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Abstract. Prostate segmentation is an important and often mandatory
step for several tasks, for example volume estimation, radiotherapy plan-
ning and computer-aided detection of prostate cancer. In this paper we
evaluate a multi-atlas segmentation technique to segment the prostate
from transversal T2-weighted MR images on data from the Prostate MR
Image Segmentation Challenge (PROMISE12). Atlases are registered
using localized mutual information as a metric, after which the Selec-
tive and Iterative Method for Performance Level Estimation (SIMPLE)-
algorithm is used to merge the atlas labels and obtain the final segmen-
tation. Results obtained on the training data show good performance on
average with a median Dice coefficient 0.83.

1 Background

Segmentation of the prostate on medical images is an important step in both
clinical and image processing work flows. In the clinical setting prostate seg-
mentations are used in for example radiotherapy, but also in prostate volumetry
and calculation of diagnostically important metrics likes prostate specific antigen
(PSA) density. In image processing segmentation of the organ of choice is usually
a mandatory first step such that subsequent algorithms can focus on the region
of interest. This usually reduces both algorithm complexity and computation
time.

The complexity of segmenting the prostate on MR images is based on two
components: the inherent variability of prostate size and shape between men,
but also largely because of the MR scanning technique. MRI has a wide range of
different imaging protocols, some which have a large impact on image appearance
(for example the use of an endorectal coil). In addition, the intensity unit of MR
is not standardized, as in CT.

In current literature a wide range of different segmentation techniques is avail-
able, both automatic and interactive. Examples are active appearance/shape
models[1], multi-atlas registration [2], pattern recognition or combinations of
these methods[3]. In this paper we investigate the use of an automatic multi-atlas
segmentation algorithm to segment the prostate on transversal T2-weighted MR
images. An automatic methods was chosen because in our hospital the number
of prostate MRI’s made each week is high (up to 40) and segmenting all these
cases by hand, even with an interactive tool, is not feasible.



2 Methodology

The process of a multi-atlas algorithm consists of two distinct steps. First, the
atlases are registered to the unknown case, after which the obtained transfor-
mation is applied to the segmentations of the atlases. Second, the transformed
segmentations have to be merged to obtain a final binary segmentation of the
organ of interest. The method developed in this paper is based on the methods
presented by Klein et al.[2] and Langerak et al.[4], with adaptations to make
it suitable to this specific problem. In the following subsections we will discuss
these steps in more detail.

2.1 Atlas registration

Let the patient image to be segmented be denoted as I(x), where x is a spa-
tial location within the image. Then we are looking for a labeled image, S(x)
that contains an accurate segmentation of the prostate. The following steps are
similar in most multi-atlas based systems, a set of N labeled images is non-
rigidly registered to the unknown case I(x). The i-th image in this set is denoted
as Ai(x). After registration the obtained transformation is applied to the label
image of the atlas, Li(x).

The registration will try to maximize the similarity between I(x) and Ai(x)
by deforming the latter. In this approach we will do the registration in two steps.
First, we will rigidly align the images, which will give us a simple transformation
matrix. Second, a nonrigid registration was applied, parameterized by cubic B-
splines. These registrations were all performed in a multi-resolution manner using
3 resolution steps for both the rigid and the non-rigid registration. Downsampling
the images was performed by applying Gaussian smoothing at scales of 3, 2 and
1 mm before resampling. The nonrigid B-spline grid spacing for these resolution
was 32, 16 and 8 mm respectively. Experiments with both 300 and 2000 iterations
were performed to asses the effect of the number of iterations. The optimization
was performed using a stochatistic gradient optimization like described in [2].

Another important part of the registration procedure is the similarity metric
that is used. In this approach we used the localized mutual information metric[5].
First, let us define the mutual information[6] as:

MI(I, J,Ω) =
∑
k

∑
m

pIJ(k,m) log
pIJ(k,m)

pI(k)pJ(m)
(1)

Here pI and pJ denote the marginal intensity probabilities of two images I and J
and pIJ represents the discrete joint intensity probability. These can be estimated
from a discrete set of intensity pairs, of which the coordinates are sampled from
the continuous image volume Ω. However, an assumption of mutual information
is that the intensity probabilities do not vary over the image domain. This as-
sumption is typically violated in MR scans due to field inhomogeneities or coil
profiles. A solution is to evaluate the mutual information on several subregions



in the image. Adding the resulting per-region mutual information values then
gives us the localized mutual information:

LMI(I, J,Ω) =
1

N

∑
xj∈Ω

MI(I, J ;N (xj)) (2)

Here N (xj) is a spatial neighborhood centered around xj . The total number of
neighborhoods used is denoted as N. In this experiment we used a neighborhood
size of 50 mm3. Finally, all registrations in this paper were performed using the
Elastix package[7].

