75,93,94.
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Another approach to make end-to-end training possible using 
WSIs is to directly address the large WSI size as the main limitation, 
with the aim being to make the input size smaller so that the WSI 
can be processed by modern hardware. Recent approaches based on 
this idea rely on WSI compression using neural networks95 under the 
assumption that semantic information can be kept in the compressed 
version of the entire WSI, which can then be used for downstream 
classification tasks while reducing the data size. Other approaches 
decompose the end-to-end training procedure using WSIs into 
parts and use advanced engineering techniques known as gradi-
ent checkpointing to temporarily store intermediate results96. These 
approaches make use of modern GPUs to train with very large input 
sizes, with the aim of scaling up to the use of entire WSIs as input.

In recent years, a number of CPATH methods have been pre-
sented (some of which use end-to-end learning) to further enhance 
the performance of the pathologist by providing information cur-
rently impossible to capture by sole visual inspection of histopa-
thology slides, such as prediction of response to chemotherapy or 
immunotherapy, or even future events such as recurrence or sur-
vival97–104 as well as the presence of genetic mutations95,105–110 or 
molecular subtypes30,111,112. These CPATH techniques could have a 
role in the discovery of predictive and prognostic biomarkers, as well 
as potentially being used to understand tumor growth mechanisms.

Current challenges
Although considerable progress has been made in CPATH in the 
past 5 years, both in terms of algorithm performance and the devel-
opment of novel methodologies, many challenges still exist. Some 
of these challenges, such as the lack of public datasets that are truly 
representative of clinical practice, stand in the way of true clinical 
adoption of CPATH algorithms. Other challenges such as difficul-
ties in explaining how CPATH algorithms work are, in our view, less 
of a barrier than often thought113. In this section, we highlight some 
important challenges and the work that has already been done to 
tackle these issues.

Generalizability of CPATH algorithms to clinical practice. 
Although dataset sizes for developing CPATH algorithms have 
grown substantially over the past few years, many still lack an 
important characteristic in that they are not representative of the 
type of data that is encountered in clinical practice114. These data 
have many more sources of variation than the datasets used in 
research papers. Although most work now tries to account for varia-
tions caused by different scanners or staining techniques by includ-
ing data from different laboratories, the number of laboratories 
included is typically too small for a true assessment of generalizabil-
ity115. The number of laboratories that would need to be included 
to be representative would depend on the diagnostic question and, 
up until now, this aspect of CPATH has been poorly investigated. 
Other sources of variation have not yet been taken into account in 
CPATH, such as differing patient populations between centers or 
countries, although they are starting to be considered in other fields 
such as radiology116. Such variation can cause subtle sources of bias 
in CPATH algorithms, as seen in other settings117.

These generalization issues are highlighted by the well-known 
phenomenon of CPATH algorithms performing optimally on data 
from the source(s) they were trained on, but performing (some-
times much) less well on data from other sources. For example, the 
application of a trained model for detection of prostate cancer to 
WSIs taken from the same dataset that was used for algorithm con-
struction, but that had been rescanned on a different WSI scanner, 
gave an area under the curve reduction of 2.65%, whereas model 
performance dropped by 5.84% when applied to WSIs from an 
external dataset75. Examples of performance drops in the presence 
of external test data can also be also found in several other stud-
ies61,118,119. Limited generalizability of algorithms is probably the 

single most important obstacle for wide-scale implementation of 
CPATH techniques in the clinic.

To make CPATH algorithms as robust as possible in response to 
variations that are likely to be encountered in real-world practice, it 
is pivotal to establish a training set that contains as much variation 
as possible, including data from different staining batches, scanners 
and medical centers. Additional (artificial) variability may be intro-
duced by data augmentation techniques, with a particular focus on 
color augmentation, to mimic differences in staining from different 
pathology laboratories120: image patches can be transformed before 
being used in the training process by applying random rotation, 
flipping, addition of noise, blurring and color shifting.

An alternative (or possibly complementary) approach to deal 
with variations between data sources is the normalization of images 
to a common standard118,121–124. The hypothesis is that if variability 
can be removed and all (future) target images can be translated to a 
well-defined standard (mostly in terms of color specifications), then 
even a CPATH algorithm built on a narrow set of training images 
would perform consistently well. The price that is paid for this 
approach is the need to transform every target image before apply-
ing the CPATH model, which may be computationally costly. Both 
data augmentation and image normalization are necessary requisites 
to increase generalizability of deep learning models120, and should 
therefore be considered in the development of any CPATH approach.

