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Abstract. Zonal segmentation of the prostate into the central gland and
peripheral zone is a useful tool in computer-aided detection of prostate
cancer, because occurrence and characteristics of cancer in both zones
differ substantially. In this paper we present a pattern recognition ap-
proach to segment the prostate zones. It incorporates three types of fea-
tures that can differentiate between the two zones: anatomical, intensity
and texture. It is evaluated against a multi-parametric multi-atlas based
method using 48 multi-parametric MRI studies. Three observers are used
to assess inter-observer variability and we compare our results against
the state of the art from literature. Results show a mean Dice coefficient
of 0.89 ± 0.03 for the central gland and 0.75 ± 0.07 for the peripheral
zone, compared to 0.87 ± 0.04 and 0.76 ± 0.06 in literature. Summa-
rizing, a pattern recognition approach incorporating anatomy, intensity
and texture has been shown to give good results in zonal segmentation
of the prostate.
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1 Introduction

Prostate cancer is a major health problem in the Western world, with one in
six men affected during their lifetime [1]. Multi-parametric magnetic resonance
imaging (MPMR) has been shown to play an important role in the diagnosis of
prostate cancer [2]. A typical MR exam contains T2-weighted, dynamic-contrast-
enhanced and diffusion-weighted imaging. Interpretation of MPMR prostate
studies is challenging, and therefore the use of computer-aided diagnosis tech-
niques has been investigated [3]. For correct interpretation of MPMR knowledge
about the zonal anatomy of the prostate is required, because the occurrence and
appearance of cancer is dependant on its zonal location [4]. From a radiological
point of view the prostate is usually considered to have two visible zones on
MRI, the central gland (CG) and the peripheral zone (PZ) [5]. We are exploring
options to integrate knowledge about the zonal anatomy into CAD systems. For
this automated segmentation of the zones is the first step. The availability of
zonal segmentation is also mandatory for those CAD methods in literature that
focus on the PZ only, as for example in [3].
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Although much research has been done on prostate segmentation [6,7], only
recently the first study on segmentation of the individual zones was published
by Makni et al. [8]. In their study they investigated the use of an evidential C-
means clustering (ECM) approach to cluster voxels into their respective zones.
In addition, they extended the ECM approach to incorporate the spatial relation
between voxels. Using this method they obtained good results on their data set
(0.87 ± 0.04 mean Dice coefficient for the central gland compared to a simulta-
neous truth and performance level estimation (STAPLE) obtained ground truth
[9]). To the best of the authors knowledge their paper remains the only published
paper evaluating prostate zonal segmentation.

The purpose of this paper was to investigate a pattern recognition algorithm
to segment the prostate zones. The pattern recognition approach uses several
image features with a voxel classifier to detect the zones. This is a method that
has been explored in many other segmentation problems. We compare it to a
multi-parametric multi-atlas approach which is used to simultaneously segment
the prostate and the prostate zones. Additionally, we will compare our results
to inter-observer variability and the results obtained by Makni et al.[8]

2 Methods

2.1 Multi-parametric Multi-atlas Segmentation

Multi-atlas segmentation is an accurate method for prostate segmentation, as
has been shown by Klein et al. [6] We have chosen a similar approach, but
extended it to use multi-parametric data. We evaluated the atlas method with
both majority voting and STAPLE [9] to obtain the final binary segmentation.

The registration of the atlases to the new case is performed using the elastix
software package [10]. For the registration we use local normalized mutual in-
formation as a similarity metric. We register both the T2-weighted image and
the quantitative apparent diffusion coefficient (ADC) map simultaneously. We
chose to add the ADC map to the registration because it contains additional
information on the zonal distribution within the prostate. In a previous experi-
ment we investigated the added value of the ADC in zonal segmentation and we
noticed that it improved performance. The cost function we then optimize can
be expressed as

C(Tµ; IF , IM ) =
1

∑N
i=1 ωi

N∑

i=1

ωiC(Tµ; I
i
F , I

i
M ) (1)

were C is the cost function, Tµ is the registration transformation, IF is the fixed
(the unknown case) and IM the moving image (the atlas). Furthermore, ωi is the
weight for each of the multi-parametric images i were i = 1 is the T2-weighted
image and and i = 2 is the ADC map. We chose ω to be 0.5 for both i.

