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Computer-Aided Detection of Prostate Cancer in MRI
Geert Litjens*, Oscar Debats, Jelle Barentsz, Nico Karssemeijer, and Henkjan Huisman

Abstract—Prostate cancer is one of the major causes of cancer
death for men in the western world. Magnetic resonance imaging
(MRI) is being increasingly used as a modality to detect prostate
cancer. Therefore, computer-aided detection of prostate cancer in
MRI images has become an active area of research. In this paper
we investigate a fully automated computer-aided detection system
which consists of two stages. In the first stage, we detect initial
candidates using multi-atlas-based prostate segmentation, voxel
feature extraction, classification and local maxima detection. The
second stage segments the candidate regions and using classifi-
cation we obtain cancer likelihoods for each candidate. Features
represent pharmacokinetic behavior, symmetry and appearance,
among others. The system is evaluated on a large consecutive
cohort of 347 patients with MR-guided biopsy as the reference
standard. This set contained 165 patients with cancer and 182 pa-
tients without prostate cancer. Performance evaluation is based on
lesion-based free-response receiver operating characteristic curve
and patient-based receiver operating characteristic analysis. The
system is also compared to the prospective clinical performance of
radiologists. Results show a sensitivity of 0.42, 0.75, and 0.89 at 0.1,
1, and 10 false positives per normal case. In clinical workflow the
system could potentially be used to improve the sensitivity of the
radiologist. At the high specificity reading setting, which is typical
in screening situations, the system does not perform significantly
different from the radiologist and could be used as an independent
second reader instead of a second radiologist. Furthermore, the
system has potential in a first-reader setting.

Index Terms—Computer-aided detection, image analysis, ma-
chine learning, magnetic resonance imaging, prostate cancer.

I. INTRODUCTION

P ROSTATE cancer is one of the major causes of cancer
death for men in the Western world [1]. Due to the

increased ageing of the general population the incidence of
prostate cancer is steadily rising [1]. Current clinical practice
for the diagnosis of prostate cancer is to perform a transrectal
ultrasound (TRUS) biopsy, which usually is performed due to
a positive prostate specific antigen (PSA) blood test. A large
screening trial using PSA and TRUS has shown that is possible
to reduce prostate cancer mortality by 20%–30% [2]. However,
these studies have also shown that PSA testing in combination
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with TRUS biopsies has a relatively low specificity. Addition-
ally, cancers are often undergraded in TRUS biopsies [3]. These
problems lead to overdiagnosis and overtreatment of patients
and are prohibiting screening for prostate cancer.
MRI is increasingly used to diagnose prostate cancer as it

has improved sensitivity and specificity over PSA and TRUS
[4]. Currently, magnetic resonance imaging (MRI) is most often
used as a second-line modality after repeat negative TRUS biop-
sies. One of the reasonsMRI has not yet progressed to a first line
modality for prostate cancer diagnosis is that it requires sub-
stantial expertise from the radiologist to read prostate MRI and
such expertise is not widely available. Additionally, due to the
large number of 3-D images, reading prostate MR is quite time
consuming.
Automated computer-aided detection and diagnosis (CAD)

of prostate cancer could help reduce both of these problems and
open the door to prostate cancer screening using MRI. In the
past several other areas have seen successful CAD applications,
such as mammography [5] and CT colonography [6]. In the last
decade several researchers have investigated the use of these
techniques for prostate MRI. Therefore, computer-aided detec-
tion and diagnosis of prostate cancer is becoming an active field
of research [7]–[10].
Chan et al. [7] were the first to implement a multi-parametric

CAD system for the diagnosis of prostate cancer. In their
approach they used line-scan diffusion, T2 and T2-weighted
images in combination with an SVM classifier to identify
predefined areas of the peripheral zone of the prostate for
the presence of prostate cancer. Langer et al. [8] included
dynamic-contrast enhanced images and pharmacokinetic pa-
rameter maps as extra features to a CAD system for prostate
peripheral zone cancer. They evaluated their system in prede-
fined regions of interest, but on a per voxel basis. Tiwari et al.
[9] investigated the use of magnetic resonance spectroscopy in
combination with T2-weighted imaging to identify the voxels
that are affected by prostate cancer. They also introduced the
use of wavelet embedding to map MRS and T2-W texture
features into a common space. This work was further expanded
and evaluated in [11]. Niaf et al. [12] presented the use of
computer-aided diagnosis in the peripheral zone of the prostate
(similar to Vos et al. [13]. They confirmed the results in dis-
criminating prostate cancer from normal regions (area under
the ROC curve (AUC) ) and discriminating prostate
cancer from suspicious benign regions (AUC of 0.82). This
is a limited CAD method as it is constrained to predefined
regions of interest in only the peripheral zone. Firjani et al. [14]
investigated the use of computer-aided detection in single-pa-
rameter MRI using diffusion weighted imaging (DWI) imaging
with transrectal ultrasound guided biopsies as ground truth.
They included registration of different b-values to obtain a less
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Fig. 1. Flowchart showing the different steps of the computer-aided detection system.

