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a b s t r a c t

Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as
a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to
accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algo-
rithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms
on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR
images, image appearance, resolution and the presence of artifacts are affected by differences in scanners
and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image
Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmen-
tation methods on the basis of performance and robustness. In this work we will discuss the initial results
of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the
MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included,
with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic
research groups and industry participated. Algorithms showed a wide variety in methods and implemen-
tation, including active appearance models, atlas registration and level sets. Evaluation was performed
using boundary and volume based metrics which were combined into a single score relating the metrics
to human expert performance. The winners of the challenge where the algorithms by teams Imorphics
and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better
than all other algorithms in the challenge (p < 0:05) and had an efficient implementation with a run time
of 8 min and 3 s per case respectively. Overall, active appearance model based approaches seemed to out-
perform other approaches like multi-atlas registration, both on accuracy and computation time. Although
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average algorithm performance was good to excellent and the Imorphics algorithm outperformed the
second observer on average, we showed that algorithm combination might lead to further improvement,
indicating that optimal performance for prostate segmentation is not yet obtained. All results are avail-
able online at http://promise12.grand-challenge.org/.

� 2013 Elsevier B.V. All rights reserved.
Table 1
Details of the acquisition protocols for the different centers. Each center supplied 25
T2-weighted MR images of the prostate.

Center Field
strength
(T)

Endorectal
coil

Resolution (in-plane/
through-plane in mm)

Manufacturer

HK 1.5 Yes 0.625/3.6 Siemens
BIDMC 3 Yes 0.25/2.2–3 GE
UCL 1.5 and 3 No 0.325–0.625/3–3.6 Siemens
RUNMC 3 No 0.5–0.75/3.6–4.0 Siemens
1. Introduction

Prostate MRI image segmentation has been an area of intense
research due to the increased use of MRI as a modality for the clin-
ical workup of prostate cancer, e.g. diagnosis and treatment plan-
ning (Tanimoto et al., 2007; Kitajima et al., 2010; Villeirs et al.,
2011; Hambrock et al., 2012; Hoeks et al., 2013). Segmentation is
useful for various tasks: to accurately localize prostate boundaries
for radiotherapy (Pasquier et al., 2007), perform volume estimation
to track disease progression (Toth et al., 2011a), to initialize multi-
modal registration algorithms (Hu et al., 2012) or to obtain the re-
gion of interest for computer-aided detection of prostate cancer
(Vos et al., 2012; Tiwari et al., 2013), among others. As manual
delineation of the prostate boundaries is time consuming and sub-
ject to inter- and intra-observer variation, several groups have re-
searched (semi-) automatic methods for prostate segmentation
(Pasquier et al., 2007; Costa et al., 2007; Klein et al., 2008; Makni
et al., 2009; Toth et al., 2011b; Chandra et al., 2012; Gao et al.,
2012b). However, as most algorithms are evaluated on proprietary
datasets a meaningful comparison is difficult to make.

This problem is aggravated by the fact that most papers cannot
include a comparison against the state-of-the-art due to previous
algorithms being either closed source or very difficult to imple-
ment without help of the original author. Especially in MRI, where
signal intensity is not standardized and image appearance is for a
large part determined by acquisition protocol, field strength, coil
profile and scanner type, these issues present a major obstacle in
further development and improvement of prostate segmentation
algorithms.

In recent years several successful ‘Grand Challenges in Medical
Imaging’ have been organized to solve similar issues in the fields of
liver segmentation on CT (Heimann et al., 2009), coronary image
analysis (Schaap et al., 2009), brain segmentation on MR (Shattuck
et al., 2009), retinal image analysis (Niemeijer et al., 2010) and lung
registration on CT (Murphy et al., 2011). The general design of
these challenges is that a large set of representative training data
is publicly released, including a reference standard for the task at
hand (e.g. liver segmentations). A second set is released to the pub-
lic without a reference standard, the test data. The reference stan-
dard for the test data is used by the challenge organizers to
evaluate the algorithms. Contestants are then allowed to tune their
algorithms to the training data after which their results on the test
data are submitted to the organizers who calculate predefined
evaluation measures on these test results. The objective of most
challenges is to provide independent evaluation criteria and subse-
quently rank the algorithms based on these criteria. This approach
overcomes the usual disadvantages of algorithm comparison, in
particular, bias.

The Prostate MR Image Segmentation (PROMISE12) challenge
presented in this paper tries to standardize evaluation and objec-
tively compare algorithm performance for the segmentation of
prostate MR images. To achieve this goal a large, representative
set of 100 MR images was made available through the challenge
website: http://promise12.grand-challenge.org/. This set was sub-
divided into training (50), test (30) and live challenge (20) datasets
(for further details on the data, see Section 2). Participants could
download the data and apply their own algorithms. The goal of
the challenge was to accurately segment the prostate capsule.
The calculated segmentations on the test set were then submitted
to the challenge organizers through the website for independent
evaluation. Evaluation of the results included both boundary and
volume based metrics to allow a rigorous assessment of segmenta-
tion accuracy. To calculate an algorithm score based on these met-
rics, they were compared against human readers. Further details
about generation of the algorithm score can be found in
Section 3.2.

This paper will describe the setup of the challenge and the ini-
tial results obtained prior to and at the workshop hosted by the
MICCAI2012 conference in Nice, where a live challenge was held
between all participants. New results, which can still be submitted
through the PROMISE12 website, can be viewed online.
2. Materials

2.1. MRI images

In MRI images, the pixel/voxel intensities and therefore appear-
ance characteristics of the prostate can greatly differ between
acquisition protocols, field strengths and scanners (Dickinson
et al., 2011; Barentsz et al., 2012). Example causes of appearance
differences include the bias field (Leemput et al., 1999; Sung
et al., 2013), signal-to-noise ratio (Fütterer and Barentsz, 2009; Li
et al., 2012) and resolution (Tanimoto et al., 2007; Kitajima et al.,
2010), especially through-plane. Additionally, signal intensity val-
ues are not standardized (Nyúl and Udupa, 1999; Nyúl et al., 2000).
Therefore a segmentation algorithm designed for use in clinical
practice needs to deal with these issues (Bezdek et al., 1993; Clarke
et al., 1993). Consequently, we decided to include data from four
different centers: Haukeland University Hospital (HK) in Norway,
the Beth Israel Deaconess Medical Center (BIDMC) in the US, Uni-
versity College London (UCL) in the United Kingdom and the Rad-
boud University Nijmegen Medical Centre (RUNMC) in the
Netherlands. Each of the centers provided 25 transverse T2-
weighted MR images. This resulted in a total of 100 MR images.
Details pertaining to the acquisition can be found in Table 1. Addi-
tionally, a central slice of a data set for each of the centers is shown
in Fig. 1 to show the appearance differences. These scans where
acquired either for prostate cancer detection or staging purposes.
However, the clinical stage of the patients and the presence and
location of prostate cancer is unknown to the organizers. Trans-
verse T2-weighted MR was used because these contain most
anatomical detail (Barentsz et al., 2012), are used clinically for
prostate volume measurements (Hoeks et al., 2013; Toth et al.,
2011a) and because most current research papers focus on

http://promise12.grand-challenge.org/
http://promise12.grand-challenge.org/


Fig. 1. Slice of a data set from different centers to show appearance differences.
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segmentation on T2-weighted MRI. The data were then split ran-
domly into 50 training cases, 30 test cases and 20 live challenge
cases. Although the selection process was random, it was stratified
according to the different centers to make sure no training bias to-
wards a certain center could occur.
2.2. Segmentation reference standard

Each center provided a reference segmentation of the prostate
capsule performed by an experienced reader. All annotations were
performed on a slice-by-slice basis using a contouring tool. The
contouring tool itself was different for the different institutions,
but the way cases were contoured was similar. Contouring was
performed by annotating spline-connected points in either 3DSlic-
er (www.slicer.org) or MeVisLab (www.mevislab.de). The refer-
ence segmentations were checked by a second expert, C.H., who
has read more than 1000 prostate MRIs, to make sure they were
consistent. This expert had no part in the initial segmentation of
the cases and was asked to correct the segmentation if inconsisten-
cies were found. The resulting corrected segmentations were used
as the reference standard segmentation for the challenge. An
example of a reference segmentation at the base, center and apex
of the prostate is shown in Fig. 2.
2.3. Second observer

For both the testing and the live challenge data a relatively inex-
perienced nonclinical observer (W.v.d.V, two years of experience
Fig. 2. Example T2-weighted transverse prostate MRI images displaying an apical, centr
second observer segmentation in red. (For interpretation of the references to colour in t
with prostate MR research) was asked to manually segment the
prostate capsule using a contouring tool. The second observer was
blinded to the reference standard to make sure both segmentations
were independent. The second observer segmentations were used
to transform the evaluation metrics into a case score, as will be ex-
plained in Section 3.2. An example of a second observer segmenta-
tion is shown in Fig. 2.
3. Evaluation

3.1. Metrics

The metrics used in this study are widely used for the evalua-
tion of segmentation algorithms:

1. the Dice coefficient (DSC) (Klein et al., 2008; Heimann et al.,
2009),

2. the absolute relative volume difference, the percentage of the
absolute difference between the volumes (aRVD) (Heimann
et al., 2009),

3. the average boundary distance, the average over the shortest
distances between the boundary points of the volumes (ABD)
(Heimann et al., 2009),

4. the 95% Hausdorff distance (95HD) (Chandra et al., 2012).

