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ABSTRACT

Pharmacokinetic modeling is increasingly used in DCE-MRI high
risk breast cancer screening. Several models are available. The most
common models are the standard and extended Tofts, the shutter-
speed, and the Brix model. Each model and the meaning of its pa-
rameters is explained. It was investigated which models can be used
in a clinical setting by simulating a range of sampling rates and noise
levels representing different MRI acquisition schemes. In addition,
an investigation was performed on the errors introduced in the esti-
mates of the pharmacokinetic parameters when using a physiologi-
cally less complex model, i.e. the standard Tofts model, to fit curves
generated with more complex models. It was found that the standard
Tofts model is the only model that performs within an error mar-
gin of 20% on parameter estimates over a range of sampling rates
and noise levels. This still holds when small complex physiological
effects are present.

Index Terms— Pharmacokinetic modeling, breast cancer, sam-
pling time, DCE-MRI

1. INTRODUCTION

Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) has shown to be a valuable tool in diagnosis of breast cancer
[1]. A Gd-DTPA based contrast agent (CA) is injected and T1-
weighted scans are made over time. In addition to assessment of
morphological features the kinetic behavior of the CA uptake has
diagnostic potential [2]. However, descriptive features like signal
enhancement ratio (as a measure of washout) seem to have limited
value due to variations in patient physiology and injection proto-
col [3]. To remove these dependencies and obtain tumor-specific
parameters, pharmacokinetic models were developed [4]. Over the
past decade several models have become available for the analysis of
the concentration-time curves of DCE-MRI. These models describe
the diffusion of the CA from the blood pool into the extracellular
space; each using different assumptions and simplifications. In this
paper it is investigated if and which of these models can be used
reliably for clinical data. The most prominent problem in clinical
data acquisition when using these models is the sampling time (of-
ten 1-2 min) with which images are acquired. This sampling time
is important because of the Nyquist-Shannon sampling criterion. In
image acquisition a balance has to be found between image quality
(SNR, spatial resolution) and sampling time, thus it was investigated
if the use of certain models is restrained by this tradeoff.

2. MATERIALS AND METHODS

Common pharmacokinetic models are the standard and extended
Tofts models [5] (most used in literature); the shutter-speed model
[6] (incorporates water-exchange effects); and the Brix model [7]
(separate estimates of flow and permeability). This Brix model is
based on the exchange model by Morales and Smith [8], as opposed
to the other three models which are based on the exchange model by
Kety [8].

The Tofts models consist of two and three parameters respec-
tively. In the standard Tofts model [Eq. 1] K trans is a combined
measure of blood flow and capillary permeability (min−1), whereas
it only presents permeability in the extended model [Eq. 2] (under
the assumption of fast blood flow). In both models, ve is the volume
fraction of extracellular, extravascular space (EES) within a voxel.
The additional parameter used in the extended Tofts model is vp ,
the fraction of blood plasma within a voxel.
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Cp[t] is the concentration (mM) of CA in the blood plasma and Ct[t]
the concentration (mM) in the tissue of interest. Time t (min) is the
time that has passed since CA injection.

The shutter-speed model [Eq. 3] is different in that it also incor-
porates the effect of water exchange on the MRI signal amplitude.
Because the CA cannot enter the intracellular space (IS) it only has
a direct effect on the water protons in the EES. The other models as-
sume that the water exchange between those spaces is infinitely fast,
essentially stating that the contrast agent can influence all water. The
shutter-speed model does not use this assumption. For a thorough
derivation the reader is referred to [6]. This model introduces the
extra parameter τi (s) which is the mean time that a water proton is
in the IS. In essence this model is not a pharmacokinetic model, as it
uses the standard Tofts model to represent the pharmacokinetic part
of the equation. The shutter-speed part models the MRI effects and
thus gives R1[t] (s−1), the longitudinal relaxation rate. Time in this
model is usually expressed in seconds.
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Here, r1 is the relaxivity of the contrast agent, which is approx-
imately 3.8 (mM−1)s−1 [6]. R1[0] (s−1) and R1i [0] (s−1) are the
relaxation rates in the absence of CA for the entire tissue and the IS
respectively. They are kept constant at .67 and .69 s−1 [6]. pe is the
fractional water population of the EES (pe = .8 · ve). [6].