motion sensitive apparent diffusion coefficient map. Lastly, Vos
et al. [10] recently implemented a two-stage computer-aided
detection system for prostate cancer using an initial blob de-
tection approach combined with a candidate segmentation and
classification using statistical region features.
In this paper, we investigate a fully automated computer-

aided detection system including a novel combination of seg-
mentation, voxel classification, candidate extraction and can-
didate classification, which expands on the work published in
[15]. Other novel aspects include a voxel classification stage
in combination with a candidate classification stage and inclu-
sion of symmetry, local contrast and anatomical features like
peripheral zone likelihood. Feature design was based on the
standardized guidelines for reading prostate MR, PI-RADS, and
include texture, pharmacokinetic, shape and anatomy, among
others [16]. Furthermore, to the best of the authors’ knowledge
this is the first prostate MRI CAD system that is evaluated on a
per-patient basis and compared to the prospective performance
of radiologists. The system was validated on a large cohort of
347 patients using per-region FROC and per-patient ROC to
show the value of a two stage approach incorporating both voxel
and candidate classification.

II. MATERIALS AND METHODS

A. MRI Data

In our hospital, we collected a total of 165 consecutive
studies with prostate cancer (187 lesions) and 183 cases
without prostate cancer on which to evaluate our CAD-system
for a total of 348 studies of 347 patients.
Each MR study was read and reported by or under the su-

pervision of an expert radiologist (Barentsz), with more than
20 years of experience in prostate MR. The radiologist indi-
cated areas of suspicion with a score per modality using a point
marker. If an area was considered likely for cancer a biopsy was
performed. All biopsies were performed under MR-guidance
and confirmation scans of the biopsy needle in situ were made
to confirm accurate localization. Biopsy specimen were subse-
quently graded by a pathologist and these results were used as
ground truth.
All studies included T2-weighted (T2W), proton den-

sity-weighted (PD-W), dynamic contrast enhanced (DCE), and
diffusion-weighted (DW) imaging. It is currently established
clinical consensus that prostate cancer should be diagnosed by
T2-weighted imaging with at least two functional modalities
(from DWI, DCE, and spectroscopic imaging) [4], [16]. The
images were acquired on two different types of Siemens 3T
MR scanners, the MAGNETOM Trio and Skyra. T2-weighted
images were acquired using a turbo spin echo sequence and had
a resolution of around 0.5 mm in plane and a slice thickness of
3.6 mm. The DCE time series was acquired using a 3-D turbo
flash gradient echo sequence with a resolution of around 1.5

mm in-plane, a slice thickness of 4 mm and a temporal resolu-
tion of 3.5 s. The proton density weighted image was acquired
prior to the DCE time series using the same sequence with
different echo and repetition times and a different flip angle.
Finally, the DWI series were acquired with a single-shot echo
planar imaging sequence with a resolution of 2 mm in-plane
and 3.6 mm slice thickness and with diffusion-encoding gra-
dients in three directions. Three b-values were acquired (50,
400, and 800), and subsequently, the ADC map was calculated
by the scanner software. All images were acquired without an
endorectal coil, as per the PI-RADS guidelines for acquisition
of prostate MRI [16]. Although an endorectal coil would allow
for further improved resolution of the images, the added value
is considered negligible compared to added patient comfort
when only using a pelvic phased array coil. The transversal
T2W image, the PD-W image, the entire DCE time series
and from the DWI the apparent diffusion coefficient map and
the b800-image were used in this study. These images were
chosen because they are explicitly incorporated in the PI-RADS
standard, except the PD-W image, which was added purely for
feature calculation purposes.

B. Overview of the CAD Pipeline

The pipeline of the CAD system is visualized schematically
in Fig. 1 and follows a two stage approach.
The first (detection) stage consists of segmentation of the

prostate on the transversal T2-weighted image, extraction of
voxel features from the image volumes, classification of the
voxels and candidate selection. The second (diagnosis) stage
consists of candidate segmentation, candidate feature extraction
and candidate classification. Each of the steps will be described
in more detail in the corresponding subsections.

C. Segmentation

The segmentation of the prostate is required to reduce the
complexity of the detection task for the classifiers in the later
stages. In our system we use an atlas based segmentation ap-
proach similar to the one presented in [17], using the atlas se-
lection mechanism presented in [18], named SIMPLE (selective
and iterative method for performance level estimation). Let the
image to be segmented be denoted as , where is a spa-
tial location within the image. A labeled image, has to be
determined. The following steps are similar in most multi-atlas
based systems. A set of manually labeled images is non-
rigidly registered to the unknown case . The th atlas in
this set is denoted as , where each consists of the
atlas image and the label image: . After
registration of the atlas image the obtained transformation

is applied to the label image of the atlas, .
An important part of the registration procedure is the simi-

larity metric that is used. In this approach we used the local-
ized mutual information metric [19]. After atlas registration we
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Fig. 2. Example results for the CAD system at different stages for different patients. The color bar corresponds to the likelihood of cancer in the likelihood map
and the region segmentation. (a) Prostate segmentation result. (b) Likelihood map after voxel classification. (c) Region classification result.

