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4 Introduction

Prostate cancer is the most commonly diagnosed malignancy and the second leading cause of

cancer death among men in the Netherlands. Due to the shortcomings of the current diag-

nostic pathway for prostate cancer, especially with respect to assessing cancer aggressiveness,

alternative strategies are being investigated. Magnetic resonance imaging (MRI) has emerged

as an important modality to assist and potentially replace (part o) the current diagnostic path-

way. e high complexity of prostate MRI and the lack of sufficient expertise among the ra-

diological community at large has opened the door for (semi-)automated analysis of prostate

MRI by computer systems, with or without human intervention. is thesis will cover the

development and evaluation of such a system in a clinical seing.

1.1 Prostate cancer

1.1.1 Prostate anatomy

e prostate is a walnut-sized organ in the male pelvis, located between the pelvic bones. e

apex (caudal part) of the prostate is supported by the pelvic floor muscles. e base (cranial

part) of the prostate borders the bladder. e urethra, originating in the bladder, and two

ejaculatory ducts, originating at the seminal vesicles, pass through the prostate. is is de-

picted schematically in Figure 1.1. e prostate plays a role in the male reproductive system;

it secretes an alkaline fluid, which is added to the spermatozoa and the seminal vesicle fluid,

increasing the motility and lifespan of the spermatozoa. Furthermore, smooth muscle cells

within the prostate help expel the semen during ejaculation. Structurally, the prostate is oen

Figure 1.1: Anatomy of the male pelvis with the prostate circled.

divided into three distinct zones (Figure 1.2)1. e central zone surrounds the ejaculatory ducts

at the base of the prostate and encompasses around 25% of the glandular tissue in a healthy

prostate. However, only 2.5% of prostate cancers originate in this zone2. e transition zone
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surrounds the proximal urethra and contains around 5% of the glandular tissue. Between 10

and 20% of cancers originate here2. As individuals age, the transition zone oen undergoes

hyperplasia, causing it to grow substantially in size. Lastly, the peripheral zone encompasses

up to 70% of all glandular tissue in a healthy prostate and it occupies the posterior and lateral

parts of the gland. Approximately 70% of all prostate cancers are found in this zone2. In addi-

tion to these glandular zones, the prostate usually contains an area of fibromuscular stroma,

typically located at the ventral side of the prostate.

Figure 1.2: Schematic overview of the zonal anatomy of the prostate. Based on a figure by De Marzo et al. 3

1.1.2 Epidemiology

Around 11000 men were diagnosed with prostate cancer in 2011 in the Netherlands and this

incidence is rising (IKNL, http://www.cijfersoverkanker.nl/). Annually, approximately

2400 - 2500 men will die because of prostate cancer. Globally, the estimates are around 900000

new cases and 250000 deaths per year4. From these numbers it can be observed that prostate

cancer has a high incidence-to-mortality ratio. e main reason for the high incidence-to-

mortality ratio is that most of the diagnosed prostate cancers are indolent, i.e. will not kill the

patient in their lifetime. is is evidenced by the high 10-year survival rate (77%) but also by

the large number of prostate cancers discovered on autopsy inmenwho died of other causes5,6.

Almost 75% of all prostate cancer cases are diagnosed in developed countries. e twomain

reasons are the higher average age of the general populace in developed countries compared

to developing countries (70% of all new prostate cancer patients in the Netherlands are older

than 65 years) and secondly, the advent of prostate specific antigen (PSA) based testing in the

1990s7.
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1.1.3 Current diagnostic pathway

e current diagnostic pathway for prostate cancer consists of a combination of PSA blood

tests, digital rectal examinations (DRE) and trans-rectal ultrasound-guided (TRUS) biopsies

(IKNL, Guidelines on Prostate Cancer). PSA tests measure the concentration of PSA in the

blood in nanograms per milliliter (ng/mL). In individuals with healthy prostates, the PSA level

will be low, as the PSA will be contained in the prostate glands. In individuals with prostate

cancer or other prostate disorders (e.g. benign prostatic hyperplasia or prostatitis) the PSA

level can increase because the integrity of the prostate glands is compromised. e American

Cancer Society suggest a threshold of four ng/mL to refer patients for further examination. In

the Netherlands current guidelines suggest using a threshold of three ng/mL, although PSA

testing itself is discouraged.

In digital rectal examinations urologists will use a lubricated, gloved finger to inspect the

surface of the prostate. Prostate cancer tends to feel as a stony, asymmetrical lump compared

to so, smooth healthy prostate tissue. However, DREs have a very limited area of coverage

(ventrally located tumors are missed) and tend to miss smaller tumors. As such DRE has a

limited sensitivity and specificity8.

Aer initial suspicion has arisen due to either PSA or DRE usually a TRUS biopsy is per-

formed. As most prostate cancers are invisible on ultrasound9, TRUS biopsies are performed

in a systematic way, usually with between six and twelve cores covering part of the prostate.

Biopsy specimens are subsequently evaluated by a pathologist using the Gleason Scoring Sys-

tem.

e Gleason Scoring System is named aer Donald Gleason, who developed it with other

colleagues at the Minneapolis Veterans Affairs Hospital during the 1960s10. e system was

subsequently updated in 2005 by International Society of Urological Pathology11. A Gleason

score is assigned by the pathologist by summing two numbers; the first number indicates the

grade of the most common tumor paern in the specimen, the second number indicates the

secondmost common paern. If there are more than two paerns present in the specimen, the

second number should refer to the remaining paern with the highest grade (which contains

at least 5% of the total tumor volume). Gleason grades range from 1 - 5, where 5 is considered

the most aggressive paern. e descriptions of the different paerns are:

1. Very well differentiated, small, closely packed, uniform, glands in essentially circum-

scribed masses.

2. Similar (to paern 1) but with moderate variation in size and shape of glands and more

atypia in the individual cells; cribriform paerns may be present, still essentially cir-

cumscribed, but more loosely arranged.

3. Similar to paern 2 but marked irregularity in size and shape of glands, with tiny glands



1.1 Prostate cancer 7

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

Figure 1.3: Schematic representation of the different Gleason grades. Image adapted from 12

or individual cells invading stroma away from circumscribed masses, or solid cords and

masses with easily identifiable glandular differentiation within most of them. May be

papillary or cribriform, which vary in size and may be quite large, but the essential

feature is the smooth and usually rounded edge around all the circumscribed masses of

tumor.

4. Large clear cells growing in a diffuse paern resembling hypernephroma; may show

gland formation. Raggedly infiltrating, fused-glandular tumor; glands are not single

and separate, but coalesce and branch.

5. Very poorly differentiated tumors; usually solid masses or diffuse growth with lile or

no differentiation into glands. Can resemble comedocarcinoma of the breast; almost

absent gland paern with few tiny glands or signet cells.

ese descriptions are illustrated in Figure 1.3. Gleason scores 2 (1+1), 3 (2+1 or 1+2) and 4

(2+2) are generally discouraged aer the Gleason Scoring System revision in 200511. As such,

in clinical practice, only Gleason score of 3+2 or higher are encountered, of which 3+3 is by

far the most common paern.

e aending physician will use the biopsy Gleason score and other clinical parameters

(e.g. PSA level, number of positive biopsy cores) to decide on the best management of the

disease.
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1.1.4 Management and treatment

Severalmanagement and treatment options exist for prostate cancer, themost common choices

are active surveillance, radical prostatectomy, radiotherapy, or focal therapy.

Active surveillance is an ideal option for men with low grade, localized, well-differentiated

prostate cancer. Several studies have shown that in men with untreated, low-risk prostate

cancer the 10- to 20-year survival rates are similar to an age-matched group of men without

prostate cancer13–15. Based on these results several groups have implemented active surveil-

lance protocols using PSA tests and TRUS biopsies for follow-up. Initial results are difficult to

compare, as inclusion criteria differ between studies. e study by Klotz et al.16, including 450

patients, has the longest median follow-up (6.8 years) and has shown promising results with

a cancer specific survival of 97%.

Radical prostatectomy, external beam radiotherapy (EBRT) or brachytherapy are all treat-

ment options with intent to cure. In the United States the use of these three treatment modal-

ities is approximately equal. Cancer recurrence and survival rates are relatively similar, and

as such other factors like disease stage (lymph node involvement), expected side-effects and

patient opinion are important factors in which treatment is chosen17. One advantage of rad-

ical prostatectomy over the other two modalities is the potential to completely stage the

prostate cancer (complete Gleason grading, extra-capsular extension) and the easier biochem-

ical follow-up using PSA (PSA level should reduce to near zero aer removal of the prostate).

Research interest into focal therapy has risen over the past decade, with several options

available, e.g. laser interstitial thermotherapy (LITT), cryo-ablation or high-intensity focused

ultrasound (HIFU). Although initial results with these therapy options are promising, espe-

cially for localized, low-grade prostate cancer, they are currently not yet widely available

clinically. All treatment options for prostate cancer with intent to cure have the potential

to cause side-effects among which incontinence and sexual dysfunction are the most com-

mon18–20. Two studies reported that between around 40 - 45% of all patients have issues with

erectile dysfunction aer prostatectomy18,20. Urinary problems are reported less consistently,

with the percentage of patients affected ranging from 7 - 49%. Reported side-effects for both

EBRT and brachytherapy are lower with around 13 - 22% of patients suffering from erectile

dysfunction and 11 - 18% of patients having urinary problems. However, patients who under-

went brachytherapy or EBRT had more issues with diarrhea or blood in their stool (10%). Due

to the impact of these side effects it is important to only diagnose and treat prostate cancer

that will cause premature death.

1.1.5 Drawbas of the current diagnostic pathway

e relative simplicity of PSA testing and subsequent TRUS biopsies has lead to trials investi-

gating the potential role of these two techniques in a screening seing for prostate cancer. In
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2009 Schröder et al. published the results of a large European screening trial using PSA test-

ing and TRUS biopsies to detect prostate cancer21. An update was published in 201222. eir

results showed that there is potential for prostate cancer screening, with a reduction in the

relative risk of death due to prostate cancer of around 29%. However, the poor sensitivity and

specificity of PSA testing and TRUS biopsies would cause large amounts of over-diagnosis and

over-treatment. To save one life, 1055 men had to be screened and 37 men had to be treated

for prostate cancer.

In this screening setup, PSA testing is essentially used as a triage test for the more invasive

procedure of TRUS biopsies. As such the cut-off value selected for this test limits the overall

maximum sensitivity of the screening program. A large study byompson et al. investigated

the sensitivity and specificity of PSA at different cut-off values in over 8500 patients with an

initial PSA of 3.0 ng/mL or lower with 7 year follow-up. Aer 7 years all patients received a

end-of-study prostate biopsy. ey found that at thresholds of 1.1, 2.1, 3.1 and 4.1 the sensi-

tivities of the PSA test for predicting any cancer were 83.4, 52.6, 32.2 and 20.5% with 38.9, 72.5,

86.7 and 93.8% as the respective specificities. is is visualized in an receiver-operating char-

acteristic curve in Figure 1.4. A review study by the American Cancer Society showed similar

results23. is indicates that the maximum sensitivity for the screening program is between

32.2 and 20.5 depending on the cut-off value used. Lower cut-off values as they would result

in a very large amount of unnecessary TRUS biopsies in healthy men, as the prevalence of

prostate cancer in the screening group of men aged between 55 and 74 years is only 8.2%21.