The Brix model [Eq. 4] has an independent measure for relative
blood flow F

r
(min−1) in addition to K trans (min−1), which repre-

sents only permeability in this model, ve and vp .

vp
dCc[t]

dt
=

F

r
(Cp[t]− Cc[t])−K trans (Cc[t]− Ce[t])

ve
dCe[t]

dt
= K trans (Cc[t]− Ce[t]) (4)

Ct = vpCp + veCe

Here r a constant fraction between arterial, venous and tissue con-
centration. For the complete derivation the reader is referred to [7].

To investigate the differences in the errors of parameter esti-
mation in clinical data, independent of the actual parameter values,
forward-backward simulations were performed. The arterial input
function (AIF) by Parker et al. [9] was used. Using latin hypercube
sampling [10], a set of parameters was selected from a predefined
range and a concentration-time curve was calculated using one of
the four models. Values ranging from 0 to 1.5 min−1 were used for
K trans and for ve values ranging from .1 to .6 [11]. For vp a range of
0 < vp ≤ 0.2[12] was found. For τi a range of 0 to 1.5 s was used
[6] and for F a range of 1 to 6 min−1 [7].

The concentration-time curve was undersampled and Gaussian
noise was added to represent concentration uncertainty due to for ex-
ample noise in the images. For the range of sampling rates and noise
levels clinical data from the University of Chicago Medical Center
was used. 23 Datasets with a high sampling rate during the initial
slope of the concentration-time curve were obtained in addition to
the regular clinical scans that have a low sampling rate (due to high
image quality constraints). The advantage of this protocol is that
morphology can be assessed using the high quality (high SNR, high
spatial resolution) images, and kinetics using the complete series. A
low sampling rate after peak enhancement has been reached (∼ 90
seconds) does not violate the Nyquist-Shannon criterion because the
latter part does not contain high frequencies. In our simulation study
the range of sampling rates is from 10 images to 50 images in the
first 90 seconds [11]. The added noise level is in multiples of 1/3
(varying between 0 and 2) times the level of uncertainty calculated
from the clinical data. This level is around 8% of the concentration
maximum in a curve, which is similar to values reported in litera-
ture [13]. This uncertainty is not only based on image noise but also
on uncertainties in T1-estimation, which is needed to convert signal
intensity to concentration.

The selected model is fitted to this curve using the downhill Sim-
plex method [14], with equalized weights for the initial and latter
part of the curve. The resulting parameter estimates can be com-
pared to the ones used to generate the concentration-time curve. The
percentage of error was defined as:

Error = 100|P
Ori
i − P Fit

i

POri
i

| (5)

Here Pi is the ith pharmacokinetic parameter.

For every combination (sampling rate + uncertainty level) and
every model 500 simulations were performed using different phar-
macokinetic parameter values. The errors were calculated and the
means and standard deviations determined for every sampling rate-
uncertainty combination.

In addition, it was also investigated what the effect of using the
standard Tofts model is when the underlying assumptions are not
true. This model was chosen because it uses the most assumptions.
This was tested with a sampling rate of 20 images in the first 90 sec-
onds and an added noise level equal of 8% of the concentration max-
imum. Concentration-time curves were simulated using either the
Brix or shutter-speed models with different values for F , vp and τi .
These curves were fitted with the standard Tofts model and the error
in K trans and ve was determined. For the standard Tofts/Brix com-
bination 3000 simulations and for the standard Tofts/shutter-speed
combination 1000 simulations were performed.

3. RESULTS

The mean and standard deviation of the errors at each combination of
sampling rate and noise level were used to create a table with con-
fidence intervals for every parameter of each model. It was found
that the error distribution was not a normal distribution (Jarque-Bera
test [15]), therefore the central limit theorem cannot be used. Cheby-
shev’s inequality [16] could still be used however, which is a worst
case measure for any distribution. A 90% confidence interval was
constructed by using the one-sided variant of this rule, which states
that the mean ± 3 standard deviations forms a 90% confidence in-
terval.