TABLE I
OVERVIEW OF VOXEL FEATURES USED IN THE CAD SYSTEM

have a transformed label image for each atlas. We
use the SIMPLE method, presented by Langerak et al. [18], to
combine these label images into one final segmentation. Ex-
ample results are shown in Fig. 2. This algorithm competed
in the prostate MR image segmentation (PROMISE12) chal-
lenge (http://promise12.grand-challenge.org), where it obtained
a ninth place out of 12. Overall segmentation results were still
reasonably good, with a median Dice’s coefficient of 0.83.

D. Voxel Features

After prostate segmentation we calculated voxel features
from the image volumes. The types of features can be cate-
gorized in intensity, pharmacokinetic, texture, blobness, and
anatomical features. A complete overview of the voxel features
is given in Table I, implementation details are given in the
corresponding subsections.
1) Intensity: One of the major issues in image analysis

for MRI is the absence of a standardized signal intensity, like
Hounsfield units in CT. This usually means that an algorithm
will give different results as scanners, sequences or even
sequence parameters are changed. To mitigate this issue we
developed several algorithms to standardize signal intensity
in the different MR modalities. First, for the T2-weighted
imaging a T2-estimate map is generated by using the MR signal
equation, the proton density image and a reference tissue.

This process was automated and is explained in more detail
in [20]. This map was added as a voxel feature in addition
to the original transversal T2-weighted image. Second, the
MR scanner software automatically calculates the apparent
diffusion coefficient map from the diffusion-weighted images,
by fitting a mono-exponential function to the signal decay
across the different b-values. Furthermore, studies have shown
that the highest b-value image has additional diagnostic value,
therefore, the b800 image was also added as a feature.
2) Anatomical: For the anatomical features we used the rel-

ative distance to the prostate boundary

(1)

(2)

where is the position of a voxel, is the Euclidean distance
operator, is the set of prostate voxels, and the set of prostate
boundary voxels.
Additionally, we also use relative position features in ,

and directions. The relative position features are defined as

(3)
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where is the position of a voxel and is the image axis,
either or , and the set of prostate voxels. Both the
relative distance and the relative position features are calcu-
lated with respect to the prostate mask obtained through the
multi-atlas method. Finally, we also implemented a peripheral
zone probability feature, which gives a likelihood per voxel
that it belongs to the peripheral zone. This feature uses a pat-
tern recognition framework incorporating intensity, texture and
anatomical features. This results in a likelihood for each voxel
within a prostate mask of belonging to either the peripheral
zone or the central gland. More implementation details of this
filter can be found in [20]. This feature is important because
we know from clinical practice that prostate cancer appear-
ance can differ substantially between the peripheral zone and
the central gland [16].
3) Pharmacokinetic: In the clinic it is common practice to

use the DCE time curve to diagnose prostate cancer [16]. The
approach used is described as the curve type method, were the
radiologist looks at the curve and assesses two characteristics
based on the first, last, and peak enhancement time points [16].
These characteristics are whether there is fast initial enhance-
ment and if there is persistent enhancement, an enhancement
plateau or wash-out. Slow initial, persistent enhancement (curve
type I) or slow initial, constant enhancement (curve type II) are
associated with normal and benign findings whereas fast initial
enhancement combined with washout are indicative for malig-
nancy (curve type III).
The traditional analysis is incorporated in our CAD system by

using a curve fitting-technique to fit, per voxel, a bi-exponential
curve to the time data, as presented in [22]. Of these curve pa-
rameters we incorporated the parameter tau (which corresponds
to time-to-peak of the enhancement curve) and the parameter
LateWash (which corresponds to the slope of the last part of
the curve). There are two major problems with only using this
type of analysis. First, the assessment of the curve is scanner
and patient dependent, e.g., different protocols or patient anx-
iety (which increases blood flow). Second, not all information
present in the curve is used. To counter these disadvantages
pharmacokinetic modeling of the contrast agent concentrations
has been proposed and applied in breast, brain, and prostate
MRI [13], [23]. We implemented the standard Tofts pharma-
cokinetic model [24] including an automated reference tissue
method to estimate the arterial input function, as proposed in
[13], [22]. This model provides us with three parameter maps for
the DCE time series. The parameters represent the permeability
of the micro-vasculature, , the fraction of extracellular,
extravascular space, and the quotient of the two, . Due to
fast and sloppy vessel construction and tightly packed cells in
a cancerous region it is expected that and will differ
between cancerous and normal/benign tissue.
4) Texture: Most cancers show textural distortions in

T2-weighted images [16], [25]. To capture these characteristics
in features we use a Gaussian texture bank. For the Gaussian
feature bank we used five different scales, from 2 to 8 mm
exponentially and derivatives up to the second order. This scale
range was selected to encompass the typical size ranges of
lesions in prostate MRI (between 5 and 20 mm in diameter)
[26]–[28]. Due to the large slice thickness the features were

calculated on a slice-by-slice basis. This results in a total of 30
Gaussian texture features.
5) Blobness: Prostate cancer tends to appear as a focal,

blob-like lesion in diffusion-weighted and dynamic contrast
enhanced MRI. This characteristic has been previously used to
detect prostate cancer [10]. There are many different blobness
measures, we chose to incorporate the blobness-filter presented
by Li et al. [21] because this filter incorporates both a shape
term and a blobness strength term. The blobness feature was
calculated with scales ranging from 2 to 8 mm, with five
different, exponentially increasing scales. Again, this range
encompasses the size of most lesions encountered in prostate
MRI [26]–[28]. The maximum (bright blobs) or minimum
(dark blobs) value of the blobness output across scales at each
voxel was used as the final blobness measure. Blobness was
calculated on the ADC, tau and LateWash images (dark blobs),
and on the Ktrans and Kep images (bright blobs).

