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ABSTRACT

In this paper a new cascaded classifier is introduced to separate prostate cancer and benign confounders on
MRI. Specific features to distinguish each of the benign classes will be selected in each step of the cascade, as
opposed to a single-shot classifier, which only has the opportunity to learn features common to all confounders,
or a multi-class classifier, which tries to learn all distinguishing features at once. Learning how to separate
benign confounders from prostate cancer is important because the imaging characteristics of these confounders
are poorly understood. The diagnostic uncertainty this causes leads to unnecessary biopsies and overtreatment.
We used an annotated prostatectomy data set of 31 patients with multi-parametric MRI to identify specific
features for benign prostatic hyperplasia (BPH), high-grade prostatic intraepithilial neoplasia (HGPIN), atrophy
and inflammation, which are the most common benign confounders in prostate cancer diagnosis. Using the
prostatectomy specimens allowed us to accurately map annotations on the histological slides to the MRI. The
prostatectomy slides were carefully co-registered to the corresponding MRI slices using an elastic registration
technique. We extracted texture from the T2-weighted imaging, pharmacokinetic features from the dynamic
contrast enhanced imaging and diffusion features from the diffusion-weighted imaging for each of the confounder
classes and prostate cancer. These types of features were selected because they form the mainstay of clinical
diagnosis. Relevant features for each of the classes were selected using maximum relevance minimum redundancy
feature selection, because it allows us to select features independent of the classifier used. The selected features
were then incorporated in a cascading classifier, which can focus on easier sub-tasks at each stage, leaving the
more difficult-to-separate classes for later stages. Results show that distinct features are relevant for each of the
benign classes, for example the fraction of extra-vascular, extra-cellular space in a voxel is a clear discriminator
for inflammation. Furthermore, the cascaded classifier outperforms both multi-class and one-shot classifiers in
overall accuracy: 0.76 versus 0.71 and 0.62.
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1. INTRODUCTION

One of the most difficult tasks in diagnosing prostate cancer on MRI is separation between prostate cancer and
benign confounders like atrophy, inflammation, benign prostatic hyperplasia (BPH) and high-grade prostatic
intraepithilial neoplasia (HGPIN).1,2 One reasons is the widely different image sequences obtained with MRI
and the difficulty of mentally combining these images to come to a correct diagnosis. The current PI-RADS
standard for reporting MRI does not yet offer guidelines which allow discrimination between specific confounders
and prostate cancer.3 The diagnostic uncertainty caused by the inability to discriminate certain benign diseases
from prostate cancer can lead to unnecessary biopsies and thus complications and over-treatment. Improved
understanding of the image characteristics of these confounders across the different MRI sequences (T2-weighted
(T2w), dynamic contrast enhanced (DCE) and diffusion-weighted (DWI)) might improve the PI-RADS standard
and subsequently the detection and diagnosis of prostate cancer.4 Additionally, the image characteristics can
be used to identify features which could increase the performance of computer-aided detection and diagnosis
systems for prostate cancer.5–7

An illustration of this problem can be found in Figure 1. In Figure 1a we show what happens when we
group all confounders as a single class. A linear discriminant classifier is not able to separate the cancer class



from the benign class and as such assigns every sample to the benign class, which is what happens in one-
shot classification. In Figure 1b, we show what happens when you use the same features, but only classify
atrophy versus cancer. Here the linear discriminant classifier is able to create an accurate decision boundary.
Figure 1c-e further illustrate this for the other confounding classes; when picking the right features, the classifier
can separate the individual benign confounders from cancer, whereas it cannot when we group them all the
confounders together.
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Figure 1: Figure a. shows the results for training an LDA classifier to separate all the benign confounding classes (0)
and cancer (1) at once given two features. As it is unable to discriminate the classes, it assigns every sample to class
0. The other figures show that in a cascaded setting, separating out one benign confounder per step, gives a reasonable
decision boundary given discriminative features. In figures b-e class 0 is atrophy, class 1 is cancer, class 2 is BPH, class 3
is inflammation and class 4 is HGPIN.



The types of features we use to characterize the benign confounders are based on the diagnostic guidelines
presented in.3 The T2-weighted imaging is mostly used for it’s high resolution and contrast, allowing detailed
visualization of the tissue anatomy. From clinical guidelines we know that the T2-weighted images are especially
useful to assess the texture of prostate lesions.3 Prostate cancer exhibits a so-called ’erased charcoal sign’, a
smudge-like dark texture on T2-weighted images.3 Different benign confounders might also express different
types of textures.

