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ABSTRACT

MRI has shown to have great potential in prostate cancer localization and grading, but interpreting those
exams requires expertise that is not widely available. Therefore, CAD applications are being developed to aid
radiologists in detecting prostate cancer. Existing CAD applications focus on the prostate as a whole. However,
in clinical practice transition zone cancer and peripheral zone cancer are considered to have different appearances.
In this paper we present zone-specific CAD, in addition to an atlas based segmentation technique which includes
zonal segmentation. Our CAD system consists of a detection and a classification stage. Prior to the detection
stage the prostate is segmented into two zones. After segmentation features are extracted. Subsequently a
likelihood map is generated on which local maxima detection is performed. For each local maximum a region
is segmented. In the classification stage additional shape features are calculated, after which the regions are
classified. Validation was performed on 288 data sets with MR-guided biopsy results as ground truth. Free-
response Receiver Operating Characteristic (FROC) analysis was used for statistical evaluation. The difference
between whole-prostate and zone-specific CAD was assessed using the difference between the FROCs. Our results
show that evaluating the two zones separately results in an increase in performance compared to whole-prostate
CAD. The FROC curves at .1, 1 and 3 false positives have a sensitivity of 0.0, 0.55 and 0.72 for whole-prostate and
0.08, 0.57 and 0.80 for zone-specific CAD. The FROC curve of the zone-specific CAD also showed significantly
better performance overall (p < 0.05).
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1. INTRODUCTION

Prostate cancer is the most prevalent noncutaneous cancer in men.1 MRI has shown to have great potential in
the localization and grading of this disease.2,3 However, reading prostate MRI requires substantial experience4

and is time-consuming. Computer-aided detection (CAD) applications have been developed to aid radiologists
in detecting and diagnosing cancer.5–7 Most current CAD applications focus on the prostate as a whole, how-
ever, the prostate consists of three zones of which two are clearly visible in MRI, the transition and peripheral
zone. In clinical practice transition zone and peripheral zone cancers are considered to have distinctly different
appearances,8,9 however this is not yet considered in current computer-aided detection systems. In this paper we
investigate the use of zone-specific CAD to detect prostate cancer compared to whole-prostate CAD. An impor-
tant aspect of zone-specific CAD is the segmentation of the prostate zones. An atlas-based method to segment
the prostate zones is also presented. Furthermore, we perform a feature selection experiment to investigate if
the zones are characterized by different features.

2. METHODS

2.1 Segmentation of prostate zones

The prostate zone segmentation is an atlas-based method, which follows a similar approach to the one presented
by Klein et al.13 The T2-weighted sequences of the atlases, which best represent anatomical details, are registered
to the new cases. The metric used is normalized mutual information. In our system we use 50 atlases in which
the peripheral zone and the prostate were segmented. The selection of these atlases is based on the following
criterion:

ri =
NMI(P,Ai ◦ Ti)

maxj NMI(P,Aj ◦ Tj)
(1)
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Table 1. Overview of voxel features used in the CAD system.

Name Type Description

ADC Intensity Apparent diffusion coefficient, measure for cellular density
Ktrans Intensity Pharmacokinetic parameter, related to vessel permeability
kep Intensity Pharmacokinetic parameter, related to permeability and extracellular volume

Late Wash Intensity Pharmacokinetic parameter, related to the washout of contrast agent
T2W Intensity T2-weighted voxel grey value, related to voxel T2

Homogeneity Texture
Co-occurence matrix10 based texture feature,

related to the homogeneity of the region around the voxel

Texture Strength Texture
Neighborhood Gray-Tone Difference Matrix11 based texture feature,

related to strength of texture around a voxel
ADC Blob Blob detection Multi-scale Hessian blob detection12 on ADC map
Ktrans Blob Blob detection Multi-scale Hessian blob detection on Ktrans map
kep Blob Blob detection Multi-scale Hessian blob detection on kep map

Late Wash Blob Blob detection Multi-scale Hessian blob detection on Late Wash map

Here P and A are the patient and atlas image, and T the transform resulting from the registration. NMI is the
normalized mutual information and r is used as a selection criterion, which has a value between 0 and 1. When
the selection criterion equals 1, one atlas is selected, when equals 0 all atlases are selected. In our experiments
r was set to 0.8. Atlases are selected for the prostate and for the peripheral zone separately. Equation 1 is only
evaluated within the transformed manual segmentation of the registered atlas. The transition zone segmentation
is constructed by taking the difference of the prostate and peripheral zone segmentations. An example is shown
in figure 1.