E. Voxel Classification

After feature calculation a voxel classification is performed,
which results in a likelihood between 0 and 1 per voxel, 0 in-
dicating no suspicion of prostate cancer and 1 indicating very
high suspicion of prostate cancer. In this step, we experimented
with three different classifiers, a linear discriminant classifier,
a GentleBoost classifier [29] (with regression stumps as weak
learners) and a RandomForest-classifier with regression trees
[30]. Both the GentleBoost and the RandomForest classifiers
are very robust to overtraining [29], [30], thus parameter opti-
mization is usually not needed [9]. Therefore, both the Random-
Forest and the GentleBoost classifier were left at the default set-
tings. For the RandomForest the default settings are that a min-
imum of 0.1% of all samples in the dataset is required to split a
tree node, the square root of the number of features is used as the
number of active variables at each node and the maximum tree
depth was equal to the number of features. For both classifiers
the number of weak learners has to be set, where, as explained
in [29] and [30], adding more weak learners does not result in
over-fitting, but produces a limiting value of the generalization
error. We did a small pilot experiment using two fold cross-vali-
dation to roughly determine the amount of weak learners needed
to achieve the minimal generalization error. This resulted in
around 100 regression stumps for the GentleBoost classifier and
300 trees for the RandomForest classifier.
We compared the performance of the different classifiers

using ROC-analysis. The output of the classifier with the
highest area under the ROC curve was used for further analysis.
An example of a obtained likelihood map is shown in Fig. 2.

F. Candidate Selection and Segmentation

After voxel classification a likelihood map is obtained, in-
dicating per voxel the likelihood that it contains cancer. On
this likelihood-map we perform local maxima detection using
a spherical window with a diameter of 10 mm, which is about
the average lesion size in prostate MRI [26]–[28]. After initial
local maxima detection the local maxima which are less than 10
mm apart are merged. This merging step leaves only the local
maximum with the highest probability within the 10 mm range.
This is iterated until no more merging occurs.
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For each of the local maxima obtained in the previous step, a
region segmentation will be performed. The SmartOpening-al-
gorithm, which has had successful applications in both nodule
segmentation in CT and cancer segmentation in breast MRI,
was used [31], [32]. The segmentation was performed on the
likelihood-map itself instead of one of the original clinical im-
ages. The main reason for this is that lesions can show slight
deviations in size and even position between the different di-
agnostic images. The likelihood map is essentially a combina-
tion of all original images through a classification step and thus
should give a good approximation of the lesion extent across
all diagnostic images. After initial segmentation, regions which
overlapped for more than 50% were merged.

G. Candidate Features

After candidate segmentation and merging new candidate
features can be calculated given the original feature images
and the candidate segmentation. These can be categorized as:
statistical (voxel feature statistics), local contrast, symmetry,
and shape features.
1) Statistical: Statistical candidate features are calculated

within the candidate segmentation. Statistics includemean, stan-
dard deviation and histogram percentiles. On all the initial voxel
features we calculate the mean and standard deviation of the
feature values within the candidate segmentation. Additionally,
for the ADC and pharmacokinetic features we calculate either
the 25th or 75th percentiles, depending on whether low or high
values are indicative of malignancy. The percentiles are calcu-
lated because 60% of all tumors are heterogeneous [27], with a
more aggressive hot spot within the tumor that for example has
lower ADC values. In addition, we also calculated the mean,
standard deviation and 75th percentile of the voxel likelihood.
2) Local Contrast: In previous work we have shown that re-

lating tumor feature values to those of surrounding normal tissue
can lead to improved characterization of tumor aggressiveness
[33]. We incorporate this knowledge into our CAD system by
using local contrast candidate features. The local contrast fea-
ture is calculated by dilating the original segmentation and then
subtracting the original to obtain a rim of tissue outside the can-
didate. The local contrast is then obtained by taking the quotient
of the average candidate and the average rim intensities. We use
a 2-D kernel with a size of 3 mm for dilation. The local contrast
feature is calculated on the b800, ADC, Ktrans, Kep, tau, and
LateWash voxel feature maps. Additionally, it was also calcu-
lated on the voxel likelihood map.
3) Symmetry: Anormal prostate has a distinct symmetric ap-

pearance in the transversal plane. Radiologist have reported that
symmetry in prostate MRI can be important to detect prostate
cancer [16]. The CAD system incorporates this knowledge by
including a symmetry feature. We take the relative position of a
candidate along the x-axis in the transversal plane andmirror it to
the other side of the prostate (e.g., if the relative position is 0.25
we map the mirrored candidate segmentation to a relative posi-
tion of 0.75). Thenwe calculate themean intensity value for both
themirrored and the original candidate segmentation and take the
quotient. The result is used as the symmetry feature. We calcu-
late this symmetry feature on the b800, ADC, Ktrans, Kep, tau,
LateWash voxel feature maps and the voxel likelihood map.