Another important issue to contend with is the fact that a CPATH 
algorithm will recognize only the patterns it was trained to recog-
nize. For example, if an algorithm that was trained to detect breast 
cancer metastases in lymph nodes was confronted with lymphoma, 
the outcome would be uncertain. If such an algorithm were used 
to filter out obviously negative WSIs (without lymph node metas-
tases), which do not need to be inspected by a pathologist, serious 
diseases could remain undetected. One possible solution is to train 
algorithms for all possible pathologies; however, such an approach 
may be impractical or even impossible in most cases. An alternative 
approach is the development of CNN techniques that yield, in addi-
tion to the network output, a score that expresses the certainty of 
the CNN for that specific output125,126, which would offer CNNs the 
ability to essentially state ‘I do not know’.

Validation of CPATH algorithms. Algorithm validation is cru-
cial to understand the usefulness of CPATH algorithms for broad 
applications and to collect evidence on the safety and accuracy of 
algorithms for regulatory approval. Different levels of validation can 
be used during algorithm development (Fig. 2). Typically, CPATH 
algorithms are validated in multiple ways during development. As 
part of the actual algorithm construction, the training process is 
monitored using a set of cases that are held apart from the rest of the 
dataset and are therefore not used for model training (often referred 
to as the validation set, which is usually relatively small). Deviations 
between the results obtained with the training data and the valida-
tion set may indicate overtraining and suggest that further action is 
required (for example, use additional techniques such as data aug-
mentation or model regularization, or reduce the complexity of the 
deep learning architecture).

Many CPATH studies use a fully independent set of cases (a 
test set) to subsequently assess performance of the final model. In 
most studies, these are from the same data source (so-called inter-
nal validation) and as such have characteristics that are very similar 
to the cases used for training. If the training dataset is of limited 
size, sometimes cross-validation is used rather than applying fully 
independent hold-out sets. In cross-validation, multiple models are 
trained with different non-overlapping subsets of cases for testing 
and training, and an average performance score is given. Using cases 
that were not used for model training but were held separately from 
the rest of the dataset for performance assessment is good practice 
to arrive at a first indication of how well the algorithm works, but 

Nature Medicine | VOL 27 | May 2021 | 775–784 | www.nature.com/naturemedicine 779

http://www.nature.com/naturemedicine


Review Article NaTuRe MedIcIne

should be regarded as only a first step towards a realistic assessment 
of the usefulness in clinical practice127.

A next step, which has been used in several studies4,71,75,103, is to 
validate the CPATH algorithm using an entirely separate set of cases 
from a source that was not included in the training data (known as 
external validation; Fig. 2). Such validation gives an indication of 
how well the algorithm performs in a new diagnostic situation, and 
can uncover problems with generalizability128,129. The availability of 
publicly accessible benchmark datasets5,56 may be very helpful for 
this purpose, as it allows fair comparison between different CPATH 
algorithms115. Such datasets may also support regulatory approval130. 
However, even good performance on an external dataset is not proof 
of the clinical usefulness of algorithms, and should not be regarded 
or reported as such131. Some of the hype around the promises of AI 
in the medical domain may in fact result from the overly optimistic 
interpretation of results of external validation studies. As with any 

innovation in health care, well-conducted prospective studies are 
required to provide the evidence necessary to truly understand the 
added value of CPATH deep learning algorithms and pave the way 
for clinical implementation115,131.

With the increasing autonomy of CPATH solutions, more 
rigorous clinical validation and regulatory approval132 will also 
be required. Techniques that potentially influence diagnostic 
decision-making (rather than aiming to only increase efficiency) 
may need to be investigated in randomized clinical trials, which 
are currently still very rare for AI applications133. Ideally, such tri-
als would use clinical outcomes as end points to demonstrate 
long-term effects115 and apply standardized reporting methods such 
as TRIPOD-AI134, which is currently under development.