2.2 CAD system

The CAD system can be presented as a flowchart (figure 2). Firstly, the prostate is segmented into the two
different zones, the peripheral and transition zone, as discussed in the previous subsection.

Secondly, voxel features are extracted for each zone. These features are extracted from the MR images, which
consist of an apparent diffusion coefficient (ADC) map, a dynamic contrast enhanced (DCE) time series and
T2-weighted images. In addition, pharmacokinetic parameter maps were calculated from the DCE series.14,15

A full list of all features is presented in table 1.

Thirdly, the feature vector for each voxel is classified by a k-Nearest Neighbor (kNN) classifier (k =
√
N).

This results in a likelihood map per zone, which represent the likelihood that a voxel is part of a malignant

(a) Segmentation (b) Initial detection (c) CAD output

Figure 1. The zone-specific CAD pipeline in images: in the left image the segmentation results are shown with the
peripheral zone in pink and the transition zone in white. In the middle image the ground truth is shown as a white
contour on top of the voxel likelihood map, where red corresponds to high likelihood of malignancy (> 0.8), green areas
to a likelihood between 0.2 and 0.8 and transparant areas to 0 to 0.2. The right image shows the final output of the CAD
system with the lesion segmentation and region likelihood overlayed on the ground truth.
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Table 2. Overview of the region features used in the CAD system. Here 25p and 75p mean the 25th and the 75th histogram
percentile of the feature within the segmented region.

Name Type Description

ADC25p Intensity Apparent diffusion coefficient, measure for cellular density
Ktrans,75p Intensity Pharmacokinetic parameter, related to vessel permeability
kep,75p Intensity Pharmacokinetic parameter, related to permeability and extracellular volume

Late Wash25p Intensity Pharmacokinetic parameter, related to the washout of contrast agent
T2W25p Intensity T2-weighted voxel grey value, related to voxel T2

Homogeneity75p Texture
Co-occurence matrix10 based texture feature,

related to the homogeneity of the region around the voxel

Texture Strength75p Texture
Neighborhood Gray-Tone Difference Matrix11 based texture feature,

related to strength of texture around a voxel
ADC Blob75p Blob detection Multi-scale Hessian blob detection12 on ADC map
Ktrans Blob75p Blob detection Multi-scale Hessian blob detection on Ktrans map
kep Blob75p Blob detection Multi-scale Hessian blob detection on kep map

Late Wash Blob75p Blob detection Multi-scale Hessian blob detection on Late Wash map
Likelihood75p Intensity 75th percentile of the voxel likelihood within the segmented region.

Volume Shape The volume of the lesion.
Compactness Shape Compactness of the lesion, measure for irregularity of lesion shape.
Sphericity Shape Measure for how similar the lesion is to a sphere.

lesion.

Fourthly, local maxima detection is performed on the likelihood maps using a spherical window with a
diameter of 10 mm. After initial local maxima detection the local maxima which are less than 10 mm apart
are merged. This merging step replaces the initial local maxima with a new local maximum using the mean
position of the initial local maxima. These positions are weighted according to their likelihood value. The original
likelihood of the of the local maximum with the highest likelihood is propagated to this new local maximum.
This is iterated until no more merging occurs.

Fifthly, the local maxima are used to segment a candidate using a region growing and morphology based
method which has been previously applied to breast MR and lung nodule segmentation in CT,16 afterwards the
region features are calculated (Table 2).

Finally, the region feature vectors are classified using a SVM classifier for each zone. The SVM uses a radial
basis kernel and the parameters C and γ are optimized using a grid search. This results in a likelihood per
region.