For cancer with a Gleason score larger than or equal to 7 the sensitivities were 92.8, 75.6, 57.6

and 40.4 with 37.0, 67.3, 82.3 and 90.0 as the respective specificities. ese numbers are arbi-

trarily more relevant, as these are the cancers that need to be detected as they have a relatively

poor prognosis.

e subsequent TRUS biopsies and pathological analysis of the biopsy specimens are the

end-result of the screening program. Patient handling is based on these results. However, the

reported detection rates of TRUS are relatively poor. e most common sextant biopsy strat-

egy typically misses 15 - 34% of prostate cancers at the first biopsy24–26. Furthermore, TRUS

biopsies oen under- or over-estimate cancer grade. Underestimation occurs in around 46%

of the cases and overestimation in 18% of the cases when compared to pathological analysis

of radical prostatectomy specimens27,28.

Combining the results for PSA testing and TRUS it becomes apparent that the current tools

are inadequate for prostate cancer screening. e high threshold of 4 ng/mL on the initial PSA

test causes almost 80% of cancers to be missed at a relatively low screening specificity of 93.8%.

For the high-grade cancers, which are clinically most relevant, 59.6% at a specificity of 90.0%

would be missed. To put this into perspective: if 100000 men are screened, 2307 men would

have a high-grade cancer and require biopsy. Of these cancers 1375 would be missed due to the

poor sensitivity of PSA at this cut-off. Furthermore, an additional 232 cancers would be missed
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Figure 1.4: Receiver operating characteristic curve for prostate specific antigen blood tests in identifying prostate

cancer.

due to the poor detection rate of the TRUS biopsies and 322 of the cancers would be under-

graded. Of the 100000men 10000would receive an unnecessary biopsy, whowould have either

no cancer (9170 men) or a low-grade cancer (830 men). e men with low-grade cancer will

most likely receive some sort of (unnecessary) treatment and the associated side-effects. e

9170 men with no cancer will have to undergo an unpleasant procedure, suffer from anxiety of

potentially having prostate cancer and the associated morbidity of the biopsy. Furthermore,

even aer a negative result, they will be unsure whether they are actually cancer-free due to

the poor sensitivity of TRUS biopsies and thus will most likely undergo repeat biopsies in the

future.

Summarizing, although there is potential for prostate cancer screening, the currently ac-

cepted clinical tools for diagnosis are inadequate. If an alternative technology can improve the

overall sensitivity, and especially the specificity of the diagnostic pathway, and thus reduce

over-diagnosis and over-treatment, screening might become feasible. One technology which

has shown potential is magnetic resonance imaging (MRI).

1.2 MRI for prostate cancer

1.2.1 General concepts

e first magnetic resonance image (MRI) was created by Paul Lauterbur in 197329. He ex-

panded on the pioneering work by Herman Carr in 1952. Since then MRI has become a main-

stay imaging modality in hospitals worldwide. Magnetic resonance imaging uses the quantum

mechanical concept of spin (intrinsic angular moment of particles) to create images. Unpaired

protons, neutrons and electrons all possess a spin quantified as 1/2. Combinations of particles
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have different amounts of spin, depending on their interactions, the so called net spin. MRI

can only visualize particles with a net spin which is non-zero. e rest of this section will

specifically be on hydrogen MRI (hydrogen atoms have a net spin of 1/2).

Particles with a net spin possess a magnetic moment. When a external magnetic field is

applied the magnetic moment starts precessing about the direction of the magnetic field with

a spin-dependent angle. e rate of precession is governed by the gyromagnetic ratio (γ, an

intrinsic property of the particle) and the magnetic field strength (B0), resulting in a precession

at the so called Lamor frequency (ω):

ω = B0γ (1.1)

For particles with a net spin of 1/2 this precession can occur in a low- (parallel to the magnetic

field) or a high-energy (anti-parallel to the magnetic field) state. Transitions between the two

states are possible by absorbing a photon with the exact same energy as the energy difference

between the states. is energy difference is determined by the strength of the magnetic field;

with a higher magnetic field strength a higher energy difference between states exists. When

grouping a set of particles with certain spin at room temperature their will be slightly more

spins in the lower energy state than in the higher energy state. As the signal inMRI is acquired

using the difference in energy absorbed by the spins making the transition from the lower to

the higher energy state and the energy released by the spins moving from the higher to the

lower energy state, the amount of signal is proportional to the distribution of the spins in the

high- and low-energy states.

Because of the difference between the distribution of the spins over the different energy

levels a net magnetization vector is present along the direction of the magnetic field. By ap-

plying an electromagnetic wave of photons (a radiofrequency pulse) with energy equal to the

energy difference between the two states the orientation of the net magnetization vector can

be changed and pushed in the transverse plane. When a long enough pulse is given the dif-

ference in particles in the energy states can become zero and the net magnetization vector is

fully in the transverse plane (a so-called 90-degree pulse). Over time the spin states will re-

turn to their original distribution with a time constant T1. is recovery is called spin-laice

relaxation and is governed by the equation:

Mz(t) = M0

(
1− e

−t
T1

)
(1.2)

A second relaxation effect occurs in the transverse plane and is called spin-spin relaxation.

Immediately aer the 90-degree radiofrequency pulse the magnetic moment of the spins will

be in phase and the net magnetization vector will start precessing along the transverse plane.

As the spin magnetic moments will dephase over time, the net magnetization vector will decay

with a time constant T2 governed by the equation:

Mxy(t) = Mxy0

(
e

−t
T2

)
(1.3)
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Dephasing of the spins is caused by magnetic dipole-dipole interactions. Another effect which

causes the dephasing is inhomogeneities in the B0 field. e combination of the dipole inter-

actions and the inhomogeneity effects leads to a time constant T2∗.

By using different sequences of radiofrequent pulses signals can be measured which are

either weighted relative to T1, T2 or spin density at a spatial location. Spatial localization

of the signals can be performed by using gradients, which give each spatial location either a

slightly different frequency or a slightly different phase. By encoding spatial locations using

phase and frequency a Fourier transformation can be used to obtain images.

Tissue usually has distinctly different MRI properties (e.g. T1 or T2 times), which allows

for high so tissue contrast in MR images. Depending on the organ or disease of interest one

might have a preference for T1-weighted, T2-weighted or more advanced types of imaging.

1.2.2 Prostate MRI

MRI for prostate cancer diagnosis has been around since the 1980s. Initially only focused on

T2-weighted imaging30 due to the high tissue contrast and spatial resolution, it has since ex-

panded to include multiple MR parameters. Modern prostate MRI can consist of T2-weighted

imaging, dynamic contrast-enhanced imaging (T1-weighted), diffusion-weighted imaging and

spectroscopic imaging31–33. Prostate MRI is usually acquired using 1.5 or 3 tesla MRI with ei-

ther a pelvic phased-array coil or an endo-rectal coil. e decision whether an endo-rectal coil

is required depends on the required resolution and signal-to-noise ratio (SNR) of the images.

T2-weighted imaging is considered the standard for anatomical assessment of the prostate,

as it has the highest resolution and best tissue contrast of all the modalities. Usually, three

orthogonal directions are acquired: sagial, axial and coronal with a high in-plane resolution

(around 0.2 - 0.6mm) and a relatively large slice thickness (2 - 4 mm). On T2-weighted imaging

the peripheral zone of the prostate usually appears as a bright, relatively homogenous region.

e central zone, transition zone and fibromuscular stroma are usually hardly discernible ra-

diologically and are thus oen grouped together as a single zone: the central gland34. e

central gland is usually of a much darker appearance with a chaotic texture (caused by benign

disease like benign prostatic hyperplasia). An example of T2-weighted imaging is shown in

Figure 1.5.

Dynamic contrast-enhanced (DCE) imaging is a combination of several T1-weighted image

acquisitions over time following contrast agent injection. MRI has several types of contrast

agents, one of which are T1-shortening agents, usually containing paramagnetic metals. e

most common type of these agents are the gadolinium chelates. Administering a gadolinium

contrast agent will result in a T1 shortening proportional to the concentration of agent at the

specific location. A shortening of T1 will result in a higher signal intensity on T1-weighted

imaging and as such higher contrast between areas with a high concentration of contrast agent
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Obturator internis musclesFemur neck/head
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(d)

Figure 1.5: Example of T2-weighted prostate MRI in three orthogonal directions. Figure (a), (b) and (c) show the

transversal, sagial and coronal view respectively. Figure (d) shows the transversal view with several anatomical

structures annotated. ese images were acquired on a 3T MRI scanner using a pelvic phased array coil.
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(a) (b) (c)

Figure 1.6: Example of dynamic contrast-enhanced MRI. Figure (a) shows a pre-contrast image, Figure (b) a post-

contrast image. In Figure (c) a Ktrans parameter map is overlayed on a pre-contrast image. ese images were

acquired on a 3T MRI scanner using a pelvic phased array coil.

and areas with low concentrations. An example of a T1-weighted prostate image before and af-

ter administration of contrast is visualized in Figures 1.6a and 1.6b. Cancer tends to be rapidly

growing tissue needing lots of nutrients and oxygen. is causes cancer cells to stimulate

blood vessel growth, however, due to the fast growth vessel integrity is usually sub-optimal,

resulting in ’leaky’ vessels. e increased vascularity and permeability of the blood vessels

causes contrast agent to diffuse out into cancerous tissue more easily than into normal tissue,

resulting in higher concentrations and thus higher signal intensity on T1-weighted imaging.

By inspecting the signal-intensity-over-time curves diagnostic information can be obtained.

For example, the increase of signal intensity over time is related to the rate of uptake of con-

trast agent. To accurately describe the dynamic behavior of tissue with respect to contrast

agent uptake over time a high temporal resolution is typically needed, usually in the order of

seconds. High temporal resolution data also allows quantitative extraction of tissue parame-

ters using pharmacokinetic modeling. Pharmacokinetic modeling tries to capture quantitative

physiological parameters from DCE MRI signal-intensity-over-time curves by compartmental

modeling of tissue. e original models proposed by Tos35 and Brix36 assume that any tis-

sue voxel consists of two compartments that have exchange of contrast agent. As gadolinium

chelates cannot enter the interior of the cells, there is only exchange between the blood plasma

and the extra-vascular, extra-cellular space or ’leakage’ space (EES) through the vessel wall.

is can be described using the following equation:

Ct(t) = vpCp(t) + Ktrans

∫
Cp(τ)e

−kep(t−τ)dτ (1.4)

kep =
Ktrans

ve
(1.5)

here Ct(t) is the concentration of contrast agent in the tissue at time t, vp is the fraction of
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plasma within the tissue, Cp(t) is the concentration of contrast agent in the blood plasma at

time t, Ktrans is the volume transfer constant between blood plasma and EES, kep is the rate

constant between EES and blood plasma and ve is the fraction of EES within the tissue. In

most practical implementations of this model vp is neglected because it is usually assumed

to be close to zero. Furthermore, it requires very high temporal resolution data to correctly

estimate37. Ktrans and ve are of interest because they describe inherent tissue properties where

Ktrans is related to vessel permeability and ve is related to microscopic tissue structure.

Diffusion-weighted imaging is the newest parameter in prostate cancer MRI and tries to

capture information on the Brownian motion of protons38,39. Diffusion-weighted MRI is based

on the pioneering work of Stejskal and Tanner40. It has has been related to cellular density in

tissue (higher cell density means restricted diffusion)41. Cellular density is usually increased in

cancer due to rapid proliferation of cells. MRI is made sensitive to diffusion effects by applying

a spatially varying gradient pulse and then aer a certain time δ applying the exact same pulse

in the opposite direction. If there was no diffusion, the net effect on the spins would be zero.