Another important issue to consider is the quality measure that 
is applied when evaluating a CPATH algorithm—in other words, 
when is an algorithm good enough? Typically, studies in which 
CPATH algorithms aim to produce a diagnosis comparable to 
those used by a pathologist will compare the CPATH algorithm 
with scores from a panel of pathologists, often concluding that the 
algorithm may be applied in clinical practice if the performance 
is close to the average of the pathologists. However, as argued by 
Campanella and colleagues75, a clinically useful decision support 
system should ideally take into account the fact that, in a real-world 
setting, pathologists do not evaluate images as an isolated task but 
rather can opt to use IHC and consultation with colleagues as part 
of their diagnostic workup, if deemed necessary. Campanella and 
colleagues conclude that “achieving 100% sensitivity with an accept-
able false positive rate” should be the aim to achieve clinical-grade 
CPATH algorithms. Rather than defining a threshold for clinical 
usefulness, conclusions about the true clinical value of CPATH can 
be drawn only from prospective trials, which incorporate the entire 
diagnostic process, including the use of existing reporting stan-
dards115,131. Before such usefulness can be demonstrated, far-ranging 
conclusions about the impact of CPATH on diagnostics should be 
avoided, as they may lead to an overly optimistic view.

Future directions
Even though promising results for deep learning CPATH algorithms 
have been shown in many studies, it is still too early to distinguish the 
hope from the hype. Although the hope is motivated by the devel-
opment of CPATH algorithms of increasing accuracy across many 
fields in pathology that have the potential to help pathologists in 
their clinical practice, the hype often leads to the question of whether 
AI will replace pathologists. Given this question, it is important to 
realize the breadth of tasks that a pathologist performs: pathologists 
do not simply analyze a piece of tissue under a microscope; they also 
integrate information from different sources of clinical data, their 
own understanding of the disease, the diagnostic process and the 
specific circumstances of the patient, and then communicate and 
explain the outcomes of the analysis for both other clinicians and, 
increasingly, for patients. Thus, it is important to stress that patholo-
gists are not likely to be replaced with AI algorithms anytime soon. 
What could be achieved relatively soon is AI algorithms that work in 
conjunction with pathologists, rather than as stand-alone solutions, 
to remove the need for tedious, repetitive work, such as identify-
ing lymph node metastases5, or to increase the quality of diagnostic 
grading4,66. In this context, it is important to differentiate between 
most high-income countries, such as the USA or the Netherlands, 
and low- or middle-income countries, such as China or India. The 
former generally have sufficient pathologists for their current work-
load (although the issue of workloads is expected to become prob-
lematic in the near future), whereas access to pathological expertise 
is challenging and sometimes even impossible in the latter. In the 
absence of pathologists, algorithms could yield urgently needed data 
to inform diagnoses, which would be an important step forward. 
Obviously, the infrastructure around digital pathology in some  
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Fig. 2 | Validation of CPATH algorithms. A schematic representation 
of the main steps involved in the development and validation of CPATH 
algorithms using deep learning. Different levels of validation are shown  
in colored boxes vertically (validation during training, internal and  
external validation, and prospective validation/clinical trial). The 
consecutive activities in a typical deep learning workflow are shown in 
darker colored boxes, with the corresponding products of these actions 
shown in white boxes on the left. Arrows indicate which products are 
inputs for the activities.
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settings, such as rural hospitals in low- and middle-income coun-
tries, would present challenges, and it is worth noting recent initia-
tives to address this limitation by giving access to CPATH algorithms 
without the need for a full digital pathology infrastructure135.

Explainable AI. CPATH solutions based on deep learning models 
are often described as black boxes, indicating that, because of the 
nature of these systems (being trained rather than explicitly pro-
grammed), it is very difficult for humans to understand the exact 
underlying functioning of the system113. As a result, correcting cer-
tain erroneous behaviors may be more difficult, and acceptance by 
humans (as well as regulatory approval) may be hampered114. This 
problem has given rise to research on explainable AI, in which 
techniques are developed that enable better understanding of the 
functioning of deep learning models. The current state of the art 
of methods that can shed light inside the black box has been exten-
sively reviewed elsewhere136. Interestingly, the authors of that sur-
vey136 conclude that there is no consensus on the exact meaning of 
the term explainable, as it has different requirements in different 
contexts and for different stakeholders. Although techniques for 
improving the explainability of AI will support acceptance by the 
community, the emphasis that should be placed on precise under-
standing of the mechanics of the technology, rather than on the 
functioning of the system as a whole in the context in which it is 
used137, is debatable, especially when such systems are integrated into 
the clinical workflow of pathology diagnostics. Rigorous validation  
and quality assurance and checking procedures will be critical to 
prove the correct functioning of CPATH solutions, both at ini-
tial market entrance and also after future updates. This topic is 
highly relevant to regulatory bodies such as the Food and Drug 
Administration, which has recently proposed a regulatory frame-
work138 to implement a predetermined change control plan, in 
which manufacturers have to explain what aspects they intend to 
change through learning, and how the algorithm will learn and 
change while remaining safe and effective, as well as strategies to 
mitigate performance loss.