The registration consists of two distinct steps. In the first step we register
using only a translation transform to align the images to the new case. The
second step is an elastic registration using a b-spline transformation. After the
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(a) T2-Weighted image (b) Apparent diffusion coefficient map

(c) Central gland observer segmenta-
tion (Red, cyan and green for observer
1,2 and 3)

(d) Peripheral zone observer segmenta-
tion (Red, cyan and green for observer
1,2 and 3)

(e) Central gland automatic segmen-
tation (Red, cyan and green for at-
las (voting), atlas (STAPLE) and
voxel classification), the STAPLE con-
structed ’true’ segmentation is over-
layed in yellow

(f) Peripheral zone automatic seg-
mentation (Red, cyan and green for
atlas (voting), atlas (STAPLE) and
voxel classification), the STAPLE con-
structed ’true’ segmentation is over-
layed in yellow

Fig. 1. Example data set with T2-W image and ADC map in a and b and segmentation
results in c, d, e and f
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registration the obtained transformation is used to transform the known binary
segmentations to the target image space. These can subsequently be used to
construct the unknown binary segmentation. Several approaches exist in litera-
ture, of which majority voting is the simplest and best known method [6]. We
compare this approach with optimizing the segmentation by using STAPLE [9].

2.2 Voxel Classification Segmentation

For the voxel classification segmentation we determined a set of features that
represent the difference between the two zones. These features can be separated
into three categories: anatomy (positional), intensity and texture.

For the anatomy features we use the information we know from the normal
prostate composition. The peripheral zone is usually situated at the dorsal side of
the prostate, getting thicker towards the apex of the prostate. We chose to model
this by developing a set of three relative position and distance features. Given
the whole prostate mask we can calculate a relative position in each direction for
each voxel, resulting in a value between 0 and 1. We calculate this feature in the
ventrodorsal direction and the craniocaudal direction. In addition, the relative
distance (also between 0 and 1) to the prostate boundary is given as a feature.

Two intensity features are included in the voxel classification step. The first
intensity feature we use is the apparent diffusion coefficient (ADC) for each
voxel, which itself should be a quantitative feature. The second intensity feature
we use is a calculated T2 value for each voxel. Using the T2 relaxation time
instead of the T2-weighted voxel values will make this feature much more robust
to changes in scan parameters. To this end we used the following signal model
equation for turbo-spin-echo sequences:

T2p = −TE

(

log e
−TE
T2m

SPD
m ST2W

p

ST2W
m SPD

p

)−1

(2)

Here T2 is the estimated T2 relaxation time, TE is the echo time for the MR pulse
sequence, S the signal intensity. The superscript PD and T2W represent either
the proton density weighted image or the T2-weighted image. The subscript p
and m denote prostate and muscle respectively. Using this equation and a region
of interest placed in a skeletal muscle we can calculate the true T2 relaxation
time for each voxel given the proton density and T2-weighted images.

The muscle ROI is automatically selected using a search method. Starting
from the bottom slice of the T2-weighted image an Otsu threshold is performed
to separate the dark areas (including the muscles) from the bright areas. We are
looking for the two muscles alongside the prostate, so we suppress the center
of the image with a rectangular block. Then a connected component analysis is
used to find individual dark components in the image. The two largest connected
components should correspond to the left and right muscle. We make sure this is
the case by investigating the shape and symmetry of the two connected compo-
nents. The muscle are less wide than long and they should have approximately
the same shape on the left and right. We mirror the left connected component
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and investigate the Jaccard index with the right connected component. The min-
imum value for width divided by the length is 0.75 and the threshold for the
Jaccard index is 0.5. The resulting connected components are eroded to ensure
that the ROI is completely in the muscle.

The third set of features consists of five texture features. The first two features
are homogeneity and correlation calculated using the co-occurrence matrix [11].
We used 16 gray value bins for the histogram and took the average over all 2D
directions. The third and fourth feature are entropy and texture strength, based
on the Neighborhood Gray-Tone Difference Matrix [12]. Here also 16 gray level
bins were used, in combination with an evaluation distance of 1. For all of these
features the kernel size was 10x10x1 voxels. The fifth feature was the local binary
pattern at each voxel [13], which was calculated over a 3x3x1 voxel neighborhood.
For this feature the images were down-sampled using Gaussian re-sampling such
that a 3x3x1 neighborhood corresponded to a 12x12x1 neighborhood.

After calculating the features a balanced training set is constructed. Hard
classification using a linear discriminant classifier is performed to obtain a bi-
nary segmentation of the central gland. To smoothen the initial boundary some
post-processing is performed. Firstly, connected component analysis is used to
select the largest connected component. Erosion and dilation are then performed
to remove small objects attached to the segmentation. Finally the edge voxels
between the central gland and the peripheral zone are selected and a thin plate
spline is fitted through these voxels. This results in our final segmentation.

3 Validation

For validation we used 48 multi-parametric MR studies with manual segmen-
tations of the whole prostate. For each case the transversal T2-weighted scan
(resolution 0.6x0.6x4 mm) and the apparent diffusion coefficient map (2x2x4
mm) were used. In addition, for the voxel classification step, the proton density
weighted image was used to calculate the T2 values. The ADC and proton den-
sity images were inspected to assess the alignment with the T2-weighted image.
If needed, they were corrected to obtain good alignment.