All evaluation metrics were calculated in 3D. We chose both
boundary and volume metrics to give a more complete view of seg-
mentation accuracy, i.e. in radiotherapy boundary based metrics
al and basal slice. The reference standard segmentation is shown in yellow and the
his figure legend, the reader is referred to the web version of this article.)

http://www.slicer.org
http://www.mevislab.de
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would be more important, whereas in volumetry the volume met-
rics would be more important. In addition to evaluating these met-
rics over the entire prostate segmentation, we also calculated them
specifically for the apex and base parts of the prostate, because
these parts are very important to segment correctly, for example
in radiotherapy and TRUS/MR fusion. Moreover, these are the most
difficult parts to segment due the large inter-patient variability and
differences in slice thickness. To determine the apex and base the
prostate was divided into three approximately equal parts in the
slice dimension (the caudal 1/3 of the prostate volume was consid-
ered apex, the cranial 1/3 was considered base). If a prostate had a
number of slices not dividable by 3 (e.g. 14), the prostate would be
divided as 4-6-4 for the base, mid-gland and apex respectively.

The DSC was calculated using:

DðX;YÞ ¼ 2jX \ Yj
jXj þ jY j ð1Þ

where jXj is the number of voxels in the reference segmentation and
jY j is the number of voxels in the algorithm segmentation.

The relative volume difference was calculated as:

RVDðX;YÞ ¼ 100� jXj
jYj � 1
� �

ð2Þ

and thus the absolute relative volume difference is

aRVDðX;YÞ ¼ jRVDðX;YÞj ð3Þ

Note that although we use the aRVD to measure algorithm perfor-
mance (both under- and over-segmentation are equally bad), in
the results we will present the RVD, which makes it possible to
identify if algorithms on average tend to over- or under-segment
the prostate.

For both the 95th percentile Hausdorff distance and the average
boundary distance we first extract the surfaces of the reference
segmentation and the algorithm segmentation. The regular Haus-
dorff distance is then defined as:

HDasymðXs;YsÞ ¼max
x2Xs

min
y2Ys

dðx; yÞ
� �

ð4Þ

HDðXs;YsÞ ¼max HDasymðXs;YsÞ;HDasymðYs;XsÞ
� �

ð5Þ

where Xs and Y s are the sets of surface points of the reference and
algorithm segmentations respectively. The operator d is the Euclid-
ean distance operator. As the normal Hausdorff distance is very sen-
sitive to outliers we use the 95th percentile of the asymmetric
Hausdorff distances instead of the maximum.

Finally, the average boundary distance (ABD) is defined as:

ABDðXs; YsÞ ¼
1

NXs þ NYs

X
x2Xs

min
y2Ys

dðx; yÞ þ
X
y2Ys

min
x2Xs

dðy; xÞ
 !

ð6Þ
3.2. Score

Algorithms were ranked by comparing the resulting evaluation
measures to the second observer and the reference segmentation
in a way similar to Heimann et al. (2009). First, the metrics of
the second observer segmentations are calculated with respect to
the reference segmentation. Then we average each metric over
all cases and define a mapping function:

scoreðxÞ ¼maxðaxþ b;0Þ ð7Þ

This function maps a metric value x to a score between 0 and 100.
The equation is solved for a and b by setting a score of 100 to a per-
fect metric result, e.g. a DSC of 1.0 and setting a score of 85 to a met-
ric result equal to the average metric value of the second observer.
This will give us two equations to solve the two unknowns, a and b.
Additionally, a score of zero was set as the minimum because other-
wise cases with a very poor or missing segmentation could bias the
final score of an algorithm too much. As an example, if the second
observer segmentations have an average DSC of 0.83, a and b are
88.24 and 11.76 respectively. As such, if an algorithm obtains a
DSC of 0.87 on a case the score will be 88.53. This approach is ap-
plied to all metrics. The scores for all metrics were averaged to ob-
tain a score per case. Then the average over all cases was used to
rank the algorithms.

A relatively high reference score of 85 was chosen for the sec-
ond observer because her segmentations were in excellent corre-
spondence with the reference standard. An even higher score
than 85 would not be warranted, as the segmentations still contain
errors experienced observers would not make. The average metric
scores for the second observer are presented in Tables 6 and 7.
Comparing these metric scores to scores reported in literature for
inter-observer variability we can see that they are at approxi-
mately at the same level (Pasquier et al., 2007; Costa et al., 2007;
Klein et al., 2008; Makni et al., 2009; Toth et al., 2011b; Chandra
et al., 2012; Gao et al., 2012b).

The main reason to use this approach is that it allows us to
incorporate completely different, but equally important metrics
like average boundary distance and the Dice coefficient. Further-
more, in addition to allowing us to rank algorithms, the scores
themselves are also meaningful, i.e. higher scores actually corre-
spond to better segmentations. An alternative approach could have
been to rank algorithms per metric and average the ranks over all
metrics. However, such an average rank is not necessarily related
to a segmentation performance: the best ranking algorithm could
still show poor segmentation results that are much worse than
the second observer.
4. Methods

This section gives an overview of all the segmentation methods
that participated in the challenge. A short description for each algo-
rithm is given. More detailed descriptions of the algorithms can be
found in peer-reviewed papers submitted to the PROMISE12 chal-
lenge, available at: http://promise12.grand-challenge.org/Results.
Algorithms were categorized as either automatic (no user interac-
tion at all), semi-automatic (little user interaction, e.g. setting a
single seed point) or interactive (much user interaction, e.g. paint-
ing large parts of the prostate). The algorithm categories and
additional details can be found in Tables 2 and 8. The names in
subsection titles are the team names chosen by the participants
and are as such not related to the method themselves. Most names
are either abbreviations of group names or company names. Links
to the websites of the individual groups can also be found on the
PROMISE12-website.
4.1. Fully automatic segmentation of the prostate using active
appearance models – Imorphics

Vincent et al. (2012) of Imorphics Ltd. have developed a generic
statistical modeling system designed to minimize any bespoke
development needed for different anatomical structures and image
modalities.

The Imorphics system generates a set of dense anatomical land-
marks from manually segmented surfaces using a variant of the
Minimum Description Length approach to Groupwise Image Regis-
tration (Cootes et al., 2005). The correspondence points and associ-
ated images are used to build an Appearance Model. The
Appearance Model is matched to an unseen image using an Active
Appearance Model (AAM) which optimizes the model parameters

http://promise12.grand-challenge.org/Results


Table 2
Overall challenge results. The last three columns contain the scores including standard deviations. These scores are an average of all individual metric scores over all cases, as
explained in Section 3.2. For the live challenge scores with an asterisk, teams had either missing or incomplete segmentations for some cases. Incomplete or failed cases were
assigned a score of 0. The scores of these groups over all completed cases is shown in brackets. The UBUdG team did not participate in the live challenge and as such received a
zero score.

Rank Team name Type Online Live Average

1 Imorphics Automatic 84:36� 7:11 87:07� 3:36 85:72� 5:90
2 ScrAutoProstate Automatic 83:49� 5:92 85:08� 3:54 84:29� 5:10
3 CBA Interactive 80:66� 6:46 81:21� 9:60 80:94� 7:86
4 Robarts Semi-automatic 77:32� 4:04 80:08� 7:18 78:70� 5:51
5 Utwente Semi-automatic 75:23� 10:53 80:26� 7:30 77:75� 9:37
6 Grislies Automatic 77:56� 12:60 74:35� 11:28 75:96� 12:08
7 ICProstateSeg Automatic 76:06� 9:40 75:74� 8:81� ð84:16� 4:43Þ 75:90� 9:17
8 DIAG Automatic 73:30� 13:69 77:01� 12:09 75:16� 13:07
9 SBIA Automatic 78:34� 8:22 61:38� 28:22� ð76:72� 7:44Þ 69:86� 18:95
10 Rutgers Automatic 65:97� 13:13 71:77� 11:02 68:87� 12:32
11 UBUdG Semi-automatic 70:44� 9:12 00:00� 0:0� 35:22� 9:12
– SecondObserver – 85:00� 4:50 85:00� 4:91 85:00� 4:67
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to generate an instance which matches the image as closely as pos-
sible (Cootes et al., 2001).

Active Appearance Models require an initial estimate of the
model parameters including position, rotation and scale. The sys-
tem uses a multi-resolution gridded search method. This is started
at a low image and model resolution with a small number of mea-
sured residuals to make it reasonably fast. The results of these
searches are ranked according to the sum of squares of the resid-
ual, and a proportion removed from consideration. The remaining
search results are used to initialize models at a higher resolution,
and so on. Finally, the single best result at the highest resolution
gives the segmentation result.
4.2. Region-specific hierarchical segmentation of MR prostate using
discriminative learning – ScrAutoProstate

The segmentation pipeline developed by Birkbeck et al. (2012)
addresses the challenges of MR prostate segmentation through
the use of region-specific hierarchical segmentation with discrim-
inative learning.