4) Shape: The last candidate feature set are the shape fea-
tures. Prostate lesions tend to be somewhat spherical and com-
pact. During initial stages of development, most false positives
we encountered were due to small segmentation errors, large
nonspherical areas of low ADC due to extensive benign pro-
static hyperplasia and small artifacts caused by the scanner. By
incorporating shape features like volume, sphericity and com-
pactness the classifier can easily remove these false positives
from the data. The sphericity is calculated as the ratio of the
volume of a sphere having the same diameter as the maximum
bounding box length of the candidate segmentation and the total
volume of the candidate segmentation. The compactness is cal-
culated as the candidate segmentation volume divided by the
volume of the bounding box of the candidate segmentation.

H. Candidate Classification

After candidate feature extraction the final classification
is performed. Three different classifiers were tried to obtain
the best possible performance, a linear discriminant classifier,
a GentleBoost classifier (with regression stumps as weak
learners) and a RandomForest classifier with regression trees.
The settings we used at this stage were the same as in the voxel
classification stage. After classification we obtain a likelihood
between 0 and 1 per candidate, 0 indicating no prostate cancer
and 1 indicating definite prostate cancer. Examples of a final
candidate result can be seen in Fig. 2

I. Relative Feature and MR Sequence Importance in Voxel
and Candidate Classification

To establish the importance of individual features andMR se-
quences to the overall classification results, we performed two
experiments at both the voxel and candidate levels. First, using
the selected classifiers, we established the classification per-
formance of each feature individually based on area under the
ROC curve (using leave-one-patient-out crossvalidation). Sub-
sequently, we repeated this experiment on a per-sequence basis,
i.e., only include features calculated using one MR sequence,
for example only using T2-texture features or only using DWI
features.

J. Validation

1) Training Data: For the voxel classification stage voxels in
a 10mmarea around the radiologist annotationwere extracted as
prostate cancer samples. This area was truncated by the prostate
mask, to ensure no voxels outside the prostate were included in
the training set. Furthermore, we only selected voxels which had
specific feature characteristics: the ADC value had to be below
the median of the area and the pharmacokinetic features had to
be above the median of the area. We know from clinical expe-
rience and literature that these are usually good characteristics
of prostate cancer and reduces the chance of sampling normal
voxels into the malignant class. For the normal class we ran-
domly sample within the prostate mask of normal patients. The
resultant voxel dataset is used to train the voxel classifiers.
In the candidate classification stage we extract candidate fea-

tures from the initially detected true positives and the false posi-
tives in normal patients after initial classification. The definition
of true and false positives is given in the next section.
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2) FROC Analysis: The detection performance of the CAD
system is evaluated using free-response receiver operating char-
acteristic curve (FROC) analysis. FROC analysis provides the
number of false positives per normal patient for a given sensi-
tivity (i.e., the percentage of cancer detected). The occurrence
of false positives in normal patients is one of the most relevant
problems in prostate cancer diagnosis onMRI as each false pos-
itive in a normal patient has the potential to lead to an unneces-
sary biopsy, and thus patient morbidity and healthcare cost. As
such, the number of false positives should be as low as possible
at reasonable sensitivity. FROC analysis can be used both after
the initial and final stage, which also allows us to assess the per-
formance gained by the second stage of the CAD system. For
evaluation of the first stage the criterion for a true positive is
that a local maximum should be within 10 mm of the marker
annotated by the radiologist. 10 mm corresponds to the average
lesions size [26]–[28]. For the final classification a true positive
is defined as a candidate segmentation which has a center of
gravity within 10 mm of the marker. Each candidate segmenta-
tion is only allowed to correspond to one annotation. This rule
is chosen to make sure the system does not have a bias toward
large segmentations, i.e., a candidate segmentation covering the
entire prostate would cover all lesions, but would generally not
result in an accurate localization. We evaluated the system both
for the detection of all tumors and the detection of high-grade tu-
mors (first or secondary Gleason component ). In the second
setting a hit on a low-grade tumor is not considered a false posi-
tive, the reasoning for this is that in principle low-grade prostate
cancer will not require treatment, but it is not detrimental for the
patient to detect it.
3) ROC Analysis and Comparison to the Radiologists: In

addition to FROC analysis we also performed patient based re-
ceiver operating characteristic (ROC) analysis both after the ini-
tial voxel classification and after the candidate classification.
This is relevant evaluation in a screening setting, where the first
thing a clinician wants to know is whether a patient has cancer
or not (i.e., the localization aspect captured by the FROC anal-
ysis in the previous section is of secondary importance). A CAD
system could play a role here by separating out the easy from
the difficult to diagnose patients, which could improve the effi-
ciency of the radiologist. In each patient, the voxel (voxel stage)
or candidate (candidate stage) with the highest likelihood is used
as the patient score, both for patients with prostate cancer and
normal patients. In this setup the CAD system can stratify pa-
tient as requiring a biopsy or not requiring a biopsy.
Additionally, we compare the system to the overall radiolo-

gist performance on this data set. In total 10 radiologists read
cases in our patient cohort, each case was read prospectively
by one radiologist. Therefore, we can compare the system per-
formance to the actual prospective clinical performance in our
hospital.