However, due to diffusion the spins are affected differently by the gradient pulses, resulting

in signal loss. As signal loss is also related to T1 and T2 relaxation effects, multiple diffusion-

weighted acquisitions are made with varying gradient pulse parameters (for example strength,

or duration). e amount of signal loss over the different diffusion-weighted acquisitions can

then be calculated using:

S(b) = S(0) exp−bADC (1.6)

where b is a parameter which summarizes the gradient pulse acquisition seings (strength,

duration and time between pulses), S(b) is the signal intensity at a certain value of b, and

ADC the apparent diffusion coefficient, which is a tissue property. Given at least two different

b-value acquisitions, the ADC at a certain location (x,y, z) can be calculated using:

ADC(x,y, z) =
ln S(b2,x,y,z)

S(b1,x,y,z)

b1 − b2
(1.7)

Subscripts 1 and 2 indicate the acquisition number. Using least squares optimization this

equation can be extended to an arbitrary number of acquisitions and b-values. e ADC is

in principle sensitive to the gradient pulse direction and as such usually multiple acquisition

in orthogonal directions are made and averaged to obtain a direction-independent ADC. An

example of two different b-value images and an ADC map are shown in Figure 1.7.

Finally, MR spectroscopic imaging uses the principle of chemical shi (hydrogen protons

aached to different molecules exhibit a slightly different resonance frequency due to their

environment) to measure the concentration of different metabolites in vivo. Voxel sizes tend

to be much larger than in the other MR parameters (5x5x5mm for example), however, at each

voxel a complete resonance spectrum is obtained. Visualization usually happens by overlaying

a voxel grid over the T2-weighted imaging, which allows clinicians to correlate the spectrum
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(a) (b) (c)

Figure 1.7: Example of diffusion-weighted MRI. Figure a and b show a transversal slice with low (a) and high (b)

b-value diffusion-weighting. Image c shows an example of an apparent diffusion coefficient map calculated from

multiple b-value images. ese images were acquired on a 3T MRI scanner using a pelvic phased array coil.

to a spatial location. An example is shown in Figure 1.8. In prostate MR, spectroscopy allows

us to measure concentrations of for example choline, creatine and citrate. MR spectroscopic

imaging is currently not as widely used in clinical practice as the other modalities due to the

complexity of the acquisition and post-processing, which results in reduced reproducibility.

1.2.3 Prostate cancer diagnosis on MRI

A large body of literature exists describing the use of individual and combinations of different

MR parameters for prostate cancer detection. For T2-weighted imaging alone only a moderate

sensitivity (57 - 84%) and specificity (50 - 94%) are reported42–44. Dynamic contrast-enhanced

imaging is able to achieve 59 - 73% sensitivity and 74 - 94% specificity45,46. Additionally, in a

recent study Vos et al. investigated the use of DCE MRI to assess cancer aggressiveness and

reported an area under the receiver operating characteristic (ROC) curve of 0.72 in discriminat-

ing low-grade cancer from intermediate-to-high-grade cancer47. Diffusion-weighted imaging

has a reported sensitivity of 84- 90% and a corresponding specificity of 81-84% for the detec-

tion of prostate cancer48–50. However, stand-alone performance of diffusion-weighted imaging

was only evaluated in a limited amount of patients. Additionally, several studies have shown

a clear relation between the value of the apparent diffusion coefficient and Gleason grade51,52.

However, this holds mostly for the peripheral zone as in the central gland the diagnosis is more

difficult due to overlapping imaging characteristics of BPH and prostate cancer with respect

to diffusion-weighted imaging. Finally, one study also included the stand-alone performance

of spectroscopic imaging for the detection of prostate cancer with an area under the ROC of

0.81 versus 0.80 for T2-weighted imaging42.

Several groups have evaluated the added value of the functional imaging techniques in
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(a) (b)

Figure 1.8: Example of visualization of spectroscopic imaging in prostate MRI. Figure (a) shows the spectroscopy

grid overlayed on a transversal T2-weighted image. Figure (b) shows the obtained spectrum for the selected voxel

(indicated in red in Figure (a)). ese images were acquired with an endo-rectal coil.

Figure 1.9: A dark, homogenous region with indistinct boundaries (erased charcoal sign) can be identified in the

the top-right part of the image. is lesionwas scored a 5 on T2-weighted imaging following the ESUR guidelines.

addition to T2-weighted imaging. In32 an area under the ROC curve (AUC) of 0.84was reported

for T2-weighted imaging alone. e addition of DWI resulted in an AUC of 0.89 and the

addition of DCE in an AUC of 0.88. Combining all three parameters resulted in an AUC of

0.90. Similar results were obtained by31 with an AUC for T2-weighted imaging alone of 0.77.

e addition of only DWI resulted in an AUC of 0.90, a combination of all parameters resulted

in an AUC of 0.97. e combination of MR spectroscopy with T2-weighted imaging resulted

in an AUC of 0.85 versus 0.80 for T2-weighted imaging alone42.

Although these results show that MRI for prostate cancer has potential, a major issue with

broad adaptation was the professional disagreement on what MR parameters to use, how to

interpret them and when to use MRI53,54 (as evidenced by the large variation in reported sen-

sitivities and specificities). Recently, an effort has been made by the European Society for

Urogential Radiology (ESUR) to standardize prostate MRI33. Currently, this is being formal-
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Figure 1.10: Schematic visualization of the three different curve types that can be classified in DCE MRI of the

prostate. Curve type 3 (red curve) is a sign of malignancy.

(a)
(b)

Figure 1.11: A focal lesion with high Ktrans is visualized in Figure a. e corresponding curve (type 3) is shown

in Figure b. is lesion was assigned a score of 5 according to the DCE reporting guidelines of the ESUR.

ized in a Prostate Imaging Reporting and Data Standard (PIRADS) by the American College of

Radiology. Table 1.1 gives a summary of the scoring criteria presented by ESUR.

For T2-weighted imaging there are separate instructions for the detection of cancer in the

peripheral zone and the central gland. As mentioned in section 1.2.2, the appearance of both

zones is markedly different and the co-occurence of benign disease like BPH in the central

gland make special guidelines for this zone a necessity. In the peripheral zone prostate cancer

typically manifests as a round or ill-defined, low-signal-intensity focus. In the CG tumor oen

shows a homogeneous signal mass with indistinct margins (the so called “erased charcoal

sign”). An example of a tumor which was scored a 5 on T2-weighted imaging according to the

ESUR guidelines is shown in Figure 1.9.

For DCE imaging the basic analysis described in the ESUR guidelines uses curve types.
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Score Criteria

T2-weighted imaging for the peripheral zone

1 Uniform high signal intensity

2 Linear, wedge shaped, or geographic areas of lower SI, usually not well demarcated

3 Intermediate appearances not in categories 1/2 or 4/5

4 Discrete, homogeneous low signal focus/mass confined to the prostate

5 Discrete, homogeneous low signal intensity focus with extra-capsular extension/invasive behavior

or mass effect on the capsule (bulging), or broad (>1.5 cm) contact with the surface

T2-weighted imaging for the transition zone

1 Heterogeneous TZ adenoma with well-defined margins: “organised chaos”

2 Areas of more homogeneous low SI, however well marginated, originating from the TZ/BPH

3 Intermediate appearances not in categories 1/2 or 4/5

4 Areas of more homogeneous low SI, ill defined: “erased charcoal sign”

5 Same as 4, but involving the anterior fibromuscular stroma or the anterior horn of the PZ, usually

lenticular or water-drop shaped.

Diffusion-weighted imaging

1 No reduction in ADC compared with normal glandular tissue. No increase in SI on any

high b-value image (> b800)

2 Diffuse, hyper SI on ≥b800 image with low ADC; no focal features, however, linear, triangular or

geographical features are allowed

3 Intermediate appearances not in categories 1/2 or 4/5

4 Focal area(s) of reduced ADC but iso-intense SI on high b-value images (> b800)

5 Focal area/mass of hyper SI on the high b-value images (> b800) with reduced ADC

Dynamic contrast-enhanced imaging

1 Type 1 enhancement curve

2 Type 2 enhancement curve

3 Type 3 enhancement curve

+1 For focal enhancing lesion with curve type 2–3

+1 For asymmetric lesion or lesion at an unusual place with curve type 2–3

Magnetic resonance spectroscopic imaging

1 Citrate peak height exceeds choline peak height >2 times

2 Citrate peak height exceeds choline peak height times > 1, < 2 times

3 Choline peak height equals citrate peak height

4 Choline peak height exceeds citrate peak height > 1, < 2 times

5 Choline peak height exceeds citrate peak height >2 times

Table 1.1: ESUR guidelines for scoring multi-parametric prostate MRI per modality.
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(a) (b)

Figure 1.12: A lesion with restricted diffusion, evidenced by the high signal intensity on the high b-value image

(a) and low apparent diffusion coefficient (b). is lesion was assigned a score of 5 in concordance with the ESUR

guidelines for diffusion-weighted imaging.

e three different curve types are visualized schematically in Figure 1.10. Curve type 1 rep-

resents slow-to-moderate initial enhancement and persistent enhancement in the laer part of

the curve. Curve type 2 is slow-to-moderate initial enhancement with a subsequent enhance-

ment plateau. Curve type 3 is fast initial enhancement with a subsequent drop in enhance-

ment (wash-out). Curve type 3 is considered a sign of malignancy. At the Radboud University

Medical Center pharmacokinetic analysis has been used since 200155–57 to provide additional

analysis tools. As explained in section 1.2.2, pharmacokinetic modelling allows us to calculate

tissue parameters related to the local vasculature. ese parameters can be presented as image

overlays to the radiologist. In addition to their quantitative value (high values of Ktrans corre-

spond to higher permeability, thus higher risk of cancer) they also make it easier to assess the

focality or symmetry of lesions. An example of a lesion which was scored a 5 on DCE MRI is

presented in Figure 1.11.

For DWI imaging the scoring of the lesion is performed using a high b-value image and the

apparent diffusion coefficient map. A high b-value image (>800) is needed to minimize the T2

shine-through effect. Prostate cancer usually has a high signal intensity on the high b-value

image and a low ADC value combined with a focal appearance on both images. An example

of a 5-scored lesion is presented in Figure 1.12.

Last, spectroscopic imaging gives information about the metabolites citrate, choline and

creatine. In prostate cancer choline concentrations tend to be higher than in normal tissue

due to increased cell proliferation. e ESUR guidelines for spectroscopy specify the relative

heights of the peaks for these metabolites with respect to the scores. Typically, the individual

peaks are extracted using post-processing soware and visualized as ratio parameter maps

(similar to visualization of pharmacokinetic modeling in DCE MRI). An example is the CC-

over-C ratio (choline and creatine over citrate), which is presented in Figure 1.13, with the

corresponding post-processed spectrum.

e ESUR guideline specify that at least two functional modalities (DWI, DCE or spec-
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Figure 1.13: Overlay of the choline + creatine over citrate ratio on the T2-weighted imaging, including the spec-

troscopy grid. e selected voxel (dark blue outline) shows a high ratio of choline over citrate (a) and the corre-

sponding spectrum shows a slightly higher peak for choline (pink) than for citrate (blue). As such a score of 4

was assigned for this lesion, in concordance with the ESUR guidelines.

troscopy) should be used in conjunction with T2-weighted imaging. ey also indicate that a

total score between 1 - 5 should be given for each lesion33. However, in the initial paper by

Barentsz et al. no rules are specified for turning the per-parameter scores into a final lesion

score. Some research papers have investigated using the sum of the parameter scores linearly

(e.g. sum of 13 - 15 corresponds to 5, 10 - 12 corresponds to 4, etc.)58,59. However, in per-

sonal communication with Dr. Barentsz, he has expressed the preference assigning either the

DWI score or the T2W score as the overall lesion score depending on the zone (DWI for the

peripheral zone, T2W for the central gland).