First, an intensity normalization is used to adjust for global con-
trast changes across the images. Images with an endorectal coil are
then further enhanced by flattening the intensity profile on the
bright regions near the coil using an automatic application of Pois-
son image editing (Pérez et al., 2003).

In the next phase of the pipeline, a statistical model of mesh
surface variation learned from training data is aligned to the nor-
malized image. The pose parameters of the shape model are ex-
tracted through the use of marginal space learning (Zheng et al.,
2009), which decomposes the estimation of pose into sequential
estimates of the position, orientation, scale, and then the first
few modes of variation. The estimation of each set of pose param-
eters relies on a probabilistic boosting tree classifier to discrimina-
tively model the relationship between the image data and the
unknown parameters being estimated. During training, each classi-
fier automatically selects the most salient features from a large fea-
ture pool of Haar and steerable features. After the statistical mesh
model has been aligned to the input image using marginal space
learning, the segmentation is refined through a coarse-to-fine
boundary refinement that uses surface varying classifiers to dis-
criminate the boundary of the prostate from adjacent soft tissue.
The mesh from this final refinement stage is constrained by the
statistical shape model.
4.3. Smart paint – CBA

Malmberg et al. (2012) have developed an interactive segmen-
tation tool called Smart Paint. The user segments the organ of
interest by sweeping the mouse cursor in the object or background,
similar to how an airbrush is used. Areas are painted with a semi-
transparent color which gives immediate feedback in the chosen
interaction plane. As the paint is applied in 3D, when the user
moves to another plane using the mouse thumb-wheel the effect
of the painting is seen also there.

The algorithm works by taking both the spatial distance to the
cursor and the image content (intensity values) into account. The
image I and the segmentation function f are mappings from ele-
ments of a three dimensional voxel set to the interval [0, 1]. A voxel
x belongs to the foreground if f ðxÞP 0:5, and to the background
otherwise. Initially, f ¼ 0. The brush tool has a value v that is either
1 (to increase the foreground) or 0 (to increase the background). A
single brush stroke centered at voxel x affects the segmentation at
all nearby voxels y according to

f ðyÞ  ð1� aðx; yÞÞf ðyÞ þ aðx; yÞv ð8Þ

aðx; yÞ ¼ bð1� jIðyÞ � IðxÞjÞk max
ðr � dðx; yÞÞ

r
;0

� �
ð9Þ

where dðx; yÞ is the Euclidean distance between the voxel centers of
x and y; r is the brush radius specified by the user and b and k are
constants.

Additionally, the user can smooth the current segmentation
using a weighted average filter. The algorithm is not very sensitive
to the values selected for the b and k constants. Values for b were in
the range 0.01–0.1 and for k in the range 1–5 and influence the
behavior of the brush. These variables could be changed by the
user.

4.4. Multi-atlas segmentation of the prostate: a zooming process with
robust registration and atlas selection – SBIA

The multi-atlas based segmentation framework designed by Ou
et al. (2012) automatically segments the prostate in MR images. At-
lases from 50 training subjects are nonrigidly registered to the tar-
get image. The calculated deformations are used to warp expert
annotated prostate segmentations of the atlases into the target im-
age space. The warped prostate annotations are then fused by the
STAPLE strategy (Warfield et al., 2004) to form a single prostate
segmentation in the target image.

The main challenge in this multi-atlas segmentation framework
is image registration. To account for the registration challenges,
three measures are taken in the multi-atlas segmentation frame-
work. First, the DRAMMS image registration algorithm is used
(Ou et al., 2010). DRAMMS establishes anatomical correspondences
by using high dimensional texture features at each voxel. Voxel
texture features are more distinct than just using intensity, which
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helps to improve registration accuracy. Second, a two-phase strat-
egy is used. In phase 1 the entire prostate images from training
subjects are used to compute an initial segmentation of the pros-
tate in target image. Phase 2 focuses only on the initially seg-
mented prostate region and its immediate neighborhood. Third,
in each phase, atlas selection is used. Those atlases having high
similarity with the target image in the prostate regions after regis-
tration are kept. Similarity is measured using the correlation coef-
ficient, mutual information, as well as the DSC between the warped
prostate annotation and the tentative prostate segmentation.

4.5. Automatic prostate segmentation in MR images with a
probabilistic active shape model – Grislies

Kirschner et al. (2012) segment the prostate with an Active
Shape Model (ASM) (Cootes et al., 2001). For training the ASM,
meshes were extracted from the ground truth segmentations using
Marching Cubes (Lorensen and Cline, 1987). Correspondence be-
tween the meshes was determined using a nonrigid mesh registra-
tion algorithm. The final ASM has 2000 landmarks and was trained
using principal component analysis (PCA). The actual segmentation
is done with a three step approach, consisting of (1) image prepro-
cessing, (2) prostate localization and (3) adaption of the ASM to the
image.

In the preprocessing step, the bias field is removed using coher-
ent local intensity clustering, and the image intensities are normal-
ized (Li et al., 2009). Prostate localization is done using the sliding
window approach: a boosted classifier based on 3D Haar-like fea-
tures is used to decide whether the subimage under the current
detector window position contains the prostate or not. This ap-
proach is similar to the Viola-Jones algorithm for face detection
in 2D images (Viola and Jones, 2001),.

The actual segmentation is done with a Probabilistic ASM. In
this flexible ASM variant, shape constraints are imposed by mini-
mizing an energy term which determines a compromise between
three forces: an image energy that draws the model towards de-
tected image features, a global shape energy that enforces plausi-
bility of the shapes with respect to the learned ASM, and a local
shape energy that ensures that the segmentation is smooth. For
detection of the prostate’s boundary, a boosted detector using 1D
Haar-like features is used, which classifies sampled intensity pro-
files into boundary and nonboundary profiles.

4.6. An efficient convex optimization approach to 3D prostate MRI
segmentation with generic star shape prior – Robarts

The work by Yuan et al. (2012) proposes a global optimization-
based contour evolution approach for the segmentation of 3D pros-
tate MRI images, which incorporates histogram matching and a
variational formulation of a generic star shape prior.

The proposed method overcomes the existing challenges of seg-
menting 3D prostate MRIs: heterogeneous intensity distributions
and a wide variety of prostate shape appearances. The proposed
star shape prior does not stick to any particular object shape from
learning or specified parameterized models, but potentially re-
duces ambiguity of prostate segmentation by ruling out inconsis-
tent segments; it provides robustness to the segmentation when
the image suffers from poor quality, noise, and artifacts.

In addition, a novel convex relaxation based method is intro-
duced to evolve a contour to its globally optimal position during
each discrete time frame, which provides a fully time implicit
scheme to contour evolution and allows a large time step size to
accelerate the speed of convergence.

Moreover, a new continuous max-flow formulation is proposed,
which is dual to the studied convex relaxation formulation and de-
rives a new efficient algorithm to obtain the global optimality of
contour evolution. The continuous max-flow based algorithm is
implemented on GPUs to significantly speed up computation in
practice.

4.7. An automatic multi-atlas based prostate segmentation using local
appearance specific atlases and patch-based voxel weighting –
ICProstateSeg

Gao et al. (2012a) present a fully automated segmentation pipe-
line for multi-center and multi-vendor MRI prostate segmentation
using a multi-atlas approach with local appearance specific voxel
weighting.

An initial denoising and intensity inhomogeneity correction is
performed on all images. Atlases are classified into two categories:
normal MRI scans An and scans taken with a transrectal coil Am.
This is easily achieved by examining the intensity variation around
the rectum since the transrectal coil produces significant physical
distortion but also has a characteristic bright appearance in the lo-
cal region near the coil itself. The subatlas database whose atlas
appearance is closest to the new target is chosen as the initial atlas
database. After that, the top N similar atlases are further chosen for
atlas registration by measuring intensity difference in the region of
interest around prostate.

After all the selected atlases are nonrigidly registered to a target
image, the resulting transformation is used to propagate the ana-
tomical structure labels of the atlas into the space of the target im-
age. Finally, a patch-based local voxel weighting strategy is
introduced, which was recently proposed for use in patch-based
brain segmentation (Coupé et al., 2011) and improved by introduc-
ing the weight of the mapping agreement from atlas to target. After
that, the label that the majority of all warped labels predict for
each voxel is used for the final segmentation of the target image.

4.8. Prostate MR image segmentation using 3D active appearance
models – Utwente

The segmentation method proposed by Maan and van der
Heijden (2012) is an adaptation of the work presented by Kroon
et al. (2012) by using a Shape Context based nonrigid surface reg-
istration in combination with 3D Active Appearance Models
(AAM).