Diffusion weighted imaging is specifically useful for characterizing tissue at a microscopic level, enabling us
to assess traits like cell density at a macro level. In diffusion weighted imaging, several images with different
b-values are acquired. Increasing b-values mean increasing diffusion-weighting. Areas of low diffusivity tend
to appear bright on high b-value images. Furthermore, to remove protocol dependency an apparent diffusion
coefficient map is calculated, which is a roughly quantitative measure of tissue diffusivity. Prostate cancer has
a high cellular density compared to the normal glandular structure of the prostate. This results in a reduced
diffusivity in cancerous tissue and thus a high signal in high b-value images and subsequently a low apparent
diffusion coefficient values.

Finally, dynamic contrast enhanced MRI result in signal over time curves and shows the uptake of contrast
agent in tissue. This allows us to measure attributes of the tissue vasculature, like the relative fraction of extra-
vascular, extra-cellular space in each voxel and micro-vessel permeability. Prostate cancer lesions tend to have
leaky micro-vasculature, which results in fast initial enhancement and wash-out.

To be able to assess whether these identified features are useful in discriminating the different confounders and
cancer, we can integrate them into different classification strategies. Two traditional classification strategies exist
to distinguish these benign confounders and prostate cancer. One option is to use a single shot classification
approach, considering all the benign confounders as a single class and trying to differentiate this class from
prostate cancer. The second option is to use a multi-class classification approach in which each benign confounder
is a separate class. In this paper we will also investigate a third strategy: the use of a cascaded classifier to
separate the confounding classes and prostate cancer step-by-step. This is more suitable than a regular one-
shot classification or a multi-class classification approach because it sub-divides the difficult task of separating
confounders and cancer into easier sub-problems, thus circumventing issues with similar classes. Furthermore, it
allows us to perform feature selection for each problem separately.

For this paper we obtained a unique MRI/histology data set with annotations of cancer and the benign
confounding classes on the histopathologic slides. The prostatectomy slides were then carefully co-registered to
the MRI to obtain the MR regions corresponding to the different classes. Texture, pharmacokinetic and intensity
features were extracted for each of the classes, after which we used maximum relevance minimum redundancy
(mRMR) feature selection8 to identify the most important features for each class. Using this information a cas-
cading classifier which will remove each confounding class in a step-by-step approach was created. Subsequently,
the cascaded classifier was evaluated with respect to accuracy of classifying cancer and compared to single-shot
two-class and multi-class classification.

2. PREVIOUS WORK AND NOVEL CONTRIBUTIONS

Only little work has been done on accurately characterizing the appearance of different benign confounders
in prostate MRI, most likely due to difficulty of obtaining accurate annotations. Several groups have investi-
gated specific confounding classes using a single modality, for example benign prostatic hyperplasia on diffusion-
weighted imaging (Liu et al.,9 Oto et al.10). Another example is the differentiation of prostatitis using diffusion-
weighted imaging (Nagel et al.11). None of these groups have looked at all the benign confounders or all the
modalities.

There has been some previous work on computer-extracted features for the detection of prostate cancer.6

investigated the use of magnetic resonance spectroscopy in combination with T2-weighted imaging to identify
the voxels that are affected by prostate cancer. They also introduced the use of wavelet embedding to map MRS
and T2-W texture features into a common space. This work was further expanded and evaluated in.7 Niaf et
al.12 presented the use of computer-aided diagnosis in the peripheral zone of the prostate using DCE features
(similar to Vos et al.13). They confirmed the results in discriminating prostate cancer from normal regions (area



under the ROC curve (AUC)=0.89) and discriminating prostate cancer from suspicious benign regions (AUC of
0.82). Lastly, Viswanath et al.14 investigated the use of texture features to discriminate prostate cancer from
normal and benign regions. He also found different texture features were important depending on the originating
prostatic zone of the cancer.