Aer the guidelines were published several groups evaluated their performance58–61. Por-

talez et al.58 showed that using the ESUR guidelines a AUC of 0.87 was obtainable in differ-

entiating normal/benign and prostate cancer regions. Using a cut-off of 9 for the sum-of-

parameter-scores the obtained sensitivity and specificity were 69.1 and 92.2%. Schimmöller et

al. investigated the inter-reader agreement among three readers using Cohens’ kappa in ad-

dition to reader performance in 67 consecutive patients. ey found moderate-to-good inter-

reader agreement between radiologists (T2W, κ=0.55; DWI, κ=0.64; DCE, κ=0.65). ey found

a sensitivity and specificity of 85.7 and 67.6% for a sum score cut-off of 10 and 92.2 and 47.1%

for a cut-off of 9. Rosenkrantz et al.59,60 also investigated both the inter-reader agreement and

the overall performance of the guidelines. ey found similar performance characteristics,

however they also found that agreement between experienced and inexperienced reader was

much less than between experienced readers (Concordance Correlation Coefficient of 0.609

versus 0.340 - 0.471).

1.2.4 MRI as a screening tool for prostate cancer

Currently, MRI is mostly used as a tool to diagnose patients with persistently high PSA lev-

els and negative TRUS biopsies. However, given the much improved performance of MRI
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over TRUS biopsies, it could also supplant them in a screening seing. Some studies have

investigated the use of PSA and MRI as a screening tool. ompson et al.62 found a sensi-

tivity of 97% for the detection of clinically significant prostate cancer (Gleason score >3+4)

with a specificity of 0.50. Furthermore, Pokorny et al.63 found that using multi-parametric

MRI and MR-guided biopsy in biopsy-naïve men results in a large reduction of over-diagnosis

of low-grade cancer (82%) while detecting 17% more intermediate/high-grade cancers than

TRUS-guided biopsy.

One oen mentioned argument is that MRI is too expensive for screening. Recently, de

Rooij et al.64 published a cost-effectiveness study comparing the current diagnostic pathway

to one where TRUS biopsies are replaced with MRI and MR-guided biopsies. ey showed

that the overall cost is almost similar (2423 euro for MRI compared to 2392) and that the cost

per quality-adjusted life year was reduced by 323 euros. e main reason for the lower cost

per quality-adjusted life year is the substantially reduced amount of unnecessary biopsies and

treatment. Moreover, markedly lower patient morbidity is expected.

As such, MRI is not only the best performing option for prostate cancer screening (poten-

tially aer initial PSA testing at the appropriate cut-o), but also of similar cost as PSA/TRUS.

However, there are still challenges beforeMRI-based screening can become a reality. One issue

is the availability of experienced radiologists to read the subsequent flood of MRIs, especially

if one wants to implement double reading like in mammography screening. A potential solu-

tion for this issue is the implementation of computer-aided detection algorithms to function

as a first or second reader.

1.3 Computer-aided detection and diagnosis

Computer-aided detection and diagnosis (CAD) in medical imaging (oen named CADe and

CADx to differentiate the two) is a field at the cross-roads of image analysis, medicine and

machine learning. A very general description of CAD research is: “the use of computer al-

gorithms to aid the image interpretation process”65. e very first publication on the use of

computer algorithms to aid image interpretation was published in 1963 and focused on the

analysis of pulmonary lesions in chest radiographs66. Since then, availability of computers,

increase in computing power and the digitization of radiological images has led to an increase

in publications in the field of CAD. e main subject of this thesis is the research and devel-

opment of fully automated computer programs to detect and characterize prostate cancer on

multi-parametric MRI.

1.3.1 General concepts

A complete CAD program is usually referred to as a “CAD system”. is naming is apt, as a

CAD system is not a single algorithm, but a pipeline involving multiple, distinct algorithms
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which can individually be replaced without changing the rest of the system (algorithmically).

Typically, CAD systems share many similar steps (or modules); the most common ones are:

pre-processing, segmentation, feature calculation and classification. ese are set up in a

pipeline fashion with the result of one module feeding into the next. However, more com-

plex pipelines with feedback loops are also used. Each of these modules is designed to tackle

a specific problem.

Pre-processing steps are usually designed to make the original medical images suitable for

the subsequent modules. Typical examples are noise reduction, contrast improvement, or edge

enhancement. In the analysis of MRI images intensity differences between different scanner

vendors or protocols are an issue as computers usually interpret image values absolutely, in-

stead as relative as humans usually do. A pre-processing step could involve removing scanner

and protocol dependencies from the signal intensities. An example of such a strategy is used

in chapters 3 and 6. Another type of pre-processing is assessing whether the CAD system can

actually perform subsequent steps given the input image. For example, if the image is of too

poor quality it might be beer to save computation time and flag the image as unusable. is

prevents meaningless output, which in the end might reduce the confidence of the end-user

in the system.

Segmentation is commonly meant to reduce the complexity of the classification task for

the rest of the CAD system. As an example, forcing a CAD system to detect cancer in the

entire abdomen is much more difficult than detecting cancer in just the prostate, not only be-

cause the search area is increased substantially, but also because some structures might exhibit

similar characteristics as prostate cancer. For example, muscle appears dark on T2-weighted

imaging, as does prostate cancer. Segmentation of the prostate is covered in chapter 2. How-

ever, segmentation is not only performed on an organ-basis. Lesions are also segmented with

the goal of extracting features from the lesion area, or from the segmentation itself. Finally,

segmentations do not have to be binary, they can also be probabilistic, giving a likelihood per

pixel/voxel of belonging to a certain anatomical structure. In this way it can for example be

used as a feature. is concept will be used in chapters 3 and 6.

Features are imaging characteristics which separate different classes, in this thesis prostate

cancer from normal prostate tissue and benign prostate disease. Feature design for CAD sys-

tems is usually based on some inherent knowledge of the task. Extensive use was made of the

features described by the ESUR guidelines. However, it is oen difficult for humans to de-

scribe the features they subconsciously use. For example, it is hard to teach a computer what

an “erased charcoal sign” is. As such feature design sometimes also depends on more general

descriptors of image structure, an example of which are Gaussian derivatives67,68. is type of

feature is less intuitive by itself, but a subsequent classifier can use the combination of features

to obtain a meaningful class separation. Additionally, the recently renewed interest in “deep

learning” has made sparse auto-encoders a popular way to discover features from images.
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Sparse auto-encoders can use unlabeled images to automatically extract relevant features69.

Both intuitive features and basic image descriptors for classification are used throughout this

thesis. In addition to the features themselves, several dimensionality reduction and feature

selection schemes are typically used in CAD system development to circumvent the so called

curse of dimensionality. e curse of dimensionality refers to the exponential increase in the

size of feature space and as such the required amount of training samples to cover this space.

Dimensionality reduction or feature selection help reduce the size of the feature space and

thus make a subsequent classification problem more manageable. Examples of dimensionality

reduction are principle component analysis and sparse coding. Maximum relevance minimum

redundancy (mRMR) feature selection70, correlation feature selection71 (CFS) and sequential

forward floating feature selection (SFFS) are example of feature selection strategies, of which

the laer is used in Chapter 4.

Classification is the task of assigning labels to unlabeled samples, in which each sample has

one or more feature values. Classifiers do this by constructing a decision boundary, a hyper-

plane through feature space which separates different classes. Classifiers can be supervised

or unsupervised, in this thesis we focus on supervised classification. Supervised classifica-

tion requires a training step in which the classifiers learns the decision boundary from labeled

data. ere are roughly two types of supervised classifiers: parametric and non-parametric.

Parametric classifiers impose a distribution on the data, usually a Gaussian distribution. Two

examples of such classifiers are the linear discriminant classifier (LDC) and the quadratic dis-

criminant classifier72. Non-parametric classifiers do not assume a specific data distribution,

examples of such classifiers are the k-Nearest Neighbor (kNN) classifier72, the GentleBoost

classifier (GBC)73 and the random forest classifier (RFC)74. Classifiers also differ in complexity,

the linear discriminant classifier is a relatively simple classifier with a linear decision bound-

ary whereas a GentleBoost or random forest classifier can learn much more complex decision

boundaries. A general rule of thumb is that the more complex the classifier, the more training

data is needed is to obtain an accurate decision boundary. An example of a decision boundary

constructed by both an LDC and GBC is shown in Figure 1.14.

Aer classification usually a label or likelihood is obtained. In the first case the classifier

will simply predict the most likely class label for a sample, in the laer case it will give a

likelihood per class. is output can then be used as is, or presented to a human interpreter

to aid in the decision making process.

1.3.2 CAD in clinical practice

efirst computer-aided detection systemwas approved by the Food and Drug Administration

(FDA) for commercial use in 1998. is CAD system indicated location of potential breast

cancer in mammograms aer an initial read by a radiologist. As such it was designed to
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Figure 1.14: Example of classifier decision boundaries for artificially generated data. Figure (a) shows the decision

boundary of a linear discriminant classifier (LDC) and Figure (b) of a GentleBoost classifier (GBC). One can

observe that the linear nature of the LDC decision boundary is not adequate for correctly classifying this type of

data.

reduce the number of missed cancers. Since then several CAD systems have made their way

to the clinic for a wide variety of applications ranging from analysis of hand radiographs for

bone age reading75 to detection of lung nodules in chest radiographs76,77.

e added value of computer-aided detection has been evaluated in several clinical trials,

with mixed results78–82. Most trials focus on the use of computer-aided detection in mammog-

raphy, where it is historically most widely used due to the implementation of breast cancer

screening programs. In the study by Gilbert et al. it was found that single reading with CAD

was as effective as double reading by two radiologist78. However, Fenton et al. found that

reading with CAD resulted in increased recall rates without any significant effect on early-

detected breast cancer82.

Due to the inconclusive results on the usefulness of the current implementation of CAD

algorithms, several research groups have investigated alternative approaches to CAD. One

such approach is the use of CAD systems as an independent first reader or second reader83–85.

Another option is the interactive use of CAD, which advocates the idea that missed lesions are

the result of a wrong characterization instead of the lesion being overlooked86,87. In chapter 7

the use of CAD as an independent first/second reader was investigated.