The first step in AAM training is describing the prostate surface
in each training case by a set of landmarks. Every landmark in a
training case must have a corresponding landmark in all other
training cases. To obtain the corresponding points Shape Context
based nonrigid registration of the binary segmentation surfaces
was used (Maan and van der Heijden, 2012; Kroon et al., 2012).
PCA is applied to determine the principal modes of the shape var-
iation. The appearance model can be obtained in a similar way:
first each training image is warped so that its points correspond
to the mean shape points. Subsequently, the grey-level information
of the region covered by the mean shape is sampled. After normal-
ization, a PCA is applied to obtain the appearance model. The com-
bined shape and appearance model can generalize to almost any
valid example.

During the test phase, the AAM is optimized by minimizing the
difference between the test image and the synthesized images. The
mean model is initialized by manually selecting the center of the
prostate based on visual inspection. Subsequently, the AAM is ap-
plied using two resolutions with both 15 iterations.

4.9. A multi-atlas approach for prostate segmentation in MR images –
DIAG

Litjens et al. (2012) investigated the use of a multi-atlas
segmentation method to segment the prostate using the Elastix
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registration package. The method is largely based on the work of
Klein et al. (2008) and Langerak et al. (2010). The 50 available
training data sets are used as atlases and registered to the unseen
image using localized mutual information as a metric. Localized
mutual information calculates the sum of the mutual information
of image patches instead of the mutual information of the entire
image. This approach reduces the effect of magnetic field bias
and coil profile on the image registration.

The registration process consists of two steps: first a rough ini-
tial alignment is found, after which an elastic registration is per-
formed. The 50 registered atlases are then merged to form a
signal binary segmentation using the SIMPLE optimization algo-
rithm (Langerak et al., 2010). SIMPLE tries to automatically discard
badly registered atlases in an iterative fashion using the correspon-
dence of the atlas to the segmentation result in the previous itera-
tion. The DSC was used as the evaluation measure in the SIMPLE
algorithm.

4.10. Deformable landmark-free active appearance models:
application to segmentation of multi-institutional prostate MRI data –
Rutgers

Toth and Madabhushi (2012a) propose a Multi-Feature, Land-
mark-Free Active Appearance Model (MFA) based segmentation
algorithm, based on (Toth and Madabhushi, 2012b). The MFA con-
tains both a training module and a segmentation module. The MFA
is constructed by first aligning all the training images using an af-
fine transformation. Second, the shape is estimated by taking the
signed distance to the prostate surface for each voxel, which repre-
sents a levelset, such that a value of 0 corresponds to the voxels on
the prostate surface. Third, principal component analysis is used to
map the shape and intensity characteristics of the set of training
images to a lower dimensional space. Then a second PCA is per-
formed on the joint set of lower dimensional shape and appearance
vectors to link the shape and appearance characteristics.

To segment an unseen image, the image must be registered to
the MFA, resulting in transformation T mapping the input image
to the MFA. This is performed by first calculating the PCA projec-
tion of the intensities learned from the training data. Then the
linked projections are reconstructed and subsequently the intensi-
ties and shape. The normalized cross-correlation between the
reconstruction and the original image are calculated and the trans-
form T is optimized to obtain maximum normalized cross-correla-
tion. The shape corresponding to the optimal transformation was
thresholded at 0 to yield the final segmentation.

While the original algorithm (Toth and Madabhushi, 2012b) de-
fined ‘‘T’’ as an affine transformation, to account for the high vari-
ability in the prostate shape and appearance (e.g. with or without
an endorectal coil), a deformable, b-spline based transform was
used to define ‘‘T’’. This resulted in a more accurate registration
than affine, although further studies suggest that separate subpop-
ulation based models could potentially yield more accurate seg-
mentations, given enough training data.

4.11. A random forest based classification approach to prostate
segmentation in MRI – UBUdG

The method proposed by Ghose et al. (2012) has two major
components: a probabilistic classification of the prostate and the
propagation of region based levelsets to achieve a binary segmen-
tation. The classification problem is addressed by supervised ran-
dom decision forest.

During training, the number of slices in a volume containing the
prostate is divided into three equal parts as apex, central and base
regions. The individual slices are resized to a resolution of
256 � 256 pixels and a contrast-limited adaptive histogram
equalization is performed to minimize the effect of magnetic field
bias. Each feature vector is composed of the spatial position of a
pixel and the mean and standard deviation of the gray levels of
its 3 � 3 neighborhood. Three separate decision forests are built
corresponding to the three different regions of the prostate the
apex, the central region and the base. Only 50% of the available
training data was used for each of the regions.

During testing the first and the last slices of the prostate are se-
lected and the test dataset is divided into the apex, the central and
the base regions. Consecutively preprocessing is done on in the
same way as for the training images. Decision forests trained for
each of the regions are applied to achieve a probabilistic classifica-
tion of the apex, the central and the base slices. Finally evolution of
the Chan and Vese levelsets on the soft classification ensures seg-
mentation of the image into prostate and the background regions.

4.12. Combinations of algorithms

It is well known that combining the results of multiple human
observers often leads to a better segmentation than using the seg-
mentation of only a single observer (Warfield et al., 2004). To
investigate whether this is also true for segmentation algorithms,
different types of combinations were tried. First, combining all
the algorithm results using a majority voting approach was ex-
plored. The majority voting combination considered a voxel part
of the prostate segmentation if the majority of the algorithms seg-
mented the voxel as a prostate voxel. Second, only the top 5 (ex-
pert) algorithms were combined based on the overall algorithm
score. A ‘best combination’ reference was also included by select-
ing the algorithm with the maximum score per case, for both the
top 5 and all algorithms.
5. Results

5.1. Online challenge

The results of the online challenge are summarized in Tables 2,
6 and Fig. 3. In Table 2 the average algorithm scores and standard
deviations are presented, which are used to rank the algorithms.
The ordering of the algorithms represents the ranking after both
the online and live challenges. The online and live components
were weighted equally to determine the final ranking. Metric val-
ues and scores for all algorithms on the online challenge data are
presented in Table 6. In Fig. 3 we provide the results per algorithm
per case to give a more complete view of algorithm robustness and
variability.

5.2. Live challenge

Tables 2, 7 and Fig. 4 show the results of the live challenge at
the MICCAI2012 workshop. In Table 2 (column 2) the average
scores for each algorithm are presented including standard devia-
tions. Metric values and scores for all algorithms on the live chal-
lenge data are presented in 7. Fig. 4 shows the scores per case
per algorithm for the cases processed at the live challenge. Algo-
rithms that were unable to segment all cases during the period
of the challenge (4 h), or produced segmentations that were con-
sidered to be a failure according to algorithm-specific checking cri-
teria or the group, are indicated with an asterisk in Table 2.
Unsegmented or failed cases were given a score of 0.

5.3. Overall

The overall ranking of the algorithms is presented in Table 2.
Additionally, the results of the algorithm combinations are shown



Fig. 3. Results of the online challenge. The overall score is on the vertical axis and the case number on the horizontal axis. Teams are given a different symbol and color. Case
distributions per center were: 1:7 RUNMC, 8:14 BIDMC, 15:22 UCL, 23:30 HK. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 4. Results of the live challenge. The overall score is on the vertical axis and the case number on the horizontal axis. Teams are given a different symbol and color. Case
distributions per center were: 1:5 UCL, 6:10 HK, 11:15 BIDMC, 16:20 RUNMC. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Table 3
Results for the single best algorithm and combinations of algorithms, average over all
cases including standard deviation.

Name Online Live Average

Imorphics 84:36� 7:11 87:07� 3:36 85:72� 5:90
All combined 82:96� 8:25 87:70� 3:11 85:33� 6:68
Top 5 combined 85:38� 6:13 87:09� 3:22 86:24� 5:16
Maximum 87:57� 3:37 88:88� 1:73 88:23� 2:83
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in Table 3. Furthermore, statistical analysis on the complete set of
case scores was also performed to determine which algorithms are
significantly better than other algorithms. As a test repeated mea-
sures ANOVA was used in combination with Bonferroni correction
at a significance level of 0.05. The results indicated that the top 2
algorithms by Imorphics and ScrAutoProstate are significantly bet-
ter then every algorithm outside of the top 3. This also holds for
both combination strategies. However, none of the algorithms or
combinations strategies performed significantly better than the
second observer. Finally, the robustness of the algorithms against
multi-center data was also tested using ANOVA, but the center
did not have a significant impact on the overall algorithm score
(p = 0.118). The average scores and standard deviations for the
algorithms on a per-center basis are presented in Tables 4 and 5.

6. Discussion

6.1. Challenge setup and participation

The images used in the challenge are a good representation of
what would be encountered in a clinical setting, with large
differences in acquisition protocol, prostate appearance and size.
Additionally, the images originated from different centers and
scanner manufacturers. The training and test sets were also large
enough to draw statistical conclusions on algorithm performance.

The reference standard was constructed by 3 different observ-
ers, who each segmented a part of the data. These segmentations
were subsequently inspected by the experienced observer for cor-
rectness and consistency. Obtaining additional observers for each
case would be preferable, however recruiting multiple observers
to spend time contouring 100 prostate MR cases is extremely
challenging.