Ethics. The use of patient data and the deployment of machines that 
aid diagnostics, potentially even in a (partly) autonomous fashion, 
lead to a number of ethical concerns. The development of CPATH 
solutions requires large amounts of data (both images and associ-
ated metadata). The use of human data for health-care research and 
product development in general creates ethical and legal challenges 
that have to be addressed properly. Respecting patient privacy and 
obtaining approval for use of data are important requirements to 
comply with. Unfortunately, from a practical standpoint, these 
requirements may reduce the options for the reuse of existing data 
for AI development, and may lead to increased costs to arrive at 
the required numbers of cases. A careful balancing between privacy 
protection and the benefits of data-driven innovation is needed139 
that requires the involvement of all stakeholders140. In addition, 
the collection of data at the scale needed for CPATH development 
(thousands of cases), which can be made publicly available, compli-
cates matters even further. Aside from the danger of data breaches, 
collecting large amounts of data may enable researchers to make 
connections that were previously not possible, potentially putting 
patient privacy at risk even if data are collected in an anonymized 
manner114,139. An alternative to establishing large, multicenter data-
sets in a central location for machine learning is the application of 
so-called federated learning strategies. With federated learning, the 
procedure for training the machine learning models is adapted so 
that it can deal with data residing in separate locations, obviating 
the need to bring the data together and thereby circumventing some 
of the problems described above141,142.

In 2018, a special expert group of the European Commission 
published a set of ethics guidelines for trustworthy AI143 that detailed 

a framework to help achieve AI solutions that are lawful, ethical 
and robust. An important conclusion from the guideline is that 
“trustworthy AI is not about ticking boxes, but about continuously 
identifying and implementing requirements, evaluating solutions, 
ensuring improved outcomes throughout the AI system’s life cycle, 
and involving stakeholders in this”143. How the establishment of data 
collections may result in biases that, if used for AI development, can 
amplify injustices in society has been described extensively115,117. 
Such algorithmic bias is not directly the consequence of AI model 
development, but the wide-scale deployment of such models may 
compound “existing inequities in socioeconomic status, race, ethnic 
background, religion, gender, disability or sexual orientation”117. As 
it is not possible to recognize inequities in data collection a priori, the 
European Commission’s recommendation to continuously engage in 
discussions with all stakeholders is even more imperative143.

Conclusion
Promising results of the application of AI to histopathological 
images have provoked a large number of research studies, now 
resulting in CPATH solutions that have comparable performance 
to pathologists for several specific diagnostic tasks. In addition to 
the use of AI to conduct human expert diagnostic tasks, we have 
only begun to scratch the surface with respect to the use of AI for 
discovery of prognostic features, prediction of therapy success or 
assessment of the relation between the morphological phenotypes 
of disease and genotypes. Whereas many technical challenges have 
been overcome, clinical usefulness has not been proved yet and 
several hurdles still have to be overcome. Next to the challenge of 
collecting sufficiently large sets of annotated WSIs, prospective 
studies have to be conducted to show the true benefit of AI for 
histopathological diagnostics. Issues related to explainability, eth-
ics and regulation are also insufficiently studied and will require 
more attention in the near future. Even though the field is not fully 
matured yet, we expect CPATH to play a dominant role in the future 
of histopathology, making diagnostics more efficient and accurate, 
helping pathologists meet the requirements of an increasing num-
ber of patients and the need for more extensive and accurate histo-
pathological assessment to aid the increasing spectrum of treatment 
options for many diseases.
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