3. VALIDATION

3.1 Patient data

In total 288 patients who underwent MR-guided biopsy were included in our validation, of which 121 had
prostate cancer. The other 167 patients had negative biopsies. Segmentation of cancer regions was performed by

Figure 2. Flowchart of the CAD system
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Table 3. Selected features for the peripheral and transition zones for both voxel and region classification stages. The order
of the features corresponds to the amount of times they were selected in the cross-validation. Area under the ROC curve
(Az) of the leave-one-patient-out cross-validation after each selection step is located to the right of the selected feature

Voxel Feature 1 Az Feature 2 Az Feature 3 Az Feature 4 Az Feature 5 Az

PZ ADC 0.755 kep Blob 0.815 kep 0.823 Late Wash Blob 0.826 Late Wash 0.828
TZ ADC 0.822 ADC Blob 0.846 kep 0.847 Texture Strength 0.848 Ktrans 0.848

Region Feature 1 Az Feature 2 Az Feature 3 Az Feature 4 Az Feature 5 Az

PZ Ktrans,75p 0.762 Ktrans Blob75p 0.785 Volume 0.791 Sphericity 0.797 Compactness 0.802
TZ Likelihood75p 0.754 ADC75p 0.798 Compactness 0.821 Sphericity 0.840 Volume 0.853

an image analyst based on point annotations of an experienced radiologist (20 years of experience with prostate
MR). Cancers were assigned to a zone by a radiologist. In total we found 88 transition zone cancers and 55
peripheral zone cancers for a total of 133 malignant lesions.

3.2 CAD evaluation

For CAD evaluation a leave-one-patient-out cross-validation approach was chosen. The voxel feature training
data was extracted from the segmented cancers regions. Healthy voxels were randomly sampled within each
zone which resulted in balanced training data. Region feature training data was extracted from the manual
segmentations of cancer regions and false positive regions after first stage classification. CAD performance
was evaluated using FROC curves. A CAD mark was considered a true positive when the automated region
segmentation overlapped the center of the manually segmented region, all others were considered false positives
(FPs). FPs were only considered in healthy patients. The FROC curves of the whole-prostate and zone-specific
CAD systems were statistically compared using JAFROC.17 The figure of merit used was the area under the
alternative FROC (AFROC) curve. For the whole-prostate system the whole prostate is considered as one zone,
the rest of the system is equal to the zone-specific system.

3.3 Feature Selection

To further investigate the differences between the zones a feature selection experiment was performed. The final
voxel and region training data was subjected to a sequential forward floating feature selection18 using a kNN

Figure 3. Classification results presented in an FROC curve.
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classifier (k =
√
N). Selection was performed on the basis of the area under the receiver-operating characteristic

curve and in a leave-one-patient-out cross-validation. The five features that were chosen were selected most
often, sorted on the amount of times they were selected.

4. RESULTS

4.1 CAD evaluation

The results of the CAD evaluation are presented in figure 3. The FROC curve for zone-specific CAD is at a
higher sensitivity for almost the entire range of FPs per patient. Specifically, at 0.1, 1 and 3 FPs per patient the
sensitivity is 0.08, 0.57 and 0.80 for zone-specific and 0.0, 0.55 and 0.72 for whole-prostate CAD. The analysis
using JAFROC17 shows that the difference between the FROC curves is significant (p < 0.05).

4.2 Feature Selection

Feature selection results are summarized in table 3. The table shows that different features are selected for the
peripheral and transition zone. For the voxel features we see that the ADC value is very important for both
zones. The peripheral zone classifier focusses more on the features that are related to pharmacokinetics, i.e. wash-
out, whereas the transition zone classifier focusses more on texture and initial enhancement pharmacokinetics,
i.e. Ktrans. In the region classification both zonal classifiers select all the shape based features. However, the
most important features are quite different. The peripheral zone classifier now focusses on Ktrans whereas the
transition zone classifier uses the voxel likelihood as the most important feature.

5. DISCUSSION

In this paper we have shown that using zone-specific CAD for prostate cancer detection can increase performance
over whole-prostate CAD. FROC curves show improvement at almost all false positive levels. Feature selection
further validates the use of a zone-specific system, as different features are selected for the zones at voxel and
region classification stages. Atlas-based segmentation of the zones is accurate enough to show an increase in CAD
performance compared to the whole-prostate system. Although this study shows the feasibility of a zone-specific
CAD system, there are some limitations. Improving the segmentation will reduce the false positives that occur
due to candidates being classified in the wrong zone. The segmentation also requires substantial computing
power, we use a cluster to keep segmentation time under 10 minutes, improvement of the segmentation method
should also focus on decreasing computation time. In addition, one of the powerful opportunities the binary
segmentation of the different zones provides, namely the ability to use different and more specific features for
each zone has not yet been investigated. Summarizing, zone-specific prostate cancer detection has shown to
outperform classical whole-prostate cancer detection. In addition we presented a segmentation technique for the
individual prostate zones that is accurate enough for use in CAD systems.
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