The metrics that were used result in a good separation between
algorithms and the conversion into per case scores keeps these dif-
ferences intact. Other metrics were also considered, for example
the Jaccard index, sensitivity/specificity and regular Hausdorff dis-
tance. Jaccard index is a volume-based metric with similar charac-
teristics as the Dice coefficient, however, in prostate segmentation
literature, the Dice coefficient is more often used. To allow better
comparison to existing and future literature we chose the Dice
coefficient. Sensitivity and specificity are generally not useful in
prostate segmentation because specificity will not be very discrim-
inative: the prostate is always a relative small part of the total im-
age volume. Finally, the modified 95% Hausdorff distance was used
because the regular Hausdorff distance can be harsh and sensitive
to noise: a single pixel can determine overall image segmentation
outcome.

One issue with basing case scores on observer reference stan-
dards is that very high scores end up in the realm of inter-observer
variability. A score higher than 85 is probably still indicative of im-
proved performance, as the second observer segmentations are less
accurate than the reference standard, but it is difficult to say
whether a score of e.g. 94 is indeed better or just different and
equally accurate than a score of 92. However, in general, the algo-



Fig. 5. Qualitative segmentation results of case 3 (a, b, c), case 10 (d, e, f) and case 25 (g, h, i) at the center (a, d, g), apex (b, e, h) and base (c, f, i) of the prostate. Case 3 had the
best, case 10 reasonable and case 25 the worst algorithm scores on average. The different colors indicate the results for the different teams. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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rithms in this challenge do not obtain these scores on average, so
this is not an issue. Visual inspection of the segmentation results
also confirms this, the largest segmentation errors made by the
algorithms would not be made by an experienced observer.

An alternative scoring approach that is not sensitive to inter-
observer variability is to rank algorithms based on their average
rank for each of the sub-scores over all algorithms (e.g. if an
algorithm has the highest average Dice of all algorithms, it will
have rank 1 for Dice. If the same algorithm has rank 5 for average
boundary distance over all algorithms, his average total rank
would be 3). This approach has its own disadvantage, e.g. high
ranks do not mean good segmentations and algorithm ranking is
not only based on the performance of the algorithm itself, but also
on the results of other algorithms, i.e. a new algorithm which does
very poorly on all metrics except one might influence the ranking
of all other algorithms by changing their average rank.
Participation in the initial phase of the challenge was similar to
what we have seen in other segmentation challenges, for example
(Heimann et al., 2009) and the knee cartilage segmentation chal-
lenge (SKI10, http://www.ski10.org). The literature on prostate
segmentation is well represented by the competing algorithms,
which include active shape models, atlas-based methods, pattern
recognition algorithms and variants.

We specifically chose to allow only single submissions per algo-
rithm instead of allowing each group to submit results with differ-
ent parameter settings, to make sure there would be ‘no training
on the test set’.

6.2. Challenge results

All algorithms submitted to the challenge produced reasonable
to excellent results on average (online and live challenge combined

http://www.ski10.org
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scores ranging from 68.97 to 85.72). One point to note is that
although some algorithms may have received the same average
score, the variability can differ substantially, as shown in Tables
6, 7 and 2. For example, the algorithm presented by Robarts (Yuan
et al., 2012) scored 77.32 and 80.08 in the online and live challenge
respectively, but has a very low variability: 5.51 score standard
deviation overall. This is much lower than the algorithms that
had similar scores, for Example 7.86 for CBA (Malmberg et al.,
2012) and 9.37 for Utwente (Maan and van der Heijden, 2012).
Depending on the purpose for which an algorithm is used in the
clinic, this can be a very important aspect. As such, it might be
good to incorporate performance variability directly in algorithm
ranking in future challenges.

It is worth noting that the top 2 algorithms by Imorphics
(Vincent et al., 2012) and ScrAutoProstate (Birkbeck et al., 2012)
were completely automatic and even outperformed the completely
interactive method presented by CBA. Whereas the algorithm by
Imorphics performed best overall, the algorithm by ScrAutoPro-
state should be noted for its exceptionally fast segmentation speed
(2.3 s, Table 8), the fastest of all algorithms. Further details about
interaction, implementation details and computation time can be
found in Table 8. Algorithm computation times varied, with the ac-
tive shape model based approaches often having computation
times in the order of minutes, whereas the atlas based approaches
required substantially more time or computing power (e.g. clus-
ters, GPU). It is important to note that some algorithms were
implemented in high-level programming languages like Matlab,
whereas some where implemented in low-level languages like
C++, computation time is thus not only dependent on algorithm
efficiency but also on the development platform.

Inspecting the illustrative results in Fig. 5 one can see that algo-
rithms can differ quite substantially per case. In this figure we
present the best, worst and a reasonable case with respect to
Table 4
Average scores and standard deviations per team over the different centers for the online

RUNMC BIDMC

Imorphics 82.55 � 8.72 89.05 �
ScrAutoProstate 85.76 � 3.56 86.26 �
CBA 76.05 � 7.71 80.82 �
Robarts 77.38 � 4.73 76.34 �
Utwente 72.52 � 10.27 78.85 �
Grislies 81.10 � 9.69 86.10 �
ICProstateSeg 72.70 � 10.58 82.12 �
DIAG 66.60 � 13.25 77.48 �
SBIA 81.02 � 8.77 77.04 �
Rutgers 63.98 � 14.82 67.00 �
UBUdG 73.17 � 2.88 67.52 �
Average 75.69 � 8.63 78.96 �

Table 5
Average scores and standard deviations per team over the different centers for the live chall
included here.

RUNMC BIDMC

Imorphics 86.86 � 3.39 88.54 �
ScrAutoProstate 85.06 � 2.26 85.44 �
CBA 81.32 � 8.52 83.11 �
Robarts 81.29 � 5.27 74.77 �
Utwente 80.42 � 5.48 79.46 �
Grislies 79.98 � 6.64 77.91 �
ICProstateSeg 82.75 � 4.67 86.36 �
RUNMC 61.77 � 15.90 81.51 �
SBIA 79.03 � 7.21 13.57 �
Rutgers 72.39 � 14.09 75.10 �
Average 79.09 � 7.34 74.58 �
average algorithm performance. Case 25 was especially tricky as
it had a large area of fat around the prostate, especially near the
base which appears very similar to prostate peripheral zone. Most
algorithms oversegmented the prostatic fat, and as the prostate
was relatively small, this results in large volumetric errors.
However, if one inspects case 25 carefully, it is possible to make
the distinction between fat and prostate, especially if you go
through the different slices. It is thus no surprise that the interac-
tive segmentation technique of CBA performed the best. Further
inspection of the results shows that in the cases with low average
algorithm performance the interactive method is usually the best
algorithm (e.g. Fig. 3: cases 4, 16 and 21 of the online challenge).
This indicates that these cases cause problems for automated
methods.

In this challenge we explicitly included segmentation results at
the base and the apex of the prostate into the algorithm scoring be-
cause these areas are usually the most difficult to segment. This
can also be observed in the results, especially Tables 6 and 7. Every
algorithm performed worse on the apex and base if we look at the
metric values (especially the Dice coefficient and the relative vol-
ume difference) themselves; however, as these areas are also the
most difficult for the human observer, the scores for apex and base
tend to be higher than the overall score. Interesting to note is that
the top 2 algorithms outperform the second observer at almost
every metric for both apex and base, whereas the overall score is
lower than the second observer. For the live challenge the Imorph-
ics algorithm even outperforms the second observer in the overall
score. This indicates that for this part of the prostate automatic
algorithms might improve over human observers.

Interestingly, similar to the SLIVER07-challenge, active shape
based algorithms seemed to give the best results (places 1, 2, 4
and 5), although two of these systems are semi-automatic. Looking
at the results in more detail, we can see that the atlas based
challenge.

UCL HK

2.29 84.78 � 7.52 81.44 � 7.41
3.73 83.12 � 4.95 79.47 � 8.46
6.37 83.16 � 6.17 82.06 � 4.94
5.13 77.57 � 3.55 77.88 � 3.77
8.11 76.50 � 13.02 73.16 � 11.46
6.35 77.99 � 14.82 66.54 � 10.99
4.71 77.37 � 7.49 72.40 � 11.92
5.09 81.45 � 6.76 67.51 � 20.15
10.41 77.31 � 7.32 78.15 � 8.19
11.99 69.98 � 11.02 62.79 � 16.46
14.90 74.31 � 6.39 66.73 � 8.33
7.19 78.50 � 8.09 73.47 � 10.19

enge. Note that team UBUdG did not participate in the live challenge and as such is not

UCL HK

4.17 86.96 � 3.22 85.92 � 3.59
3.03 86.39 � 3.67 83.44 � 5.44
7.88 77.86 � 16.87 82.53 � 4.59
11.76 81.96 � 3.99 82.31 � 5.34
7.51 80.64 � 10.40 80.50 � 8.42
12.30 72.18 � 16.30 67.33 � 7.22
3.18 85.60 � 1.71 80.25 � 5.83
6.82 83.16 � 5.35 81.61 � 3.80
30.33 75.50 � 10.38 77.41 � 4.39
8.95 65.45 � 14.78 74.14 � 6.24
9.59 79.57 � 8.67 79.54 � 5.49



Table 6
Averages and standard deviations for all metrics for all teams in the online challenge. Entries indicated with an asterisk had cases with infinite boundary distance measures
removed from the average, which could occur due to empty base or apex segmentation results.