2.2 SIMPLE atlas merging

After atlas registration we have a transformed label image Li(x) for each atlas.
From these images we need to construct a single binary segmentation. The sim-
plest method would be to use a majority voting approach which can be defined
as:

lc(x) =

∑
i∈A δ[c, (Li ◦ Ti(x))]

N
(3)

S(x) = arg max
c∈C

lc(x) (4)

Here δ is the Kronecker delta function. This equation selects the most likely
class for each voxel, 0 being background and 1 being prostate. For this paper
we implemented the Selective and Iterative Method for Performance Level Esti-
mation (SIMPLE) presented by Langerak et al.[4] This iterative method tries to
optimize the final segmentation by removing badly registered atlases. The main
assumption in this method is that most atlases are registered well.

The SIMPLE process works as follows: first a baseline segmentation is con-
structed using the majority voting approach. Then we calculate the Dice co-
efficient between this baseline segmentation and all transformed label images
Li(x) of the atlases. We then remove the atlases with the worst Dice coefficient
compared to the baselines segmentation based on a threshold θ. Then a new
segmentation is constructed by weighting the remaining atlases with the Dice
coefficient and again performing the majority voting equation. These steps iter-
ate until no more atlases are removed. The resulting segmentation is considered
the final segmentation.

The threshold θ depends on the number of remaining atlases. In the beginning
we want to be careful, we do not want to throw away to many atlases at the
start because we cannot get them back later. At the end we can be a little less
strict because we have many well performing atlases left, so even the slightly less
performing atlases can be removed. The threshold is constructed as:

θ = D̄ − ασD (5)

where D̄ is the average Dice coefficient over all cases compared to the segmenta-
tion at the current iteration, σD is the standard deviation of the Dice coefficient
and α is a scalar number which is a function of the number of segmentation.
We choose α to start at 2 and then linearly decrease to 1 when we only have 10
atlases remaining.



3 Experimental Design

Our approach was evaluated using the training data provided by the PROMISE12
challenge (http://promise12.grand-challenge.org/). The training data in-
cluded a total of 50 cases from different centers, different vendors, field strengths
and acquisition protocols. All experiments where done in a leave-one-out-manner.
This means that for each segmentation we removed the image to be segmented
from the set of atlases. Additionally, we only used the data provided in the
challenge, we did not use any external data.

We decided to divide the atlases into two categories: atlases where an endorec-
tal coil is present and atlases without. Before each registration we calculated the
mutual information between the test image and the two sets. The set with the
highest average mutual information was then used to perform the segmentation.
In all cases the correct set was identified in this approach. This helps us reduce
computation time and improve results. In a real clinical setting the task of se-
lecting the correct set would be even easier, because then you could read this
from the DICOM header.

In our experiments we will use the Dice coefficient to evaluate the results
of the segmentation, as it is one of the metrics that is going to be used for the
challenge. We will evaluate the atlas segmentation approach with four different
settings:

1. 300 iterations, majority voting
2. 2000 iterations, majority voting
3. 300 iterations, SIMPLE
4. 2000 iterations, SIMPLE

As such we can evaluate whether our merging approach gives additional per-
formance and we can evaluate how many iterations are needed for a accurate
segmentation. For the segmentation of the test data in the challenge we will use
approach 4.

4 Results and Discussion

4.1 Quantitative Results

The results of our experiments are visualized in figure 1 and table 1. In these
figures we can see that the highest average and median Dice are obtained when
using both 2000 iterations and SIMPLE label merging. The resultant mean and
median Dice are then 0.78 and 0.83. We can see from the figures that in three
cases the algorithm seems to give very poor results. In 40 of the 50 cases a Dice
coefficient of above 0.7 is obtained and in 28 of the 50 cases a coefficient of above
0.8 is found. In all cases the prostate was correctly localized by the algorithm.