In this paper we have several novel contributions:

1. Use of pathology annotated benign confounder classes to identify corresponding regions on the MRI

2. Identifying important imaging features per confounding class over all prostate MRI parameters

3. Improving computerized prostate cancer diagnosis using a cascaded classifier which incorporates per-stage
feature selection

3. METHODOLOGY

Annotation and co-registration of histopathology

A pathologist contoured distinct examples of each benign confounding class and prostate cancer on the histopathol-
ogy slides using the Aperio ImageScope software, if present. The pathology annotations were transferred to the
MRI by registering the whole-mount slide using a thin plate spline registration technique.14 The process, in a
step-by-step fashion, goes as follows:

1. The slice in the MRI which corresponds to the prostatectomy slide is established by an image analysis
researcher under the supervision of a radiologist by comparing landmarks on the pathology and the MRI.

2. Corresponding points are indicated on the prostate boundary for both the prostatectomy slide and the
MRI slice.

3. A b-spline transformation is calculated to move from the prostatectomy coordinate space to MRI coordinate
space.

4. The histopathology image is transformed to the MRI space using this b-spline transformation. A visual
assessment whether the registration is accurate is made.

5. The annotations of the pathologist are morphed to the MRI using this b-spline transformation.

Features and feature selection

3.0.1 Correction of intensity drift

Intensity drift is an issue that is well known in MRI.14 This means that intensities differ from scanner to scanner
and even from protocol to protocol on the same scanner. To circumvent this issue in T2-weighted images we can
calculate a (pseudo)T2-map using the transverse T2W-image and the proton density-weighted image as described
in.15 This approach uses MR signal equations and a muscle reference region of interest to reduce intensity drift
between the different studies.

3.0.2 T2-weighted imaging

For the T2-weighted texture features we calculated several often used filter types: 13 Haralick texture features
using 3 kernel sizes (3,5 and 7 voxels), Gabor texture features using 4 different angles and 3 different wavelengths
between 1mm and 6mm and Gaussian derivatives up to second order using 4 different scales between 1mm and
6mm.14 The texture features were all calculated on the (pseudo)T2-map.

Diffusion-weighted imaging

From the diffusion-weighted imaging we directly incorporate the apparent diffusion coefficient and b800 image.
Furthermore, as prostate cancer lesions tend to have a focal appearance on diffusion weighted imaging, we
implemented the multi-scale blobness filter proposed by Li et al.16 and calculated the filter using 4 scales
between 1 and 6 mm on the b800 and ADC images.



Category Feature name MR sequence Feature settings

Intensity
(Pseudo)T2-map19 T2W
ADC DWI
b-800 DWI

Texture

2D Multi-scale Gaussian Derivatives19 T2Map Up to 2nd order, σ=2.0, 2.67, 4.1 and 6.0 mm
2D Haralick texture measures14 T2Map Kernel sizes 3, 5, 7 voxels
2D Multi-angle Gabor14 T2Map Four angles: 0, π

4 , π
2 , 3π

4 , λ=1.5, 2 and 4 voxels
2D Li Multi-scale blobness16 T2Map, ADC, b800, σ= 2.0, 2.67, 4.1 and 6

Ktrans, Kep, Ve, time-to-peak,
maximum enhancement,
wash-out rate

Pharmacokinetic
Curve fitting parameters5 DCE Time-to-peak, maximum enhancement, wash-out rate
Std. Tofts PK model5 DCE Ktrans, Kep, Ve

Table 1: Table of feature and feature settings calculated on the different MR sequences and used in the different classifiers

Inflammation

HGPIN

BPH

Atrophy

Prostate cancer

Figure 2: Schematic representation of the cascade classification strategy

Dynamic contrast-enhanced imaging

Dynamic contrast-enhanced MRI also tends to suffer from scanner and protocol dependency. To remove this
dependency and extract the most useful information from these curves we implemented curve fitting and phar-
macokinetic modeling routines as presented in17,18 and.5 The temporal resolution of the DCE time series was 4
seconds. To capture characteristics on the micro-vasculature we included total of 3 curve features (time-to-peak,
washout rate and maximum enhancement)18 and 3 pharmacokinetic features (Ktrans, Kep, Ve).5 Furthermore,
as cancer also tends to have a focal appearance on DCE MRI we also calculate the Li blobness filter on the
Ktrans, Kep, Ve, maximum enhancement, time-to-peak and wash-out rate images.