Team name Average boundary distance

Overall Base Apex Score (Overall) Score (Base) Score (Apex)

Imorphics 2.10 � 0.68 2.18 � 1.14 1.96 � 0.80 82.66 � 5.60 85.20 � 7.75 88.44 � 4.71
ScrAutoProstate 2.13 � 0.48 2.23 � 0.70 2.18 � 0.68 82.42 � 3.93 84.87 � 4.73 87.17 � 3.98
CBA 2.33 � 0.59 2.60 � 1.47 2.44 � 0.81 80.77 � 4.88 82.31 � 9.96 85.62 � 4.75
Robarts 2.65 � 0.37 2.92 � 0.88 3.49 � 0.95 78.09 � 3.06 80.14 � 5.97 79.45 � 5.58
Utwente 3.03 � 1.06 3.45 � 1.96 2.68 � 0.98 74.96 � 8.73 76.54 � 13.34 84.20 � 5.79
Grislies 2.96 � 1.55 3.19 � 2.00 2.46 � 1.26 75.55 � 12.80 78.35 � 13.59 85.50 � 7.42
ICProstateSeg 2.86 � 0.82 3.18 � 1.32 2.89 � 1.05 76.34 � 6.78 78.38 � 9.00 82.99 � 6.21
DIAG 3.40 � 1.72 4.23 � 3.06 2.72 � 1.75 71.90 � 14.18 71.29 � 20.81 84.01 � 10.33
SBIA 2.85 � 0.72 2.82 � 1.02 2.13 � 0.80 76.47 � 5.94 80.86 � 6.93 87.44 � 4.74
Rutgers 4.06 � 1.80 4.82 � 2.64⁄ 3.71 � 1.26⁄ 66.47 � 14.87 63.06 � 23.71 74.68 � 16.56
UBUdG 4.26 � 1.58 4.21 � 1.42 4.53 � 1.71 64.84 � 13.09 71.40 � 9.63 73.33 � 10.08
All combined 2.06 � 0.78 2.60 � 1.53 2.04 � 0.81 82.96 � 6.46 82.30 � 10.36 87.98 � 4.76
Top 5 combined 1.94 � 0.48 2.10 � 0.82 1.77 � 0.62 84.00 � 3.95 85.70 � 5.56 89.57 � 3.63
Maximum 1.78 � 0.35 1.82 � 0.52 1.58 � 0.35 85.28 � 2.91 87.66 � 3.51 90.70 � 2.06
SecondObserver 1.82 � 0.36 2.21 � 0.80 2.55 � 1.08 85.00 � 2.93 85.00 � 5.42 85.00 � 6.34

95% Hausdorff distance

Imorphics 5.94 � 2.14 5.45 � 2.58 4.73 � 1.68 84.20 � 5.70 86.98 � 6.15 88.84 � 3.97
ScrAutoProstate 5.58 � 1.49 5.60 � 2.35 4.93 � 1.38 85.15 � 3.98 86.63 � 5.62 88.37 � 3.25
CBA 6.57 � 2.11 6.64 � 4.07 5.75 � 1.91 82.50 � 5.61 84.15 � 9.73 86.43 � 4.52
Robarts 6.48 � 1.56 6.83 � 2.26 7.36 � 2.11 82.76 � 4.15 83.70 � 5.39 82.62 � 4.98
Utwente 7.32 � 2.44 7.69 � 3.75 5.89 � 1.93 80.52 � 6.48 81.64 � 8.94 86.11 � 4.57
Grislies 7.90 � 3.83 7.61 � 4.11 5.82 � 2.82 78.97 � 10.19 81.85 � 9.81 86.26 � 6.65
ICProstateSeg 7.20 � 1.96 7.27 � 2.92 6.51 � 2.31 80.84 � 5.21 82.64 � 6.97 84.62 � 5.46
DIAG 8.59 � 4.00 9.00 � 4.62 5.91 � 3.68 77.15 � 10.66 78.52 � 11.04 86.05 � 8.69
SBIA 7.73 � 2.68 6.99 � 2.25 4.60 � 1.31 79.43 � 7.14 83.32 � 5.37 89.14 � 3.10
Rutgers 9.25 � 3.76 9.88 � 4.04⁄ 7.58 � 2.35⁄ 75.37 � 10.00 71.18 � 21.41 78.82 � 16.23
Rutgers 9.25 � 3.76 9.88 � 4.04⁄ 7.58 � 2.35⁄ 75.37 � 10.00 71.18 � 21.41 78.82 � 16.23
UBUdG 9.17 � 3.48 9.06 � 2.71 9.54 � 3.52 75.59 � 9.27 78.38 � 6.46 77.48 � 8.30
All combined 5.43 � 2.18 6.00 � 3.06 4.97 � 1.94 85.55 � 5.81 85.67 � 7.30 88.26 � 4.57
Top 5 combined 5.30 � 1.60 5.37 � 2.38 4.22 � 1.25 85.91 � 4.26 87.19 � 5.67 90.04 � 2.94
Maximum 4.63 � 1.06 4.32 � 1.28 3.67 � 0.70 87.67 � 2.81 89.68 � 3.05 91.34 � 1.64
SecondObserver 5.64 � 1.73 6.28 � 2.95 6.36 � 2.40 85.00 � 4.61 85.00 � 7.04 85.00 � 5.66

Dice coefficient

Imorphics 0.88 � 0.04 0.86 � 0.08 0.85 � 0.08 81.96 � 6.62 84.76 � 8.93 88.57 � 6.13
ScrAutoProstate 0.87 � 0.04 0.86 � 0.04 0.83 � 0.07 81.14 � 5.39 85.02 � 4.58 87.79 � 5.23
CBA 0.87 � 0.04 0.84 � 0.07 0.80 � 0.11 79.80 � 5.36 82.87 � 8.07 85.46 � 7.98
Robarts 0.84 � 0.03 0.81 � 0.05 0.71 � 0.12 75.32 � 4.25 79.77 � 5.82 78.70 � 8.84
Utwente 0.82 � 0.07 0.78 � 0.13 0.78 � 0.09 72.97 � 9.77 76.12 � 13.85 84.10 � 6.44
Grislies 0.83 � 0.08 0.81 � 0.11 0.82 � 0.10 75.10 � 12.38 79.17 � 11.85 86.65 � 7.09
ICProstateSeg 0.82 � 0.06 0.76 � 0.13 0.74 � 0.13 72.68 � 9.40 74.12 � 14.15 80.47 � 9.41
DIAG 0.80 � 0.09 0.71 � 0.22 0.79 � 0.12 69.62 � 14.20 68.38 � 23.42 84.82 � 8.77
SBIA 0.84 � 0.06 0.81 � 0.08 0.84 � 0.07 75.29 � 8.27 79.29 � 9.07 88.11 � 5.31
Rutgers 0.74 � 0.10 0.61 � 0.25 0.66 � 0.17 61.05 � 15.36 57.75 � 25.70 74.93 � 12.60
UBUdG 0.71 � 0.11 0.71 � 0.12 0.63 � 0.14 56.73 � 16.09 68.17 � 12.80 72.53 � 10.20
All combined 0.88 � 0.05 0.81 � 0.13 0.81 � 0.11 81.29 � 7.55 78.90 � 14.20 86.31 � 8.39
Top 5 combined 0.89 � 0.03 0.87 � 0.05 0.87 � 0.06 83.65 � 4.82 85.79 � 5.96 90.32 � 4.63
Maximum 0.90 � 0.02 0.89 � 0.03 0.88 � 0.03 85.08 � 3.55 88.20 � 3.80 91.46 � 2.50
SecondObserver 0.90 � 0.03 0.86 � 0.06 0.80 � 0.11 85.00 � 3.82 85.00 � 6.14 85.00 � 8.39