In three of the cases in experiment 4 the atlas segmentation performed poorly,
even though it accurately located the prostate. This was caused by the fact those
cases were not well represented by the atlases in the system.

http://promise12.grand-challenge.org/
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Fig. 1: Dice coefficients for experiments 1 through 4 visualized in box-plots. Ex-
periments 1 and 2 are using 300 registrations iterations, experiments 1 and 3 are
using majority voting for label merging instead of SIMPLE. Means are indicated
with a red cross inside the box.

Table 1: Numerical representation of the results obtained in the experiments.
Experiments 1 and 2 are using 300 registrations iterations, experiments 1 and 3
are using majority voting for label merging instead of SIMPLE. Specified from
left to right are the mean, the standard deviation, the median, the inter-quartile
range, the minimum and maximum of the Dice coefficients over all cases in the
training set

Mean STD Median IQR Min Max

Experiment 1 0.68 0.19 0.75 0.13 0.06 0.85

Experiment 2 0.71 0.14 0.76 0.15 0.18 0.86

Experiment 3 0.74 0.16 0.80 0.17 0.18 0.89

Experiment 4 0.78 0.12 0.83 0.13 0.22 0.91



4.2 Qualitative Results

In figure 2 we show both the worst and the best results from our segmentation
algorithm. As you can see, even in the worst result, localization of the prostate
was accurate, but the size of the prostate was outside of the scope of the at-
lases. In the best case we can see that we can get excellent results with this
segmentation technique

(a) Worst case result (b) Best case result

Fig. 2: Results for the worst and the best case. In red the reference segmentation
is shown and in blue the segmentation resulting from the algorithm is shown

4.3 Implementation details and efficiency

The registrations in this paper were performed with the open-source software
package Elastix[7], which is based on the Insight Toolkit (ITK, http://www.
itk.org/). The SIMPLE algorithm was implemented in MeVisLab http://

www.mevislab.de/[8]. All underlying computationally intensive code was imple-
mented in C++. SIMPLE was partly implemented in Python. The registration
was performed on a cluster of standard personal computers. For the registration
containing 300 iterations each registration took, on average, 80 seconds. For the
registrations using 2000 iterations it took, on average, around 500 seconds. The
SIMPLE algorithm takes around 45 seconds to generate the final segmentation.
When the algorithm would have been run on a single computer it would have
taken 34 minutes for the 300 iteration segmentation and 210 minutes for the
2000 iteration segmentation. However, when using the cluster each computer
does one registration so then the time it would take per segmentation would be
2 minutes for the 300 iteration case and 10 minutes for the 2000 iteration case.
More details can be found in table 2.

http://www.itk.org/
http://www.itk.org/
http://www.mevislab.de/
http://www.mevislab.de/


Table 2: Overview of the efficiency and implementation details of our algorithm

Parameter Value
A

lg
o
ri

th
m Language: C++/Python

Libraries/Packages: Elastix, Insight Toolkit, MeVisLab

GPU Optimizations: -

Multi-Threaded: No

M
a
ch

in
e CPU Clock Speed: 2.26 GHz

Cluster CPU Core Count: 25

Machine Memory: 24 GB

Memory Used During Segmentation: 200 MB (peak) during registration

T
im

e Segmentation Time (Single): 33 - 210 minutes

Segmentation Time (Cluster): 2 - 10 minutes

5 Conclusion

In this paper we evaluated an atlas segmentation system in the context of the
PROMISE12 challenge. Our results show that an atlas system is capable of accu-
rately segmenting the prostate in MR images. Additionally, the extra iterations
and the SIMPLE label merging technique result in a higher performance com-
pared to a lower number of iterations and majority voting-based label merging.

If we look more closely at the results where the atlas method did not perform
well we notice that this usually happens in cases that are not well represented in
the atlas set. For example, the worst performing case, Case23, which had a Dice
coefficient around 0.2 in all experiments. The prostate in this case had a volume
of 325 mL. This is very far from the average prostate volume in the atlases.
Specifically including atlases in the system which can cope with the extremes
in the data would solve this problem. As it is impossible to add an unlimited
number of atlases to the system, adding a second step after atlas segmentation
might also improve results, for example, by using an active shape model.

Concluding, we have shown that, when care is taken in defining the set of
atlases, a multi-atlas based method for prostate segmentation on T2-weighted
MR images gives good results.
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