1.3.3 CAD for prostate cancer on MRI

Computer-aided detection of prostate cancer on multi-parametric MRI is a relatively young

field, with the first papers appearing in 2003. Since then several research groups have shown

interest, which has lead to a number of publications. Chan et al. were the first to implement a

multi-parametric CAD system for the detection of prostate cancer88 . In their approach they

used line-scan diffusion, T2 and T2-weighted images in combination with a support vector

machine (SVM) classifier to classify predefined areas of the peripheral zone of the prostate

for the presence of prostate cancer. Langer et al.89 included dynamic-contrast enhanced im-

ages and pharmacokinetic parameter maps as extra features to a CAD system for prostate
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peripheral zone cancer. Puech et al.90 implemented a computer-aided diagnosis system for

both the peripheral and transition zones based on the dynamic contrast enhanced images. Ar-

tan et al.91 used cost-sensitive conditional random fields to assess the detection performance

of a multi-parametric CAD system compared to a CAD system based on the individual MR

images. Liu et al.92 presented a CAD system for peripheral zone prostate cancer which does

not need an explicit segmentation of the peripheral zone by including anatomical position

features. Tiwari et al.93,94 investigated the use of magnetic resonance spectroscopy in com-

bination with T2-weighted imaging to identify the spectroscopy voxels that are affected by

prostate cancer. ey also introduced the use of wavelet embedding to map MRS and T2-W

texture features into a common space. is work was further expanded and evaluated in94.

Viswanath et al.95 showed that cancer in different zones has quantifiable differences in appear-

ance. Lastly, Vos et al.96 recently implemented a two-stage computer-aided detection system

for prostate cancer using an initial blob detection approach combined with a candidate seg-

mentation and classification using statistical region features. Hambrock et al. assessed the po-

tential of computer-aided diagnosis in improving reader performance in prostate MRI97. ey

showed that both inexperienced readers and experienced readers could increase their area un-

der the receiver operating characteristic curve when assessing whether pre-defined regions

were prostate cancer or not. Overall, inexperienced readers were able to achieve near-expert

performance (AUC=0.91 versus 0.93) when using CAD.

However, what all these methods lack is fully automated analysis of prostate MRI images

for all prostate zones at a performance level close to the radiologist. e only fully automated

system that takes a multi-parametric MRI as input and outputs a number of regions with

associated cancer likelihoods was the system presented by Vos et al, however, at a performance

which was yet too low for clinical implementation. A fully automated system is needed before

efficiency and the lack of experienced radiologists can be addressed. Such a system could be

used independently of the radiologist to characterize prostate MRI at a high sensitivity level,

thus reducing the workload for the experienced radiologists. Furthermore, using a different

operating point, it could potentially replace the role of a second observer in a double reading

seing. Last, it could also be used as an aid to the radiologist reading prostateMRI by providing

a ’second opinion’ for radiologist-indicated regions. By operating in these three seings the

CAD system could solve the problem of the lack of experienced radiologists.

1.4 Performance evaluation and statistical tests

1.4.1 General concepts

To investigate whether research findings are meaningful and not caused by chance, statistical

significance testing is used. In this thesis one of two strategies was employed: logistic re-
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gression analysis or receiver operating characteristic analysis. e former was used to assess

the added value of features and clinical parameters in the diagnosis of prostate cancer and

the laer to compare the diagnostic performance of humans and computer-aided detection

systems.

Logistic regression

Logistic regression measures the relationship between a categorical dependent variable (for

example prostate cancer/not prostate cancer) and one or more independent variables98. Bi-

nomial logistic regression uses the logistic function to map any combination of continuous

descriptors (with any possible value between −∞ and +∞) to an output between 0 and 1,

which can be interpreted as a likelihood. e logistic function is defined as:

F(t) =
et

et + 1
=

1
1+ e−t

(1.8)

t = β0 + β1x1 + . . . (1.9)

where t can be any linear combination of explanatory descriptors. Given a set of samples,

maximum likelihood estimation is used to fit the logistic regression model, usually using op-

timization based on Newton’s method. In general, when enough samples are used relative to

the amount of descriptors, the optimization procedure will converge and result in estimates for

the regression coefficients βn. Using the likelihood ratio test one can assess whether a model

is a significant improvement over a model with less descriptors. To perform the likelihood

ratio test the deviance needs to be calculated:

D = −2 ln
likelihood of the fied model

likelihood of the saturated model
(1.10)

here the likelihood of the saturated model is the likelihood of a model with perfect fit to the

data. e difference in the deviances of the two models one wants to compare can then be

tested using a chi-square distribution with degrees of freedom equal to difference in the num-

ber of descriptors estimated.

e value of the regression coefficient can be used to interpret the size of the effect a

descriptor has on the overall output. Assuming that the descriptors are similarly scaled, the

further the corresponding regression coefficient deviates from zero, the bigger the impact of

the predictor on the output.

Sensitivity, specificity and the receiver operating characteristic curve

Any classification task will lead to errors, whether it is performed by humans or by a computer

system. In a two-class classification problem there are four outcomes: a sample is correctly

classified as class 1, a sample is incorrectly classified as class 1, a sample is correctly classified
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Figure 1.15: An example of a receiver operating characteristic curve. In this figure the mean bootstrap curve

(dashed line) and the 95% confidence intervals (transparent area) are also ploed.

as class 0 or sample is incorrectly classified as class 0. Assuming class 1 is the target class (in

this thesis prostate cancer) these outcomes are a true positive (TP), false positive (FP), true

negative (TN) or false negative (FN) respectively. Given the total number of TP, FP, TN and

FNs across a set of data the sensitivity and specificity of the classifier can be calculated. e

sensitivity and specificity are defined as:

Sensitivity =
TP

TP+FN
(1.11)

Specificity =
TN

TN+FP
(1.12)

Sensitivity can be interpreted as the percentage of samples in class 1 which were correctly

classified as class 1, or in clinical terms, the cases having a disease correctly identified as having

the disease. Specificity is the percentage of samples in class 0 which are correctly identified

as class 0, or again in clinical terms, the cases which are healthy correctly identified as being

healthy. Usually there is a direct trade-off between sensitivity and specificity, increasing one

will decrease the other.

When a classification task doesn’t give a binary prediction, but an ordinal one (e.g. the

ESUR lesion score, or likelihood obtained from a logistic regression model) multiple pairs of

sensitivity and specificity can be generated by changing the threshold at which a sample is

classified as class 1. Using these pairs a receiver operating characteristic (ROC) curve can

be generated (Figure 1.15). e area under this curve (AUC) can be calculated, which is the

probability that, given a random positive and negative sample, the positive sample will have
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the higher score. e minimum value of the AUC is 0 and the maximum value 1, although

typically 0.5 is considered the worst value as it corresponds to straight-out guessing. e

maximum value of 1 corresponds to perfect classification. e AUC is not always the most ap-

propriate measure to evaluate a diagnostic test, sometimes single pair of sensitivity/specificity

or a partial area under the curve can be more informative, depending on the task. For example,

in a screening seing, where the vast majority of patients is healthy, high sensitivity is only

relevant within the part of the curve with high specificity.

Sometimes it can be informative to explicitly include the prevalence of the classes in the

performance measure to get a beer understanding what it means in a practical scenario.

In those cases a positive predictive value (PPV) and negative predictive value (NPV) can be

calculated, which are defined as:

PPV =
TP

TP+FP
(1.13)

NPV =
TN

TN+FN
(1.14)

In addition to ROC analysis, which assumes one outcome per case, free-response receiver

operating characteristic (FROC) is oen used. In FROC instead of specificity, the number of

false positives per case are used, as multiple false detection per scan can typically occur. From

FROC results a ROC can be calculated by converting the multiple detections per case into a

single likelihood.

Statistically evaluating the performance of different diagnostic tests or CAD systems in

thesis is usually performed using bootstrapping99,100. Bootstrapping is a non-parametric way

to statistically evaluate differences in performance. In bootstrapping the output data is re-

sampled with replacement. Each re-sample is one bootstrap sample and from this sample

the performance metric can be calculated, e.g. the AUC. When two methods are statistically

compared they are re-sampled in exactly the same way so a paired test can be performed. e

p-value can then be calculated by counting the amount of bootstrap samples of one method

which give a higher result than the other method.

In addition to bootstrapping in chapter 5 the ROCKIT soware package was used to sta-

tistically compare ROC curves101. is package first fits a bi-normal model to diagnostic test

outputs for each class and can then subsequently calculate the ROC curve, AUC and the 95%

confidence intervals.

1.5 esis outline

e main objective of this thesis was to design a computer-aided detection system to detect

cancer in prostate MRI which could be used in clinical practice. Although several papers

already describe these types of systems numerous challenges remain: the system needs be
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fully automated, it needs to work both in the peripheral zone and the central gland and it

should approach the performance of a human expert. Meeting these requirements will allow

us to solve one of the issues currently prohibiting MRI-based prostate cancer screening: the

lack and cost of experienced radiologists. Furthermore, a computer-aided detection system

could help improve the performance of individual radiologists. is thesis tries to meet and

solve the presented challenges and our results are presented in the subsequent chapters.

In chapter 2 the preparation, organization and results of a prostate MRI segmentation chal-

lenge (PROMISE12) are discussed. e goal of the challenge was to identify the performance

of different categories and implementations of algorithms that segment the prostate. Multi-

center, multi-protocol and multi-vendor data was used to evaluate the methods to ensure that

algorithms which showed good performance would generalize well to different centers.

Chapter 3 subsequently focuses on the use of paern recognition methods to segment the

peripheral zone and central gland, both probabilistically and binary. It also includes a method

to reduce inter-scanner and inter-protocol variation on T2-weighted imaging. Segmentation

results were compared to those of three different observers.

In chapter 4 and 5 the design of discriminative features for assessing cancer aggressiveness

and separating cancer from benign confounding classes like BPH is presented. Prostatectomy

specimens were mapped to the MRI to accurately delineate specific lesions. e use of logistic

regression and SFFS feature selection to identify useful features from a large initial feature set

was investigated.

Chapter 6 is concernedwith the development of the CAD pipeline, including segmentation,

features, classification and initial evaluation on a large retrospective data set. A two-stage

classification pipeline is built using initial voxel classification and subsequent false positive

reduction.

Chapter 7 details the evaluation of the CAD system on a prospective set of data and the

usefulness of the system in a clinical seing where it could function as an independent second

reader. e focus is on the improvement in reader performance and the correlation of the CAD

system likelihoods with cancer aggression.
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2.1 Introduction

Prostate MRI image segmentation has been an area of intense research due to the increased

use of MRI as a modality for the clinical workup of prostate cancer, e.g. diagnosis and treat-

ment planning28,31,32,102,103. Segmentation is useful for various tasks: to accurately localize

prostate boundaries for radiotherapy104, perform volume estimation to track disease progres-

sion105, to initialize multi-modal registration algorithms106 or to obtain the region of interest

for computer-aided detection of prostate cancer94,96, among others. As manual delineation of

the prostate boundaries is time consuming and subject to inter- and intra-observer variation,

several groups have researched (semi-)automatic methods for prostate segmentation104,107–112.

However, as most algorithms are evaluated on proprietary datasets a meaningful comparison

is difficult to make.

is problem is aggravated by the fact that most papers cannot include a comparison

against the state-of-the-art due to previous algorithms being either closed source or very dif-

ficult to implement without help of the original author. Especially in MRI, where signal in-

tensity is not standardized and image appearance is for a large part determined by acquisition

protocol, field strength, coil profile and scanner type, these issues present a major obstacle in

further development and improvement of prostate segmentation algorithms.