Feature selection

The maximum relevance, minimum redundancy (mRMR) feature selection technique8 was used to determine
features for each of the confounding classes by splitting the data into four different sets, each representing a two-
class classification task (BPH vs. cancer, inflammation vs. cancer, HGPIN vs. cancer and atrophy vs. cancer).
This mRMR feature selection tries to maximize the mutual information between the individual features and the
class labels and minimize the mutual information between features to select the most relevant features without
redundancy. After mRMR feature selection, unique features discriminating each benign class from cancer were
identified. mRMR feature selection was selected because it tends to give good results at reasonable computation
time and does not need parameter optimization or nested cross-validation loops like for example sparse coding
or sequential forward floating feature selection.
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Figure 3: Two-class accuracies over the number of selected features for the simple two-class strategy (green), multi-class
classification (blue) and the cascade classification (red) including 95% confidence intervals

Rank Inflammation BPH

1 Ve Gauss. Deriv (o = yy , σ = 4 .1 )
2 Haralick Sum Variance (w=7) b800 intensity
3 Blobness ADC Time-to-peak
4 Gauss. Deriv (o = xx, σ = 4.1) Blobness ADC
5 Max. Enhancement Gabor (λ = 1 .5 , θ = 0 .0 )

Rank Atrophy HGPIN

1 Gauss. Deriv (o = −, σ = 2.8) Gauss. Deriv (o = xx, σ = 4.1)
2 Haralick Measure of Correlation1 (w=3) Blobness b800
3 Blobness (Pseudo)T2Map ADC intensity
4 Blobness Kep Haralick Contrast (w=3)
5 Gabor (λ = 2.0, θ = 0.0) Blobness time-to-peak

Table 2: Selected features for each of the benign classes, unique features are indicated with gray
backgrounds

Cascading classifier

The feature selection step can be used to improve the classification of unknown samples in prostate cancer and
benign disease by using a cascading classification scheme. At the start of the cascade the potential labels for a
sample consists of all benign confounder classes and prostate cancer. At each step of the cascade the classifier
attempts to separate out one type of benign disease. This is schematically shown in Figure 2. The order of
the cascade was empirically determined, however the end result was relatively robust to the order of cascade.
At each step of the cascade mRMR feature selection is used. Training data at that step consists of the benign
confounder to be detected at that stage (in step 1 inflammation), which is given class label 0 and all classes that
are upstream in the cascade (given class label 1). The training folds were balanced before feature selection. A
linear discriminant classifier is then trained with the selected features. In each step either a sample is identified
as the desired benign class and removed from further classification, or it moves on to the next stage. At the final
stage the remaining samples are either classified as atrophy or as prostate cancer.
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Figure 4: Example images of an T2-weighted MRI (a,d,g) and a H&E stained prostatectomy slide (b,e,h) and
the result of the subsequent MRI/histology registration with (c,f,i) annotations. In this example prostate cancer
is indicated in yellow, a BPH nodule in red, inflammation in blue and atrophy in green.



4. EXPERIMENTAL RESULTS AND DISCUSSION

Patient data, annotation and co-registration

For this study we included 31 patients with an MRI including T2-weighted, dynamic contrast-enhanced, diffusion-
weighted and proton density-weighted image sequences. After prostatectomy, in total 44 histological H&E stained
slides where digitized, with at least 1 slide per patient. The slides selected contained the largest tumor volume,
based on the interpretation by an experienced pathologist. Areas of prostate cancer, BPH, atrophy, inflammation
and HGPIN were subsequently annotated on each slide by one of two pathologists. The annotations made on
the histopathologic slides where transferred to the MRI using the methodology explained in subsection 3. This
resulted in a total of 68 atrophy, 25 BPH, 58 PIN, 47 inflammation and 93 prostate cancer lesions. An example
of co-registered annotations is shown in Figure 4.

Feature selection results

In Table 2, the top 5 selected features for each of the different benign vs. cancer classification tasks are presented.
Each task has a number of distinct unique features (indicated with the gray background). We also show the top
2 selected features in Table 3. We can see that all confounders have at least 3 unique features. These selected
features also have a physiological meaning, for example inflammation often results in marked vascular changes
like increased blood flow and permeability (to allow leukocytes to move to the inflamed tissue) and increased
extra-cellular, extra-vascular space due to dying (apoptotic or necrotic) cells. From Table 2 we can see that this
has been picked up by the feature selection strategy (selected features 1 and 5, Ve and maximum enhancement)
and that these features can help discriminate between inflammation and prostate cancer.