III. RESULTS

1) Classifier Comparison and Selection: Bootstrapping and
ROC analysis were used to compare classifiers for both CAD
stages: the voxel classification stage and the candidate classi-
fication stage. For both stages we performed a leave-one-pa-
tient-out cross-validation on the training data. Results are shown

Fig. 3. Classifier comparison using leave-one-patient-out ROC analysis at the
voxel and candidate levels. 95% confidence intervals estimated using bootstrap-
ping are shown as transparent areas around the mean curves. Input for the com-
parison at the voxel level are voxel in a cancerous areas and voxels in the prostate
of normal patients. Input for the comparisson at the candidate level is true and
false positives after initial voxel classification. (a) Voxel level. (b) Candidate
level.

Fig. 4. ROC analysis on a per-patient level, comparison of the CAD system
after the voxel stage and after the candidate stage to the prospective radiologist
performance. The raw ROC curve is shown as the solid line and the mean boot-
strapped curve as a dashed line. The 95% confidence intervals obtained using
bootstrapping are shown as transparent areas around the mean bootstrapped
curve. The radiologist ROC curve and confidence intervals are only plotted for
the four PIRADS thresholds. (a) Cancer versus normal/benign. (b) HG cancer
versus normal/benign.

in Fig. 3. Statistical significance testing was performed using the
area under the ROC curve. Both the RandomForest and the Gen-
tleboost classifier performed significantly better than the linear
discriminant classifier in both stages . For the voxel
classification stage the random forest classifier also performed
significantly better than the Gentleboost classifier .
Further analysis of the system was performed using the Ran-
domForest classifier for the voxel stage. Although the mean area
under curve was higher for the RandomForest classifier than the
Gentleboost classifier in the candidate stage, this was not sig-
nificantly different. Because the mean area under the curve was
slightly higher we chose to use the RandomForest classifier for
the candidate stage.
2) Relative Feature and MR Sequence Importance: The

rankings for each feature and each MR sequence based on there
individual classification performance using the RFC classifer
are shown in Tables II(a) and II(b). Although the ADC intensity
is the single most important feature in the voxel stage, overall
the features calculated using the T2W MR sequence are the
most important in voxel classification. Additionally, we can
see from the performance of individual features in the voxel
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TABLE II
RESULTS FOR RELATIVE FEATURE AND MODALITY IMPORTANCE EXPERIMENT BASED ON LEAVE-ONE-PATIENT-OUT CROSS VALIDATION.
(A) RELATIVE IMPORTANCE BASED ON AUC ON A PER-VOXEL BASIS. (B) RELATIVE IMPORTANCE ON AUC ON A PER-CANDIDATE BASIS

Fig. 5. FROC analysis of the results of the CAD system. Number of false positives per normal case is shown on a logarithmic scale. The raw FROC curve is
shown as the solid line and the mean bootstrapped curve as a dashed line. The 95% confidence intervals obtained using bootstrapping are shown as transparent areas
around the mean bootstrapped curve. (a) Results after voxel classification and results after candidate classification compared. Adding the candidate classification
step shows a marked improvement over just voxel classification. (b) Results of the candidate classification step for cancer versus normal/benign and high-grade
cancer versus normal/benign.

stage that features from each of the MR sequences are selected,
showing the importance of using multi-parametric MRI over
single-parameter MRI. Finally, the performance per modality is
much lower than the overall per-voxel performance (0.76 area
under the ROC curve for just T2W and 0.89 when combining
all MR sequences).
Inspecting Table II(b), it is interesting to see that especially

heterogeneity of feature values within the candidates have high
individual performance. Additionally, in the candidate stage,
DWI is by far the best performing individual sequence. Fur-
thermore, the initial voxel likelihood plays an important part in
classification in the candidate stage. Finally, in this stage fea-
tures from the DWI imaging are almost as good as using fea-
tures from the combination of the three MR sequences.
3) FROC Analysis: The FROC curves for detection of

prostate cancer and the detection of high-grade prostate cancer
are shown in Fig. 5. The results show that adding a candidate
classification step reduced the number of false positives at
constant sensitivity, e.g., a reduction from approximately 7
to 1.5 false positives per normal case at a sensitivity of 80%.
At similar false positive levels, sensitivities were significantly
higher after the candidate classification step, e.g., after voxel
classification, at 1 false positive per normal case, a sensitivity
of 55% is reached, whereas the sensitivity is 75% after the
candidate stage . Additionally, the partial area
under the curve between 0.1 to 10 false positives per normal
case is also significantly higher (7.11 versus 8.74, ).
Furthermore, in Fig. 5(b) the FROC curves are shown for
the detection of high-grade cancer versus normal/benign in