A boundary has to be defined for the error measure at which the
use of the model is rejected. In literature, values for benign and ma-
lignant tissue have been measured using the standard Tofts model
and there seems to be separation between classes [11, 17]. Parame-
ter values between those classes differ up from 20% on average, al-
though large standard deviations still cause problems in cluster sep-
aration. Here, any parameter estimation with an error confidence
interval higher than 20% was rejected.

In table 1a the results of the standard Tofts model are shown and
it can be seen that confidence intervals for parameters are accept-
able except for 10 images in 90 seconds. The extended Tofts model
(table 1c) performs well on K trans and ve for 40 and 50 images per
90 seconds, however the estimates of vp are not reliable. As this
estimate is essentially the added value of this model its use is ques-
tionable for these types of data. The shutter-speed model (table 1d)
has the same issue as the extended Tofts model in that is has good
estimates of K trans and ve , but the errors on the added extra param-
eter τi are higher than 20%, so there is no added value compared
to the standard Tofts model. The Brix model (table 1b) showed no
changes over differences in added noise level so the results shown
here are only for differences in sampling rate. What can be seen is
that the model performance is bad over all sampling rates and does
not reach acceptable error levels. For all models the sampling rate is
of greater importance in reducing errors than the added noise level,
except when sampling rates are already high (30 images per 90 sec-
onds and more).

In addition to incorporating more parameters that could be of
diagnostic value, the more complex models also reduce the number
of assumptions. As the standard Tofts model has the most assump-
tions it is illustrative to look into the effects on the error measure if
these assumptions are wrong. In figure 1ab the mean error in the es-
timates of K trans and ve are shown for simulations of concentration-
time curves with the Brix model and fitting with the standard Tofts
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(a) Average error on K trans when Brix model effects are present
(vp > 0, F ↓ 0). Values of extra parameters in the Brix model
are shown on the axes and the corresponding mean error value
is shown on the contour line
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(b) Average error on ve when Brix model effects are present
(vp > 0, F ↓ 0). Values of extra parameters in the Brix model
are shown on the axes and the corresponding mean error value
is shown on the contour line
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(c) Average error on K trans when shutter-speed model effects
are present (τi > 0). Value of τi in the shutter-speed model is
shown on the x-axis.
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(d) Average error on ve when shutter-speed model effects are
present (τi > 0). Value of τi in the shutter-speed model is
shown on the x-axis.

Fig. 1. Errors of using a physiologically simple model to model a physiologically complex process

model. It can be seen that the value of F has little influence on the
estimation of K trans and ve , the contour line density is low perpen-
dicular to the y-axis. For vp the results are different, for substantial
increases in vp the errors in parameter estimates can increase signifi-
cantly, which can be seen because the contour lines density is higher.

In figure 1c and d the results for simulating concentration-time
curves with the shutter-speed model and fitting with the standard
Tofts are shown. From these figures it can be concluded that it is
very important to know the values of τi to expect in breast cancer, its
exclusion can have a large influence on the increase in average error.

4. DISCUSSION

It can be concluded that the errors in the standard Tofts model param-
eters are low enough to be used in clinical data when the assumptions
underlying this model approximately hold. For the other models the
use in clinical settings is doubtful because demands on the sampling
time are much higher than those on the standard Tofts model, caus-
ing errors to be large for clinical values of sampling time and noise
level. In addition it can be seen that when underlying assumptions
are false, deviations from these assumptions can cause significant
errors. Of these assumptions the infinitely fast water exchange is
the most sensitive one, so more research should be focussed towards
assessing the role of this effect in DCE-MRI for breast cancer.

The simulations were performed with the AIF known. However,
in practice, this is not the case. At the moment most research uses

AIFs from either literature or estimated from a large artery. Refer-
ence tissue methods for AIF determination are quickly gaining pop-
ularity and enable quite accurate reconstruction of the AIF from the
image data itself [18]. In future research the effects of AIF determi-
nation on the errors in parameter estimation should be assessed. It
can be concluded that it is possible to acquire high temporal resolu-
tion images in the initial part of the curve in addition to high quality
images in the latter part of the curve for morphological assessment
and still fit a pharmacokinetic model successfully. This means that
radiologists do not necessarily have to choose between one or the
other. As scan time is precious, this is an important advantage.
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