In recent years several successful ’Grand Challenges in Medical Imaging’ have been or-

ganized to solve similar issues in the fields of liver segmentation on CT113, coronary image

analysis114, brain segmentation on MR115, retinal image analysis116 and lung registration on

CT117. e general design of these challenges is that a large set of representative training data

is publicly released, including a reference standard for the task at hand (e.g. liver segmen-

tations). A second set is released to the public without a reference standard, the test data.

e reference standard for the test data is used by the challenge organizers to evaluate the

algorithms. Contestants are then allowed to tune their algorithms to the training data aer

which their results on the test data are submied to the organizers who calculate predefined

evaluation measures on these test results. e objective of most challenges is to provide inde-

pendent evaluation criteria and subsequently rank the algorithms based on these criteria. is

approach overcomes the usual disadvantages of algorithm comparison, in particular, bias.

e Prostate MR Image Segmentation (PROMISE12) challenge presented in this paper tries

to standardize evaluation and objectively compare algorithm performance for the segmenta-

tion of prostate MR images. To achieve this goal a large, representative set of 100 MR images

was made available through the challenge website: http://promise12.grand-challenge.
org/. is set was subdivided into training (50), test (30) and live challenge (20) datasets (for

further details on the data, see section 2.2). Participants could download the data and ap-

ply their own algorithms. e goal of the challenge was to accurately segment the prostate

capsule. e calculated segmentations on the test set were then submied to the challenge
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(a) (b) (c) (d)

Figure 2.1: Slice of a data set from different centers to show appearance differences. Figure (a) is from Haukeland

University Hospital, Norway and was acquired at 1.5T with an endorectal coil. Figure (b) is from Beth Israel

Deaconess Medical Center, USA and was acquired at 3.0T with an endorectal coil. Figure (c) if from University

College London, United Kingdom acquired at 1.5T and 3.0T without an endorectal coil. Figure (d) is from the

Radboud University Medical Centre, e Netherlands and was acquired at 3.0T without an endorectal coil.

organizers through the website for independent evaluation. Evaluation of the results included

both boundary and volume based metrics to allow a rigorous assessment of segmentation ac-

curacy. To calculate an algorithm score based on these metrics, they were compared against

human readers. Further details about generation of the algorithm score can be found in section

2.3.2.

is paper will describe the setup of the challenge and the initial results obtained prior to

and at the workshop hosted by the MICCAI2012 conference in Nice, where a live challenge

was held between all participants. New results, which can still be submied through the

PROMISE12 website, can be viewed online.

2.2 Materials

2.2.1 MRI images

In MRI images, the pixel/voxel intensities and therefore appearance characteristics of the

prostate can greatly differ between acquisition protocols, field strengths and scanners33,54. Ex-

ample causes of appearance differences include the bias field118,119, signal-to-noise ratio120,121

and resolution31,32, especially through-plane. Additionally, signal intensity values are not stan-

dardized122,123. erefore a segmentation algorithm designed for use in clinical practice needs

to deal with these issues124,125. Consequently, we decided to include data from four different

centers: Haukeland University Hospital (HK) in Norway, the Beth Israel Deaconess Medi-

cal Center (BIDMC) in the US, University College London (UCL) in the United Kingdom and

the Radboud University Nijmegen Medical Centre (RUNMC) in the Netherlands. Each of the

centers provided 25 transverse T2-weighted MR images. is resulted in a total of 100 MR

images. Details pertaining to the acquisition can be found in Table 2.1. Additionally, a cen-
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Center Field Strength Endorectal coil Resolution (in-/through-plane in mm) Manufacturer

HK 1.5T Yes 0.625 / 3.6 Siemens

BIDMC 3T Yes 0.25 / 2.2 - 3 GE

UCL 1.5 and 3T No 0.325 - 0.625 / 3 - 3.6 Siemens

RUNMC 3T No 0.5 - 0.75 / 3.6 - 4.0 Siemens

Table 2.1: Details of the acquisition protocols for the different centers. Each center supplied 25 T2-weighted MR

images of the prostate.

(a) (b) (c)

Figure 2.2: Example T2-weighted transverse prostate MRI images displaying an apical, central and basal slice.

e reference standard segmentation is shown in yellow and the second observer segmentation in red. Figures

(a), (b) and (c) are at the apex, center and base of the prostate respectively.

tral slice of a data set for each of the centers is shown in Figure 2.1 to show the appearance

differences. ese scans where acquired either for prostate cancer detection or staging pur-

poses. However, the clinical stage of the patients and the presence and location of prostate

cancer is unknown to the organizers. Transverse T2-weighted MR was used because these

contain most anatomical detail33, are used clinically for prostate volume measurements103,105

and because most current research papers focus on segmentation on T2-weighted MRI. e

data were then split randomly into 50 training cases, 30 test cases and 20 live challenge cases.

Although the selection process was random, it was stratified according to the different centers

to make sure no training bias towards a certain center could occur.

2.2.2 Segmentation Reference Standard

Each center provided a reference segmentation of the prostate capsule performed by an experi-

enced reader. All annotations were performed on a slice-by-slice basis using a contouring tool.

e contouring tool itself was different for the different institutions, but the way cases were

contoured was similar. Contouring was performed by annotating spline-connected points in

either 3DSlicer (www.slicer.org) or MeVisLab (www.mevislab.de). e reference segmen-
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tations were checked by a second expert, C.H., who has read more than 1000 prostate MRIs,

to make sure they were consistent. is expert had no part in the initial segmentation of the

cases and was asked to correct the segmentation if inconsistencies were found. e resulting

corrected segmentations were used as the reference standard segmentation for the challenge.

An example of a reference segmentation at the base, center and apex of the prostate is shown

in Figure 2.2.

2.2.3 Second Observer

For both the testing and the live challenge data a relatively inexperienced nonclinical observer

(W.v.d.V, two years of experience with prostate MR research) was asked to manually segment

the prostate capsule using a contouring tool. e second observer was blinded to the reference

standard to make sure both segmentations were independent. e second observer segmen-

tations were used to transform the evaluation metrics into a case score, as will be explained

in section 2.3.2. An example of a second observer segmentation is shown in Figure 2.2.

2.3 Evaluation

2.3.1 Metrics

e metrics used in this study are widely used for the evaluation of segmentation algorithms:

1. the Dice coefficient (DSC)108,113

2. the absolute relative volume difference, the percentage of the absolute difference be-

tween the volumes (aRVD)113

3. the average boundary distance, the average over the shortest distances between the

boundary points of the volumes (ABD)113

4. the 95% Haussdorf distance (95HD)111

All evaluation metrics were calculated in 3D. We chose both boundary and volume metrics

to give a more complete view of segmentation accuracy, i.e. in radiotherapy boundary based

metrics would be more important, whereas in volumetry the volume metrics would be more

important. In addition to evaluating these metrics over the entire prostate segmentation, we

also calculated them specifically for the apex and base parts of the prostate, because these

parts are very important to segment correctly, for example in radiotherapy and TRUS/MR fu-

sion. Moreover, these are the most difficult parts to segment due the large variability and slice

thickness. To determine the apex and base the prostate was divided into three approximately

equal parts in the slice dimension (the caudal 1/3 of the prostate volume was considered apex,
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the cranial 1/3 was considered base). If a prostate had a number of slices not dividable by 3

(e.g. 14), the prostate would be divided as 4-6-4 for the base, midgland and apex respectively.

e DSC was calculated using:

D(X,Y) =
2|X ∩ Y|

|X|+ |Y|
(2.1)

where |X| is the number of voxels in the reference segmentation and |Y| is the number of voxels

in the algorithm segmentation.

e relative volume difference was calculated as:

RVD(X,Y) = 100×
(
|X|

|Y|
− 1

)
(2.2)

and thus the absolute relative volume difference is

aRVD(X,Y) = |RVD(X, Y)| (2.3)

Note that although we use the aRVD to measure algorithm performance (both under- and

over-segmentation are equally bad), in the results we will present the RVD, which makes it

possible to identify if algorithms on average tend to over- or under-segment the prostate.

For both the 95th percentile Hausdorff distance and the average boundary distance we

first extract the surfaces of the reference segmentation and the algorithm segmentation. e

regular Hausdorff distance is then defined as:

HDasym(Xs,Ys) = max
x∈Xs

(
min
y∈Ys

d(x,y)
)

(2.4)

HD(Xs,Ys) = max
(
HDasym(Xs,Ys), HDasym(Ys,Xs)

)
(2.5)

where Xs and Ys are the sets of surface points of the reference and algorithm segmentations

respectively. e operator d is the Euclidean distance operator. As the normal Hausdorff

distance is very sensitive to outliers we use the 95th percentile of the asymmetric Hausdorff

distances instead of the maximum.

Finally, the average boundary distance (ABD) is defined as:

ABD(Xs,Ys) =
1

NXs +NYs

(∑
x∈Xs

min
y∈Ys

d(x,y) +
∑
y∈Ys

min
x∈Xs

d(y, x)

)
(2.6)

2.3.2 Score

Algorithms were ranked by comparing the resulting evaluation measures to the second ob-

server and the reference segmentation in a way similar to Heimann et al. 113 . First, the metrics

of the second observer segmentations are calculated with respect to the reference segmenta-

tion. en we average each metric over all cases and define a mapping function:

score(x) = max (ax+ b, 0) (2.7)
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is function maps a metric value x to a score between 0 and 100. e equation is solved for a

and b by seing a score of 100 to a perfect metric result, e.g. a DSC of 1.0 and seing a score

of 85 to a metric result equal to the average metric value of the second observer. is will give

us two equations to solve the two unknowns, a and b. Additionally, a score of zero was set as

the minimum because otherwise cases with a very poor or missing segmentation could bias

the final score of an algorithm too much. As an example, if the second observer segmentations

have an average DSC of 0.83, a and b are 88.24 and 11.76 respectively. As such, if an algorithm

obtains a DSC of 0.87 on a case the score will be 88.53. is approach is applied to all metrics.

e scores for all metrics were averaged to obtain a score per case. en the average over all

cases was used to rank the algorithms.

A relatively high reference score of 85 was chosen for the second observer because her

segmentations were in excellent correspondence with the reference standard. An even higher

score than 85 would not be warranted, as the segmentations still contain errors experienced

observers would not make. e average metric scores for the second observer are presented

in Tables 2.6 and 2.7. Comparing these metric scores to scores reported in literature for inter-

observer variability we can see that they are at approximately at the same level104,107–112.

e main reason to use this approach is that it allows us to incorporate completely differ-

ent, but equally important metrics like average boundary distance and the Dice coefficient.

Furthermore, in addition to allowing us to rank algorithms, the scores themselves are also

meaningful, i.e. higher scores actually correspond to beer segmentations. An alternative ap-

proach could have been to rank algorithms per metric and average the ranks over all metrics.

However, such an average rank is not necessarily related to a segmentation performance: the

best ranking algorithm could still show poor segmentation results that are much worse than

the second observer.

2.4 Methods

is section gives an overview of all the segmentation methods that participated in the chal-

lenge. A short description for each algorithm is given. More detailed descriptions of the algo-

rithms can be found in peer-reviewed papers submied to the PROMISE12 challenge, available

at: http://promise12.grand-challenge.org/Results. Algorithms were categorized as

either automatic (no user interaction at all), semi-automatic (lile user interaction, e.g. set-

ting a single seed point) or interactive (much user interaction, e.g. painting large parts of the

prostate). e algorithm categories and additional details can be found in Tables 2.3 and 2.8.

e names in subsection titles are the team names chosen by the participants and are as such

not related to the method themselves. Most names are either abbreviations of group names

or company names. Links to the websites of the individual groups can also be found on the

PROMISE12-website.
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2.4.1 Fully automatic segmentation of the prostate using active appearance models
- Imorphics

Vincent et al. 126 of Imorphics Ltd. have developed a generic statistical modeling system de-

signed to minimize any bespoke development needed for different anatomical structures and

image modalities.

e Imorphics system generates a set of dense anatomical landmarks from manually seg-

mented surfaces using a variant of the Minimum Description Length approach to Groupwise

Image Registration127. e correspondence points and associated images are used to build

an Appearance Model. e Appearance Model is matched to an unseen image using an Ac-

tive Appearance Model (AAM) which optimizes the model parameters to generate an instance

which matches the image as closely as possible128.