The ground truth was constructed by STAPLE [9] to merge the manual seg-
mentations done by three observers. The observers made manual segmentations
by indicating the zonal boundary on each T2-weighted image slice given the man-
ual whole prostate segmentation. We validated the automatic segmentations by
calculating three similarity measures: the Jaccard index (JI), the Dice similarity
coefficient (DSC) and the volume difference (VD). The Jaccard index is given

as J = |V1∩V2|
|V1∪V2| , were V1 and V2 are the automated segmentation and the STA-

PLE ground truth respectively. The Dice coefficient is similar to the Jaccard

index and can be expressed as D = 2|V1∩V2|
|V1|+|V2| . Lastly, the volume difference can

be expressed as VD = |V1| − |V2|. Validation was performed in a leave-one-out-
manner, thus the case to be segmented was removed from the set of atlases for
the atlas method and from the training data for the voxel classification.
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4 Results

In figures 2a, 2c and 2e the results of the segmentations of the central gland
are presented. An example case is also shown in figure 1. We can see that the
observers all perform well with respect to the STAPLE ground truth. For the
segmentation methods the voxel classification approach outperforms the atlas
based methods (mean DSC 0.89 ± 0.03 vs 0.80 ± 0.013 for majority voting and
0.80 ± 0.17 for STAPLE), although it is not as good as the human observers
(mean DSC’s 0.95 ± 0.06, 0.97 ± 0.05, 0.96 ± 0.06). The JI and VD (figure 2b
and figure 2c) show similar results. The VD results show that our methods in
general under-segment the central gland. If we compare our results to those in
Makni et al. [8] we perform slightly better using our voxel classification approach,
as they report a mean DSC of 0.87 ± 0.04. For the peripheral zone we see similar
results (figures 2b, 2d and 2f). Our pattern recognition approach outperforms
the atlas based method and is relatively close to the observer scores. Here the
pattern recognition approach has a mean DSC of 0.75 ± 0.07 compared to 0.82
± 0.15, 0.89 ± 0.12 and 0.86 ± 0.11 for the observers. The atlas methods both
perform poorly with respect to the peripheral zone with a mean DSC of 0.57
± 0.19 and 0.48 ± 0.22. Compared to the state of the art we perform slightly
worse, with a mean DSC of 0.76 ± 0.06 compared to our 0.75 ± 0.07.

5 Discussion

In this paper we investigated a pattern recognition approach to zonal segmen-
tation of the prostate. We compared our method to an atlas based method and
to the method published by Makni et al. Our results show that the voxel clas-
sification method outperforms the atlas based method. It also shows similar
performance compared to the method published by Makni et al. We believe the
pattern recognition approach outperforms the atlas-based method because it is
less restrictive than an atlas, which is limited to the shapes available within the
atlases. Additionally, pattern recognition allow for non-linear combination of all
features, including texture features.

This study also has limitations. A true comparison with the results from
Makni et al. is difficult, mostly due to differences in the data used, for example
in resolution. Additionally, for the atlas method we did not use the manual whole
prostate segmentations because this method segments the whole prostate and
the zones at the same time. This might cause some bias compared to the voxel
classification approach were we did use the whole prostate manual segmentation.
We did investigate using the manual whole prostate mask for the atlas method
by only evaluating the registration metric within the mask. However, this ap-
proach gave worse results than not using the whole prostate mask at all. Both
methods performed worst when the peripheral zone is very thin, then partial
volume effects and unclear boundaries between the zones make it difficult to
segment them. Finally, our voxel classification approach might be improved by
incorporating additional texture features (e.g. Gaussian or Gabor based texture
features) or by incorporating global information like prostate volume [8].



A Pattern Recognition Approach to Zonal Segmentation of the Prostate 419

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Obs 1 Obs 2 Obs 3 Atlas (V) Atlas (S) Voxel

D
ic

e 
co

ef
fic

ie
nt

(a) Dice Coefficient (CG)
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(b) Dice Coefficient (PZ)
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(c) Jaccard index (CG)
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(d) Jaccard index (PZ)
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(e) Volume difference (CG)
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(f) Volume difference (PZ)

Fig. 2. Results of the segmentation methods. The captions on the x-axes correspond
to observers 1, 2 and 3, the atlas method using majority voting, the atlas method using
STAPLE and the voxel classification approach.
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Summarizing, a new pattern recognition approach to segment the prostate
zones was presented, incorporating anatomical, intensity and texture features.
It outperforms an atlas based method, is relatively close to the inter-observer
performance and shows similar performance compared to the state of the art.
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