Relative volume difference

Imorphics 2.92 � 15.71 1.01 � 19.56 0.65 � 30.68 72.53 � 25.31 84.03 � 16.94 84.20 � 16.97
ScrAutoProstate 11.53 � 14.05 9.65 � 16.52 14.08 � 34.25 68.18 � 27.94 82.67 � 14.82 82.52 � 18.44
CBA 12.75 � 13.99 18.85 � 24.88 0.41 � 28.63 63.48 � 25.38 72.51 � 24.00 82.04 � 11.91
Robarts 10.31 � 17.92 12.69 � 26.26 �3.27 � 39.09 61.70 � 28.63 70.65 � 18.41 74.96 � 15.61
Utwente 22.30 � 27.88 27.52 � 41.86 15.10 � 41.30 50.19 � 32.42 57.94 � 31.74 77.45 � 23.46
Grislies 19.81 � 31.93 23.12 � 44.71 15.46 � 43.71 59.25 � 38.47 64.73 � 31.20 79.31 � 23.00
ICProstateSeg �2.61 � 24.86 �4.47 � 35.14 �13.31 � 43.42 57.96 � 34.16 66.62 � 25.50 75.09 � 20.77
DIAG 4.66 � 28.30 �9.34 � 43.13 11.66 � 54.14 51.04 � 31.02 60.62 � 31.86 76.15 � 24.37
SBIA 16.19 � 25.35 13.47 � 30.78 11.26 � 35.57 51.63 � 35.95 67.71 � 23.49 81.33 � 21.19
Rutgers �5.83 � 30.81 �22.11 � 57.39 �16.68 � 46.37 52.18 � 30.04 44.52 � 31.99 71.58 � 24.00
UBUdG �5.16 � 21.40 �7.33 � 28.05 �14.55 � 33.25 59.02 � 24.71 69.96 � 16.63 77.87 � 16.16
All combined �10.02 � 14.62 �15.45 � 25.94 �19.44 � 22.45 67.17 � 25.33 73.19 � 23.89 81.67 � 13.00
Top 5 combined 7.63 � 13.45 7.32 � 18.53 6.37 � 27.31 73.70 � 25.02 82.15 � 15.60 86.50 � 16.37
Maximum 2.76 � 3.05 4.50 � 4.80 4.23 � 4.21 93.48 � 7.19 94.61 � 5.76 96.78 � 3.21
SecondObserver �1.87 � 7.32 �6.17 � 13.49 �16.24 � 21.13 85.00 � 9.23 85.00 � 9.23 85.00 � 13.57
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systems comparatively have more trouble with cases which are not
well represented by the training set, for example case 23, which
has a prostate volume of 325 mL, while the average is around
50 mL.
One interactive method was included (team CBA) which on
average scored 80.94, which is considerably lower than the second
observer. This is mostly caused by over-segmentation at the base
of the prostate, often the seminal vesicles were included in the



Table 7
Averages and standard deviations for all metrics for all teams in the live challenge. Entries indicated with an asterisk had cases with infinite boundary distance measures removed
from the average, which could occur due to empty segmentation results.

Team name Average boundary distance

Overall Base Apex Score (Overall) Score (Base) Score (Apex)

Imorphics 1.95 � 0.36 2.45 � 0.65 1.83 � 0.53 85.53 � 2.70 87.12 � 3.41 88.21 � 3.39
ScrAutoProstate 2.18 � 0.36 2.34 � 0.78 2.16 � 0.70 83.86 � 2.65 87.73 � 4.12 86.05 � 4.50
CBA 2.56 � 0.96 2.48 � 1.55 119.28 � 522.54 81.03 � 7.10 86.95 � 8.13 80.06 � 21.12
Robarts 2.67 � 0.62 2.66 � 0.90 3.93 � 2.42 80.23 � 4.56 86.01 � 4.74 74.64 � 15.57
Utwente 2.87 � 0.79 3.47 � 1.33 2.43 � 0.72 78.79 � 5.87 81.76 � 6.96 84.32 � 4.62
Grislies 4.17 � 2.35 3.75 � 2.25 2.82 � 1.06 69.14 � 17.43 80.31 � 11.80 81.81 � 6.84
ICProstateSeg 2.35 � 0.99 2.62 � 1.37 1.95 � 0.96 82.63 � 7.35 86.23 � 7.21 87.46 � 6.16
DIAG 3.21 � 1.39 237.53 � 718.80 2.31 � 0.71 76.26 � 10.29 71.09 � 27.15 85.11 � 4.57
SBIA 3.13 � 0.74⁄ 3.13 � 0.64⁄ 2.89 � 1.03⁄ 61.49 � 31.92 66.83 � 34.41 65.10 � 33.91
Rutgers 3.84 � 1.37 3.70 � 1.12⁄ 4.21 � 1.83 71.54 � 10.18 72.52 � 25.41 72.87 � 11.80
All combined 1.97 � 0.34 2.18 � 0.64 1.82 � 0.53 85.43 � 2.51 88.55 � 3.35 88.28 � 3.41
Top 5 combined 1.90 � 0.32 2.15 � 0.80 1.92 � 0.64 85.93 � 2.37 88.70 � 4.18 87.61 � 4.14
Maximum 1.87 � 0.30 1.82 � 0.45 1.53 � 0.30 86.17 � 2.20 90.44 � 2.36 90.17 � 1.88
SecondObserver 2.03 � 0.50 2.86 � 1.26 2.33 � 1.35 85.00 � 3.73 85.00 � 6.63 85.00 � 8.69

95% Hausdorff distance

Imorphics 5.54 � 1.74 6.09 � 1.61 4.58 � 1.36 86.35 � 4.28 87.96 � 3.19 87.03 � 3.86
ScrAutoProstate 6.04 � 1.67 5.64 � 2.17 4.60 � 1.39 85.11 � 4.12 88.84 � 4.29 86.96 � 3.94
CBA 7.34 � 3.08 6.29 � 3.03 122.28 � 523.16 81.90 � 7.59 87.55 � 6.00 80.72 � 20.05
Robarts 7.15 � 2.08 6.12 � 2.14 7.76 � 3.20 82.38 � 5.12 87.89 � 4.22 78.01 � 9.06
Utwente 6.72 � 1.42 7.42 � 2.38 5.68 � 1.66 83.43 � 3.51 85.33 � 4.71 83.91 � 4.70
Grislies 11.08 � 5.85 8.68 � 4.61 6.88 � 2.21 72.68 � 14.42 82.83 � 9.11 80.49 � 6.27
ICProstateSeg 5.89 � 2.59 5.64 � 2.73 4.58 � 2.35 85.48 � 6.38 88.83 � 5.41 87.00 � 6.67
DIAG 7.95 � 3.21 242.13 � 719.85 4.74 � 1.34 80.40 � 7.91 75.30 � 26.69 86.56 � 3.79
SBIA 7.07 � 1.64⁄ 7.21 � 1.96⁄ 5.93 � 1.69⁄ 66.05 � 34.07 68.59 � 35.35 66.54 � 34.40
Rutgers 8.48 � 2.53 242.00 � 719.42 7.82 � 2.42 79.09 � 6.23 75.29 � 26.10 77.82 � 6.86
All combined 5.67 � 1.82 5.14 � 1.40 4.46 � 1.46 86.01 � 4.49 89.84 � 2.78 87.35 � 4.13
Top 5 combined 5.49 � 1.54 5.48 � 2.24 4.56 � 1.51 86.45 � 3.80 89.16 � 4.43 87.07 � 4.27
Maximum 4.80 � 1.02 4.20 � 0.94 3.53 � 0.76 88.17 � 2.52 91.69 � 1.86 90.13 � 2.10
SecondObserver 6.08 � 2.23 7.58 � 3.90 5.29 � 2.53 85.00 � 5.50 85.00 � 7.71 85.00 � 7.17

Dice coefficient

Imorphics 0.89 � 0.03 0.84 � 0.06 0.86 � 0.07 85.51 � 3.92 86.98 � 5.21 89.15 � 5.66
ScrAutoProstate 0.87 � 0.03 0.85 � 0.06 0.83 � 0.10 83.17 � 3.53 87.35 � 5.20 86.81 � 7.47
CBA 0.85 � 0.08 0.85 � 0.10 0.77 � 0.23 79.69 � 10.77 87.82 � 8.16 82.13 � 17.39
Robarts 0.84 � 0.04 0.84 � 0.06 0.67 � 0.22 78.82 � 5.40 86.62 � 4.90 74.31 � 17.27
Utwente 0.83 � 0.06 0.77 � 0.10 0.79 � 0.10 77.46 � 7.61 81.40 � 7.81 84.12 � 7.47
Grislies 0.77 � 0.12 0.78 � 0.12 0.79 � 0.09 70.04 � 16.09 81.93 � 9.79 83.82 � 7.30
ICProstateSeg 0.76 � 0.26 0.72 � 0.26 0.74 � 0.26 71.70 � 25.03 77.24 � 21.30 80.26 � 20.36
DIAG 0.80 � 0.07 0.63 � 0.30 0.82 � 0.07 73.81 � 9.43 69.73 � 24.09 86.18 � 5.71
SBIA 0.65 � 0.34 0.64 � 0.34 0.63 � 0.33 60.41 � 31.93 70.99 � 27.41 71.78 � 25.83
Rutgers 0.75 � 0.10 0.68 � 0.25 0.62 � 0.22 67.41 � 13.75 73.93 � 20.13 70.85 � 17.08
All combined 0.89 � 0.03 0.87 � 0.05 0.86 � 0.08 86.10 � 3.30 89.01 � 4.10 88.93 � 5.88
Top 5 combined 0.89 � 0.02 0.87 � 0.06 0.85 � 0.09 86.12 � 2.90 89.03 � 4.94 88.21 � 6.58
Maximum 0.90 � 0.02 0.89 � 0.03 0.89 � 0.03 86.51 � 2.47 90.97 � 2.82 91.90 � 1.97
SecondObserver 0.89 � 0.03 0.82 � 0.10 0.81 � 0.15 85.00 � 4.18 85.00 � 8.32 85.00 � 11.56