Active Appearance Models require an initial estimate of the model parameters including

position, rotation and scale. e system uses a multi-resolution gridded search method. is

is started at a low image and model resolution with a small number of measured residuals

to make it reasonably fast. e results of these searches are ranked according to the sum of

squares of the residual, and a proportion removed from consideration. e remaining search

results are used to initialize models at a higher resolution, and so on. Finally, the single best

result at the highest resolution gives the segmentation result.

2.4.2 Region-specific hierarical segmentation ofMR prostate using discriminative
learning - ScrAutoProstate

e segmentation pipeline developed by Birkbeck et al. 129 addresses the challenges of MR

prostate segmentation through the use of region-specific hierarchical segmentation with dis-

criminative learning.

First, an intensity normalization is used to adjust for global contrast changes across the

images. Images with an endorectal coil are then further enhanced by flaening the intensity

profile on the bright regions near the coil using an automatic application of Poisson image

editing130.

In the next phase of the pipeline, a statistical model of mesh surface variation learned from

training data is aligned to the normalized image. e pose parameters of the shape model are

extracted through the use of marginal space learning131, which decomposes the estimation of

pose into sequential estimates of the position, orientation, scale, and then the first few modes

of variation. e estimation of each set of pose parameters relies on a probabilistic boost-

ing tree classifier to discriminatively model the relationship between the image data and the

unknown parameters being estimated. During training, each classifier automatically selects

the most salient features from a large feature pool of Haar and steerable features. Aer the

statistical mesh model has been aligned to the input image using marginal space learning, the
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segmentation is refined through a coarse-to-fine boundary refinement that uses surface vary-

ing classifiers to discriminate the boundary of the prostate from adjacent so tissue. e mesh

from this final refinement stage is constrained by the statistical shape model.

2.4.3 Smart paint - CBA

Malmberg et al. 132 have developed an interactive segmentation tool called Smart Paint. e

user segments the organ of interest by sweeping the mouse cursor in the object or background,

similar to how an airbrush is used. Areas are paintedwith a semi-transparent colorwhich gives

immediate feedback in the chosen interaction plane. As the paint is applied in 3D, when the

user moves to another plane using the mouse thumbwheel the effect of the painting is seen

also there.

e algorithmworks by taking both the spatial distance to the cursor and the image content

(intensity values) into account. e image I and the segmentation function f are mappings

from elements of a three dimensional voxel set to the interval [0,1]. A voxel x belongs to the

foreground if f(x) > 0.5, and to the background otherwise. Initially, f = 0. e brush tool has

a value v that is either 1 (to increase the foreground) or 0 (to increase the background). A single

brush stroke centered at voxel x affects the segmentation at all nearby voxels y according to

f(y)← (1− α(x,y))f(y) + α(x,y)v (2.8)

α(x,y) = β(1− |I(y) − I(x)|)k max(
(r− d(x,y))

r
, 0) (2.9)

where d(x,y) is the Euclidean distance between the voxel centers of x and y, r is the brush

radius specified by the user and β and k are constants.

Additionally, the user can smooth the current segmentation using aweighted average filter.

e algorithm is not very sensitive to the values selected for the β and k constants. Values

for β were in the range 0.01 - 0.1 and for k in the range 1-5 and influence the behavior of the

brush. ese variables could be changed by the user

2.4.4 Multi-atlas segmentation of the prostate: a zooming process with robust reg-
istration and atlas selection - SBIA

e multi-atlas based segmentation framework designed by Ou et al. 133 automatically seg-

ments the prostate in MR images. Atlases from 50 training subjects are nonrigidly registered

to the target image. e calculated deformations are used to warp expert annotated prostate

segmentations of the atlases into the target image space. e warped prostate annotations

are then fused by the STAPLE strategy134 to form a single prostate segmentation in the target

image.

e main challenge in this multi-atlas segmentation framework is image registration. To

account for the registration challenges, three measures are taken in the multi-atlas segmenta-
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tion framework. First, the DRAMMS image registration algorithm is used135. DRAMMS estab-

lishes anatomical correspondences by using high dimensional texture features at each voxel.

Voxel texture features are more distinct than just using intensity, which helps to improve

registration accuracy. Second, a two-phase strategy is used. In phase 1 the entire prostate

images from training subjects are used to compute an initial segmentation of the prostate in

target image. Phase 2 focuses only on the initially segmented prostate region and its imme-

diate neighborhood. ird, in each phase, atlas selection is used. ose atlases having high

similarity with the target image in the prostate regions aer registration are kept. Similarity

is measured using the correlation coefficient, mutual information, as well as the DSC between

the warped prostate annotation and the tentative prostate segmentation.

2.4.5 Automatic prostate segmentation in MR images with a probabilistic active
shape model - Grislies

Kirschner et al. 136 segment the prostate with an Active ShapeModel (ASM)128. For training the

ASM, meshes were extracted from the ground truth segmentations using Marching Cubes137.

Correspondence between the meshes was determined using a nonrigid mesh registration algo-

rithm. e final ASM has 2000 landmarks and was trained using principal component analysis

(PCA).e actual segmentation is done with a three step approach, consisting of 1) image pre-

processing, 2) prostate localization and 3) adaption of the ASM to the image.

In the preprocessing step, the bias field is removed using coherent local intensity clus-

tering, and the image intensities are normalized138. Prostate localization is done using the

sliding window approach: a boosted classifier based on 3D Haar-like features is used to decide

whether the subimage under the current detector window position contains the prostate or

not. is approach is similar to the Viola-Jones algorithm for face detection in 2D images139, .

e actual segmentation is done with a Probabilistic ASM. In this flexible ASM variant,

shape constraints are imposed by minimizing an energy termwhich determines a compromise

between three forces: an image energy that draws the model towards detected image features,

a global shape energy that enforces plausibility of the shapes with respect to the learned ASM,

and a local shape energy that ensures that the segmentation is smooth. For detection of the

prostate’s boundary, a boosted detector using 1D Haar-like features is used, which classifies

sampled intensity profiles into boundary and nonboundary profiles.

2.4.6 An efficient convex optimization approa to 3D prostate MRI segmentation
with generic star shape prior - Robarts

e work by Yuan et al. 140 proposes a global optimization-based contour evolution approach

for the segmentation of 3D prostate MRI images, which incorporates histogram matching and

a variational formulation of a generic star shape prior.
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e proposed method overcomes the existing challenges of segmenting 3D prostate MRIs:

heterogeneous intensity distributions and a wide variety of prostate shape appearances. e

proposed star shape prior does not stick to any particular object shape from learning or spec-

ified parameterized models, but potentially reduces ambiguity of prostate segmentation by

ruling out inconsistent segments; it provides robustness to the segmentation when the image

suffers from poor quality, noise, and artifacts.

In addition, a novel convex relaxation based method is introduced to evolve a contour

to its globally optimal position during each discrete time frame, which provides a fully time

implicit scheme to contour evolution and allows a large time step size to accelerate the speed

of convergence.

Moreover, a new continuous max-flow formulation is proposed, which is dual to the stud-

ied convex relaxation formulation and derives a new efficient algorithm to obtain the global

optimality of contour evolution. e continuous max-flow based algorithm is implemented on

GPUs to significantly speed up computation in practice.

2.4.7 An automatic multi-atlas based prostate segmentation using local appearance
specific atlases and pat-based voxel weighting - ICProstateSeg

Gao et al. 141 present a fully automated segmentation pipeline for multi-center and multi-

vendor MRI prostate segmentation using a multi-atlas approach with local appearance specific

voxel weighting.

An initial denoising and intensity inhomogeneity correction is performed on all images.

Atlases are classified into two categories: normal MRI scans An and scans taken with a tran-

srectal coilAm. is is easily achieved by examining the intensity variation around the rectum

since the transrectal coil produces significant physical distortion but also has a characteristic

bright appearance in the local region near the coil itself. e subatlas database whose atlas

appearance is closest to the new target is chosen as the initial atlas database. Aer that, the

top N similar atlases are further chosen for atlas registration by measuring intensity difference

in the region of interest around prostate.

Aer all the selected atlases are nonrigidly registered to a target image, the resulting trans-

formation is used to propagate the anatomical structure labels of the atlas into the space of the

target image. Finally, a patch-based local voxel weighting strategy is introduced, which was

recently proposed for use in patch-based brain segmentation142 and improved by introducing

the weight of the mapping agreement from atlas to target. Aer that, the label that the major-

ity of all warped labels predict for each voxel is used for the final segmentation of the target

image.
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2.4.8 Prostate image segmentation using 3D active appearance models - Utwente

e segmentation method proposed by Maan and van der Heijden 143 is an adaptation of the

work presented by Kroon et al. 144 by using a Shape Context based non-rigid surface registra-

tion in combination with 3D Active Appearance Models (AAM).

e first step in AAM training is describing the prostate surface in each training case by

a set of landmarks. Every landmark in a training case must have a corresponding landmark

in all other training cases. To obtain the corresponding points Shape Context based nonrigid

registration of the binary segmentation surfaces was used143,144. PCA is applied to determine

the principal modes of the shape variation. e appearance model can be obtained in a similar

way: first each training image is warped so that its points correspond to themean shape points.

Subsequently, the grey-level information of the region covered by the mean shape is sampled.

Aer normalization, a PCA is applied to obtain the appearance model. e combined shape

and appearance model can generalize to almost any valid example.

During the test phase, the AAM is optimized by minimizing the difference between the

test image and the synthesized images. e mean model is initialized by manually selecting

the center of the prostate based on visual inspection. Subsequently, the AAM is applied using

two resolutions with both 15 iterations.

2.4.9 A multi-atlas approa for prostate segmentation in MR images - DIAG

Litjens et al. 145 investigated the use of a multi-atlas segmentation method to segment the

prostate using the Elastix registration package. e method is largely based on the work of

Klein et al. 108 and Langerak et al. 146 . e 50 available training data sets are used as atlases

and registered to the unseen image using localized mutual information as a metric. Localized

mutual information calculates the sum of the mutual information of image patches instead of

the mutual information of the entire image. is approach reduces the effect of magnetic field

bias and coil profile on the image registration.

e registration process consists of two steps: first a rough initial alignment is found, aer

which an elastic registration is performed. e 50 registered atlases are then merged to form

a signal binary segmentation using the SIMPLE optimization algorithm146. SIMPLE tries to

automatically discard badly registered atlases in an iterative fashion using the correspondence

of the atlas to the segmentation result in the previous iteration. e DSC was used as the

evaluation measure in the SIMPLE algorithm.

2.4.10 Deformable landmark-free active appearancemodels: application to segmen-
tation of multi-institutional prostate MRI data - Rutgers

Toth and Madabhushi 147 propose a Multi-Feature, Landmark-Free Active Appearance Model

(MFA) based segmentation algorithm, based on148. e MFA contains both a training module
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and a segmentation module. e MFA is constructed by first aligning all the training images

using an affine transformation. Second, the shape is estimated by taking the signed distance

to the prostate surface for each voxel, which represents a levelset, such that a value of 0 cor-

responds to the voxels on the prostate surface. ird, principal component analysis is used

to map the shape and intensity characteristics of the set of training images to a lower dimen-

sional space. en a second PCA is performed on the joint set of lower dimensional shape and

appearance vectors to link the shape and appearance characteristics.