addition to the detection of all cancer versus normal/benign.
Here, at one false positive per normal case the sensitivity for
detecting high-grade cancer is 0.82 and 0.75 for all cancer. This
difference is not significant. Additionally, the partial area under
the curve between 0.1 and 10 false positives per normal case
is not significantly different (8.74 versus 9.06). The maximum
sensitivity reached by the system in cancer versus normal/be-
nign case is 0.94 and 0.97 for the high-grade cancer versus
normal/benign case. This is caused by 11 and 5 false negatives
in those cases respectively. Examples of a true positive and a
false positive are shown in Fig. 7. An example of two false
negatives is shown in Fig. 6.
4) ROCAnalysis: The ROC curves for classifying patients as

either having prostate cancer or not having prostate cancer are
shown in Fig. 4. Again we also show the improved performance
obtained by adding a candidate classification step compared to
just using a voxel classification step. In these figures the CAD
system is also compared to the clinical diagnosis made by the
radiologist for each patient on the basis of the PIRADS system.
A radiologist scores each suspicious lesion on a scale from 1
to 5, 1 meaning definitely not cancer and 5 meaning definitely
cancer. The patient score is than obtained by taking the highest
PIRADS score. For the radiologist only the confidence intervals
for the four actual PIRADS thresholds are used for evaluation,
as the ROC curve is not well defined at other positions due to
the low number of thresholds.
The addition of the candidate classification shows a marked

improvement when evaluating on a per-patient basis, with an
increase in AUC from 0.722 to 0.81 and from 0.73
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Fig. 6. Examples of false negatives (FN). The location of the false negatives is indicated with the red circle. False negative 1 is caused by segmentation errors.
In figure a the prostate segmentation is indicated in yellow. The segmentation most likely fails due to the fact that the prostate is growing into the bladder, as can
be seen in b. False negative 2 is caused by our evaluation criterion, the region segmentation [indicated in yellow in (c) and (d)] is quite large and therefore the
mark (the red sphere) and the center of gravity of the region segmentation are more than 10 mm apart. (a) FN 1 (Transversal). (b) FN 1 (Sagittal). (c) FN 2 (ADC).
(d) FN 2 (DCE Ktrans).

Fig. 7. Examples of a true positive (a)–(b) and a false positive (c)–(d) from the CAD system. (a) True positive (T2W). (b) True positive (ADC). (c) False positive
(T2W). (d) False positive (ADC).

to 0.83 for high-grade cancer versus normal/be-
nign. At a high specificity (left part of the ROC curve) of 0.88
(PIRADS score 5), there is no significant difference between
the radiologist and the CAD system ( for detection
of cancer, for detection of high-grade cancer). At
the other thresholds the radiologist performance is significantly
better than the CAD system . The radiologist is sig-
nificantly better at every PI-RADS threshold compared to CAD
system when only using the voxel stage.

IV. DISCUSSION

A CAD system which detects prostate cancer in MRI images
was presented in this paper. The performance of the system was
evaluated on a large consecutive set of patients, withMR-guided
biopsy as a reference standard. Quantitatively, the area under
the ROC curve for classifying patients was 0.81. If we inves-
tigate the performance from an FROC perspective, at 1 false
positive per image we obtain a sensitivity of 0.75 for detecting
any cancer lesion and 0.83 for detecting a high-grade cancer le-
sion. Compared to the radiologist, the system shows no signif-
icant differences in performance at high specificity (Fig. 4, left
part of the curve). However, at lower specificity the radiologist
performs significantly better . Furthermore, in both
Figs. 4 and 5 we show that adding a candidate stage in addition
to a voxel stage significantly improves performances on both a
per-lesion (sensitivity at 1 false positive per normal patient in-
creases from 0.55 to 0.75) and per-patient level (area under the
ROC curve increases from 0.72 to 0.81).
There are several potential use-cases for this system. The

system could be used as an independent second observer in a

screening setting, where radiologists read at high specificity as
the vast majority of screened patients is healthy; a high per-
centage of false positives would be too costly (due to subse-
quent over-diagnosis and over-treatment). Double reading in
screening is quite typical and the CAD system in this paper
could potentially replace one of the radiologists, thus cutting
work in half. We do note that the system was not yet evaluated
in an observer study in such a setting.
A second potential use-case is as a triage test (first-reader set-

ting). Here the CAD system would be used at high sensitivity,
before any radiologist will look at the images. If we look at
the potential of our CAD system in such a setting, at an oper-
ating point with a sensitivity of 96% (similar to the radiologists,
[34]), the specificity of the CAD system is between 15%–40%.
This could indicate that between 15%–40% of all studies would
potentially require no human intervention, which could reduce
the workload of the radiologist substantially. Additionally, the
system can of course be used in both settings simultaneously.
If we compare our system to the current state-of-the-art, two