Relative volume difference

Imorphics �1.50 � 9.15 �8.31 � 18.08 �1.03 � 23.97 86.31 � 13.01 87.15 � 7.70 87.55 � 10.37
ScrAutoProstate 10.05 � 11.56 7.77 � 22.01 9.59 � 30.51 73.96 � 17.56 86.55 � 11.38 84.60 � 15.29
CBA 12.26 � 17.73 24.75 � 41.69 �7.05 � 39.63 63.49 � 24.70 81.63 � 24.91 81.50 � 20.08
Robarts �1.72 � 17.47 5.30 � 25.52 �29.19 � 37.14 71.84 � 21.87 86.46 � 14.29 73.77 � 18.61
Utwente 12.62 � 22.25 20.75 � 37.43 0.66 � 28.70 62.15 � 30.81 75.02 � 20.62 85.40 � 12.77
Grislies 43.13 � 65.32 36.41 � 58.73 7.23 � 38.19 37.72 � 40.30 72.42 � 29.35 79.01 � 15.76
ICProstateSeg �8.49 � 34.17 �14.15 � 34.88 �14.88 � 36.55 69.10 � 29.32 81.82 � 22.02 80.77 � 18.68
DIAG �12.34 � 18.38 �38.10 � 32.87 1.61 � 28.65 64.59 � 25.81 70.54 � 24.65 84.60 � 11.74
SBIA 6.55 � 59.45 2.66 � 57.32 12.12 � 68.31 30.65 � 34.34 64.84 � 24.89 62.50 � 28.06
Rutgers �14.59 � 26.52 �24.79 � 31.88 �24.37 � 47.01 50.76 � 27.17 76.87 � 20.18 72.31 � 22.95
All combined 2.69 � 9.75 �0.16 � 13.09 �2.25 � 24.49 83.77 � 12.66 91.64 � 5.14 87.48 � 10.93
Top 5 combined 4.69 � 9.95 6.89 � 20.16 �3.07 � 26.74 82.19 � 13.65 88.57 � 11.35 86.10 � 11.74
Maximum 1.80 � 1.43 3.65 � 3.24 3.58 � 3.99 96.28 � 2.94 97.21 � 2.47 97.52 � 2.74
SecondObserver �5.72 � 7.44 �17.49 � 18.12 �17.97 � 22.90 85.00 � 12.07 85.00 � 11.93 85.00 � 13.03
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prostate segmentation. Thus this algorithm is very dependent on
the operator; in principle the algorithm should be able to get close
to expert performance given an expert reader.

There were several semi-automatic algorithms (teams Robarts,
UTwente and UBUdG) which needed manual interaction to initial-
ize the algorithms. The interaction types and the influence this
interaction has on segmentation accuracy will differ between the
algorithms. Although none of the teams have explicitly tested the
robustness to different initializations, some general comments
can be made. For the Robarts algorithm a number of points on
the prostate boundary have to be set (8 to 10) to initialize a shape
and the initial foreground and background distributions. As such,
the algorithm is robust to misplacing single points. For the
Utwente algorithm, the prostate center has to be indicated to



Table 8
Details on computation time, interaction and computer systems used for the different algorithms. If algorithms where multi-threaded (MT) or used the GPU this is also indicated.

Team name Avg.
time

System MT GPU Availability Remarks

Imorphics 8 min 2.83 GHz
4-cores

No No Commercially available (http://www.imorphics.com/).

ScrAutoProstate 2.3 s 2.7GGz
12-cores

Yes Not
available

No

CBA 4 min 2.7 GHz
2-cores

No No Binaries available at: http://www.cb.uu.se/filip/SmartPaint/ Fully interactive painting

Robarts 45 s 3.2 GHz
1-core,

No Yes Available at http://www.mathworks.com/matlabcentral/
fileexchange

User indicates 8 to 10 points on prostate
surface

/34126-fast-continuous-max-flow-algorithm-to-2d3d-image-
segmentation

512 CUDA-
cores

Utwente 4 min 2.94 GHz
4-cores

Yes No Not available User indicates prostate center

Grislies 7 min 2.5 GHz
4-cores

No No Not available

ICProstateSeg 30 min 3.2 GHz
4-cores,

No Yes Not available

96 CUDA-
cores

DIAG 22 min 2.27 GHz
8-cores

No No Registration algorithm available on http://elastix.isi.uu.nl/ Runs algorithm on a cluster of 50 cores,

average time without cluster 7 min per
atlas

SBIA 40 min 2.9 GHz,
2 cores

No No Registration algorithm available on Runs algorithm on a cluster of 140 cores,

http://www.rad.upenn.edu/sbia/software/dramms/ average time without cluster 25 min per
atlas

Rutgers 3 min 2.67 GHz,
8-cores

Yes No Not available

UBUdG 100 s 3.2 GHz
4-cores

No No Not available User selects first and last prostate slice
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initialize the active appearance and shape models. Big deviations in
point selection can cause problems for active appearance and
shape models, however in general they are pretty robust against
small deviations (Cootes et al., 2001). For the UBUdG method, the
user has to select the first and last slice of the prostate. As such,
the algorithm will be unable to segment the prostate if it extends
beyond those slices, which is an issue if users cannot correctly
identify the start and end slice of the prostate.

Another aspect which plays a role in this challenge was the
robustness of the algorithms to multi-center data. The image dif-
ferences between the centers were actually quite large, especially
between the endorectal coil and nonendorectal coil cases, as can
be seen in Fig. 1. Differences include coil artifacts near the periph-
eral zone, coil profiles, image intensities, slice thickness and reso-
lution. However, if we look at for example Tables 4, 5, 7 and 8
and Fig. 3, it can be seen that all submitted algorithms are at least
reasonably robust against these differences. We could not find any
significant differences in the performance of the algorithms rela-
tive to the different centers using ANOVA (p = 0.118).

We also investigated whether segmentation performance could
be improved by making several algorithm combinations. First, a
majority voting on the segmentation results of all algorithms and
the top 5 best performing was calculated. Second, to get a reference
for the best possible combination we took the best performing
score per case. The summary results of these combinations can
be found in Table 3. Taking the best results per case results in a
substantially better average score than the best performing algo-
rithms. This might be an indication that certain cases might be bet-
ter suited to some algorithms, and as such, that algorithm selection
should be performed on a case-by-case basis. The combinations of
algorithms using majority voting also shows that given the correct
combination, algorithm results can be improved (84.36 to 85.38 for
the online challenge and 87.07 to 87.70 for the live challenge).
Although the increase in score is small, it is accompanied by a
reduction of the standard deviation (for the top 5 combination
strategy, Table 3), as the improvements especially occur in poor
performing cases. These scores and the reduction in standard devi-
ation thus show that combining algorithms might result in more
robust segmentation. These scores also show that there still is
room for improvement for the individual algorithms. How to com-
bine and which algorithms to combine is a nontrivial problem and
warrants further investigation.

Finally, to assess the statistical significance of differences in
algorithm performance we used repeated measures ANOVA with
Bonferroni correction. The methods by Imorphics and ScrAutoPro-
state perform significantly better than all the algorithms outside of
the top 3 (p < 0:05).

7. Future work and concluding remarks

Although in general the segmentation algorithms, especially the
top 2, gave good segmentation results, some challenges still re-
main. As we could see in case 25 (Fig. 5), algorithms sometimes
struggle with the interface between the prostate and surrounding
tissue. This is not only true for peri-prostatic fat, but also for the
interface between the prostate and the rectum, the bladder and
the seminal vesicles. Part of these challenges could be addressed
by increasing through-plane resolution, but integration of these
structures into the segmentation algorithms might also improve
performance. Examples included coupled active appearance mod-
els (Cootes et al., 2000) or hierarchical segmentation strategies
(Wolz et al., 2012). Furthermore, the enormous volume differences
that can occur in the prostate can also be problematic: case 23 had
a volume which was approximately 6 times as large as the average.
Automatically selecting appropriate atlas sets or appearance mod-
els based on an initial segmentation could be a solution. In the

http://www.imorphics.com/
http://www.cb.uu.se/filip/SmartPaint/
http://www.mathworks.com/matlabcentral/fileexchange
http://www.mathworks.com/matlabcentral/fileexchange
http://elastix.isi.uu.nl/
http://www.rad.upenn.edu/sbia/software/dramms/
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difficult cases the interactive segmentation method of team CBA
was often the best. This shows that automated performance could
still be improved.

Future work on prostate segmentation might also focus on the
segmentation of related prostatic structures or substructures.
Examples are segmentation of the prostatic zones (transition, cen-
tral and peripheral), the neurovascular bundles or the seminal
vesicles.

Solving these remaining issues might lead to algorithms which,
for any case, can replace the tedious task of manually outlining by
humans without any intervention. Until we are at that level, the
challenge itself will remain online for new submissions and can
thus be used as a reference for algorithm performance on multi-
center data. As such it could lead to more transparency in medical
image analysis.
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