Another example is the feature selected for atrophy. Atrophy of the prostate results in a loss of the regular
structure of the glands in the prostate (reduced infolding, cytoplasm volume and presence of corpora amylacea).
Atrophy tends to be focal and looks texturally different from prostate cancer on pathology. This can also be
recovered on the MRI if we look at Table 2, where 3 out of the top 5 features are related to texture. Finally, an
excellent discriminator of atrophy versus prostate cancer would be the blobness feature on the (pseudo)T2-map,
as prostate cancer tends to have a diffuse appearance with irregular border, whereas the focal appearance of
atrophy on pathology carries over to the T2-weighted MRI.

Classification results

Next to the top 2 selected features a likelihood map for cancer detection in a confounder vs. cancer setting in
for both the single-shot classifier and the cascaded classifier was also added to Figure 3. The validation of the
cascaded classifier was performed in a five-fold patient-based cross-validation (20 repeated runs). The evaluation
is based on the overall accuracy in separating benign disease and prostate cancer on a lesion level and compared
to direct two-class classification of benign disease and prostate cancer and multi-class classification with and
without feature selection. In the multi-class classification the resulting benign classes are grouped as one benign
class after classification. The amount of features was varied between 2 and 20 in steps of 2. The results are
shown in Figure 3. The cascaded classifier outperforms the single-shot classifier and the multi-class classifier
in the overall accuracy of correctly classifying voxels as either containing cancer or not containing cancer. The
overall maximum accuracy is 76.4% when using 4 features for the cascading classifier and 63.0% and 71.0% for
the single-shot classification and the multi-class classifier at 10 and 8 features respectively. Overall accuracy is
limited because some lesions annotated on pathology ended up being only a couple of voxels on the MRI and
are indistinguishable from normal tissue.

5. CONCLUDING REMARKS AND CONTRIBUTIONS

A major issue in prostate MRI is the presence of confounding benign classes which share image characteristics
with prostate cancer. By improving the understanding of specific imaging characteristics of benign confounders
potentially the diagnosis of prostate cancer can be improved.

We presented a co-registration technique combining pathology and MRI to map annotations of these con-
founders to the MRI. This allowed us to identify features which might help in discriminating between specific
confounders and prostate cancer. Furthermore, we combined mRMR feature selection with a cascaded classifier,
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Table 3: The top 2 selected features are shown in the first two columns for each of the benign class versus cancer
classification tasks. Each row is a separate patient. The last two columns show likelihood maps for the single-shot
classification (column 3) and the cascaded classification (column 4). The overlays indicate likelihood value: transparent,
green and red are a zero, low and high value respectively between 0 and 1. The confounding class is indicated with a dark
blue contour and prostate cancer with a purple contour. The feature names can be looked up in Table 2



which can step-by-step learn features for each of the confounders, thus simplifying the classification task for the
following steps, as opposed to single-shot or multi-class classifiers, which are restricted to only learning features
common to all benign classes or having to learn all features at once.

The main results include a top 5 selected features for each of the benign classes, which is found in Table
2. These selected features can be related to the underlying pathology to achieve a better understanding of
which pathological processes cause certain image characteristics on MRI. An example here is the fraction of
extra-cellular, extra-vascular space, Ve, which is discriminative for inflammation. The results in Tables 3,2 and
Figure 3 indicate that to accurately discriminate between the different benign confounder and prostate cancer
very specific features are needed. Our classification results also show improved accuracy in classifying cancer
versus benign disease when using a cascading approach as opposed to a single-shot or multi-class classifier.

This study also has some limitations. We did not discriminate on lesion size when converting the pathology
annotations to the MRI. This resulted in some very small lesions (< 5 voxels) which might get misclassified due
to issues like partial volume effect or small co-registration errors. We also did not take into account combined
classes, i.e. sometimes areas of atrophy or cancer also show active inflammation.

In the future we would like to validate our approach on a larger cohort and experiment with more complex
classifiers for each of the steps in the cascade. Furthermore, we would like to look into a soft per-class classification
to take into account class overlap (e.g. inflammation occurring together with atrophy). Another open question
pertains to which feature selection strategy works best in combination with a cascaded classifier.
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