types of systems can be distinguished: systems which perform
only a voxel-based analysis and systems which perform both
a voxel-based analysis and a candidate evaluation step. For the
first type of system, Tiwari et al. have shown the best voxel clas-
sification performance using a system with manual prostate seg-
mentation and MR spectroscopy. They obtain an average area
under the curve of 0.89, which is similar to our results obtained
during the classifier comparison at the voxel level Fig. 6, av-
erage area under the curve of 0.889). However, we show in our
study set that a voxel classification performance of 0.89 only
results in a per-lesion classification performance of 0.55 sen-
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sitivity at 1 false positive per normal patient and a per-patient
area under the ROC curve of 0.72. Our addition of a subsequent
candidate classification step increases the performance of the
system by a significant amount (0.75 sensitivity at 1 false posi-
tive per normal patient , figure 8 and 0.81 area under
the ROC curve for a per-patient analysis . However,
as Tiwari et al. did not extend their system to a per-region and
per-patient evaluation we cannot directly compare this. We do
have to note that this comparison has not been made on the same
data set, which is unfortunate, but there is no open availability
of a significant number of multi-parametric prostate MRIs. We
are currently considering organizing a prostate cancer detection
challenge similar to other grand challenges in medical image
analysis to allow our algorithm to fairly compete against others.
For the second type of system incorporating a candidate detec-
tion and a candidate classification step we can compare our re-
sults to Vos et al. [10], which is the only other two-stage system.
Instead of a voxel classification step, they use a blob detector
to obtain the candidates. At 0.1, 1 and 10 false positives per
normal case they obtained a sensitivity of 0.15, 0.48, and 0.89
where we obtain a sensitivity of 0.42, 0.75, and 0.89. Especially
at the lower false positive rates we obtain a substantially better
performance.
The use of multi-parametric MRI over single-parameter

MRI is already part of clinical guidelines [16]. In this study
we investigated the performance of individual features and
MR sequences in both the voxel and candidate stages of our
CAD system. Especially in the voxel stage, the combined
interpretation of all three MR sequences, T2-weighted imaging,
diffusion-weighted imaging and dynamic contrast-enhanced
imaging shows a large improvement over using any single MR
sequence (highest performing single sequences AUC is 0.76,
combination is 0.89), and all play about an equal role. In the
subsequent candidate stage there is a preference for DWI over
DCE over T2W. This experiment also showed that the indi-
vidual performance of features was relatively low compared
to the combination of all features (best performing feature in
the voxel stage had a AUC of 0.66, whereas the overall voxel
stage AUC was 0.89). These observations confirm clinical
practice. A limitation of this study is the fact that the ROC
evaluation is positively biased toward the radiologist. Although
the reference standard for cancerous regions is well defined
by the MR-guided biopsy specimens, for most of the normal
regions we have to depend on the opinion of the radiologist.
While we incorporated only data with either negative biopsy
results or very low PI-RADS scores (1 and 2) there is still
the risk that some areas we deem normal are actually prostate
cancer. Furthermore, in the evaluation and the comparison to
the radiologist, it may well be that the radiologists did have
some false negatives. Recently, prospective preliminary results
were published by Thompson et al. [34] They found that the
sensitivity for radiologists for detecting high-grade prostate
cancer was 96%. Another limitation is the fact that although the
multi-parametric MRI is implicitly registered (all sequences
are acquired in one go, without the patient leaving the scanner),
registration errors between the different sequences could occur
due to patient movement. This was mostly circumvented in
our data by 1) not using an endorectal coil, which significantly

improves patient comfort and as such reduces patient move-
ment, and 2) by administering Buscopan prior to the MRI to
reduce bowel movement, and 3) using multi-scale features
(Gaussian texture, blobness) where exact voxel alignment
is less important. Further improvement could be achieved
by implementing a registration algorithm for prostate MRI.
However, this is currently an untackled problem, which is
nontrivial to solve. Registration in multi-parametric prostate
MRI would require within-modality registration (different
time-points in DCE-MRI, different b-values in DWI-MRI)
and between-modality registration (where the registration has
to cope with large resolution and appearance differences).
Nonetheless, registration certainly has potential value and is an
interesting topic for future work in this area.
The false negatives in our system are mostly caused by

prostate segmentation errors. Of the 11 false negatives after
candidate classification, six are caused by the prostate segmen-
tation missing the lesion entirely or partly. Most of these issues
can be solved by incorporating a segmentation method which
is more robust to strange prostate shapes. An example is shown
in Fig. 6. Although the prostate segmentation algorithm is a
candidate for improvement, it is missing only six out of 183
lesions (or 3% of total sensitivity), which is still a reasonable
result. For the remaining false negatives, in four cases the lesion
was detected, but the candidate segmentations were so large
that the center of the candidate segmentation and the lesion
marker were more than 10 mm apart, thus failing our criterion
for a true positive. This can happen because in big lesions the
radiologist did not always put the point annotation at the center
of the lesion. For one false negative the area was not identified
by the voxel classification and the local maxima detection and
thus lost to the second part of the system.
Summarizing, a fully automated CAD system was developed

for the detection of prostate cancer in MRI images. Perfor-
mance evaluation shows that it outperforms the state-of-the-art,
although the comparison has its limitations due to different
evaluation data sets. The system is not significantly different
from radiologist performance at high specificity. Therefore, we
believe it to be a potentially valuable tool to aid radiologists, in
both first- and second-reader settings.
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