To segment an unseen image, the image must be registered to the MFA, resulting in trans-

formation T mapping the input image to the MFA. is is performed by first calculating the

PCA projection of the intensities learned from the training data. en the linked projections

are reconstructed and subsequently the intensities and shape. e normalized crosscorrela-

tion between the reconstruction and the original image are calculated and the transform T is

optimized to obtain maximum normalized cross-correlation. e shape corresponding to the

optimal transformation was thresholded at 0 to yield the final segmentation.

While the original algorithm148 defined “T” as an affine transformation, to account for the

high variability in the prostate shape and appearance (e.g. with or without an endorectal coil),

a deformable, b-spline based transformwas used to define “T”.is resulted in a more accurate

registration than affine, although further studies suggest that separate subpopulation based

models could potentially yield more accurate segmentations, given enough training data.

2.4.11 A random forest based classification approa to prostate segmentation in
MRI - UBUdG

e method proposed by Ghose et al. 149 has two major components: a probabilistic classifica-

tion of the prostate and the propagation of region based levelsets to achieve a binary segmen-

tation. e classification problem is addressed by supervised random decision forest.

During training, the number of slices in a volume containing the prostate is divided into

three equal parts as apex, central and base regions. e individual slices are resized to a reso-

lution of 256x256 pixels and a contrast-limited adaptive histogram equalization is performed

to minimize the effect of magnetic field bias. Each feature vector is composed of the spatial

position of a pixel and the mean and standard deviation of the gray levels of its 3 x 3 neighbor-

hood. ree separate decision forests are built corresponding to the three different regions of

the prostate the apex, the central region and the base. Only 50% of the available training data

was used for each of the regions.

During testing the first and the last slices of the prostate are selected and the test dataset is

divided into the apex, the central and the base regions. Consecutively preprocessing is done

on in the same way as for the training images. Decision forests trained for each of the regions

are applied to achieve a probabilistic classification of the apex, the central and the base slices.
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Finally evolution of the Chan and Vese levelsets on the so classification ensures segmentation

of the image into prostate and the background regions.

2.4.12 Combinations of algorithms

It is well known that combining the results of multiple human observers oen leads to a beer

segmentation than using the segmentation of only a single observer134. To investigate whether

this is also true for segmentation algorithms, different types of combinations were tried. First,

combining all the algorithm results using a majority voting approach was explored. e ma-

jority voting combination considered a voxel part of the prostate segmentation if the majority

of the algorithms segmented the voxel as a prostate voxel. Second, only the top 5 (expert) al-

gorithms were combined based on the overall algorithm score. A ‘best combination’ reference

was also included by selecting the algorithm with the maximum score per case, for both the

top 5 and all algorithms.

2.5 Results

2.5.1 Online allenge

e results of the online challenge are summarized in Tables 2.3, 2.6 and Figure 2.3. In Table

2.3 the average algorithm scores and standard deviations are presented, which are used to rank

the algorithms. e ordering of the algorithms represents the ranking aer both the online

and live challenges. e online and live components were weighted equally to determine the

final ranking. Metric values and scores for all algorithms on the online challenge data are

presented in Table 2.6. In Figure 2.3 we provide the results per algorithm per case to give a

more complete view of algorithm robustness and variability.

2.5.2 Live allenge

Tables 2.3, 2.7 and Figure 2.4 show the results of the live challenge at the MICCAI2012 work-

shop. In Table 2.3 (column 2) the average scores for each algorithm are presented including

standard deviations. Metric values and scores for all algorithms on the live challenge data are

presented in 2.7. Figure 2.4 shows the scores per case per algorithm for the cases processed at

the live challenge. Algorithms that were unable to segment all cases during the period of the

challenge (4 hours), or produced segmentations that were considered to be a failure according

to algorithm-specific checking criteria or the group, are indicated with an asterisk in Table 2.

Unsegmented or failed cases were given a score of 0.
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Figure 2.3: Results of the online challenge. e overall score is on the vertical axis and the case number on the

horizontal axis. Teams are given a different symbol and color. Case distributions per center were: 1:7 RUNMC,

8:14 BIDMC, 15:22 UCL, 23:30 HK.
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Figure 2.4: Results of the live challenge. e overall score is on the vertical axis and the case number on the

horizontal axis. Teams are given a different symbol and color. Case distributions per center were: 1:5 UCL, 6:10

HK, 11:15 BIDMC, 16:20 RUNMC.
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2.5.3 Overall

e overall ranking of the algorithms is presented in Table 2.3. Additionally, the results of the

algorithm combinations are shown in Table 2.2. Furthermore, statistical analysis on the com-

plete set of case scores was also performed to determine which algorithms are significantly

beer than other algorithms. As a test repeated measures ANOVA was used in combina-

tion with Bonferroni correction at a significance level of 0.05. e results indicated that the

top 2 algorithms by Imorphics and ScrAutoProstate are significantly beer then every algo-

rithm outside of the top 3. is also holds for both combination strategies. However, none

of the algorithms or combinations strategies performed significantly beer than the second

observer. Finally, the robustness of the algorithms against multi-center data was also tested

using ANOVA, but the center did not have a significant impact on the overall algorithm score

(p=0.118). e average scores and standard deviations for the algorithms on a per-center basis

are presented in Tables 2.4 and 2.5

Name Online Live Average

Imorphics 84.36± 7.11 87.07± 3.36 85.72± 5.90

All combined 82.96± 8.25 87.70± 3.11 85.33± 6.68

Top 5 combined 85.38± 6.13 87.09± 3.22 86.24± 5.16

Maximum 87.57± 3.37 88.88± 1.73 88.23± 2.83

Table 2.2: Results for the single best algorithm and combinations of algorithms, average over all cases including

standard deviation.

2.6 Discussion

2.6.1 Challenge setup and participation

e images used in the challenge are a good representation of what would be encountered

in a clinical seing, with large differences in acquisition protocol, prostate appearance and

size. Additionally, the images originated from different centers and scanner manufacturers.

e training and test sets were also large enough to draw statistical conclusions on algorithm

performance.

e reference standard was constructed by 3 different observers, who each segmented a

part of the data. ese segmentations were subsequently inspected by the experienced ob-

server for correctness and consistency. Obtaining additional observers for each case would be

preferable, however recruiting multiple observers to spend time contouring 100 prostate MR

cases is extremely challenging.
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Rank Team Name Type Online Live Average

1 Imorphics Automatic 84.36± 7.11 87.07± 3.36 85.72± 5.90

2 ScrAutoProstate Automatic 83.49± 5.92 85.08± 3.54 84.29± 5.10

3 CBA Interactive 80.66± 6.46 81.21± 9.60 80.94± 7.86

4 Robarts Semi-automatic 77.32± 4.04 80.08± 7.18 78.70± 5.51

5 Utwente Semi-automatic 75.23± 10.53 80.26± 7.30 77.75± 9.37

6 Grislies Automatic 77.56± 12.60 74.35± 11.28 75.96± 12.08

7 ICProstateSeg Automatic 76.06± 9.40 75.74± 8.81* (84.16± 4.43) 75.90± 9.17

8 DIAG Automatic 73.30± 13.69 77.01± 12.09 75.16± 13.07

9 SBIA Automatic 78.34± 8.22 61.38± 28.22* (76.72± 7.44) 69.86± 18.95

10 Rutgers Automatic 65.97± 13.13 71.77± 11.02 68.87± 12.32

11 UBUdG Semi-automatic 70.44± 9.12 00.00± 0.0* 35.22± 9.12

- SecondObserver - 85.00± 4.50 85.00± 4.91 85.00± 4.67

Table 2.3: Overall challenge results. e last three columns contain the scores including standard deviations.

ese scores are an average of all individual metric scores over all cases, as explained in section 2.3.2. For the

live challenge scores with an asterisk, teams had either missing or incomplete segmentations for some cases.

Incomplete or failed cases were assigned a score of 0. e scores of these groups over all completed cases is

shown in brackets. e UBUdG team did not participate in the live challenge and as such received a zero score.

RUNMC BIDMC UCL HK

Imorphics 82.55 ± 8.72 89.05 ± 2.29 84.78 ± 7.52 81.44 ± 7.41

ScrAutoProstate 85.76 ± 3.56 86.26 ± 3.73 83.12 ± 4.95 79.47 ± 8.46

CBA 76.05 ± 7.71 80.82 ± 6.37 83.16 ± 6.17 82.06 ± 4.94

Robarts 77.38 ± 4.73 76.34 ± 5.13 77.57 ± 3.55 77.88 ± 3.77

Utwente 72.52 ± 10.27 78.85 ± 8.11 76.50 ± 13.02 73.16 ± 11.46

Grislies 81.10 ± 9.69 86.10 ± 6.35 77.99 ± 14.82 66.54 ± 10.99

ICProstateSeg 72.70 ± 10.58 82.12 ± 4.71 77.37 ± 7.49 72.40 ± 11.92

DIAG 66.60 ± 13.25 77.48 ± 5.09 81.45 ± 6.76 67.51 ± 20.15

SBIA 81.02 ± 8.77 77.04 ± 10.41 77.31 ± 7.32 78.15 ± 8.19

Rutgers 63.98 ± 14.82 67.00 ± 11.99 69.98 ± 11.02 62.79 ± 16.46

UBUdG 73.17 ± 2.88 67.52 ± 14.90 74.31 ± 6.39 66.73 ± 8.33

Average 75.69 ± 8.63 78.96 ± 7.19 78.50 ± 8.09 73.47 ± 10.19

Table 2.4: Average scores and standard deviations per team over the different centers for the online challenge.
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(a) (b) (c)

(d) (e) ()

(g) (h) (i)

Figure 2.5: alitative segmentation results of case 3 (a, b, c), case 10 (d, e, ) and case 25 (g, h, i) at the center (a,

d, g), apex (b, e, h) and base (c, f, i) of the prostate. Case 3 had the best, case 10 reasonable and case 25 the worst

algorithm scores on average. e different colors indicate the results for the different teams.
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RUNMC BIDMC UCL HK

Imorphics 86.86 ± 3.39 88.54 ± 4.17 86.96 ± 3.22 85.92 ± 3.59

ScrAutoProstate 85.06 ± 2.26 85.44 ± 3.03 86.39 ± 3.67 83.44 ± 5.44

CBA 81.32 ± 8.52 83.11 ± 7.88 77.86 ± 16.87 82.53 ± 4.59

Robarts 81.29 ± 5.27 74.77 ± 11.76 81.96 ± 3.99 82.31 ± 5.34

Utwente 80.42 ± 5.48 79.46 ± 7.51 80.64 ± 10.40 80.50 ± 8.42

Grislies 79.98 ± 6.64 77.91 ± 12.30 72.18 ± 16.30 67.33 ± 7.22

ICProstateSeg 82.75 ± 4.67 86.36 ± 3.18 85.60 ± 1.71 80.25 ± 5.83

RUNMC 61.77 ± 15.90 81.51 ± 6.82 83.16 ± 5.35 81.61 ± 3.80

SBIA 79.03 ± 7.21 13.57 ± 30.33 75.50 ± 10.38 77.41 ± 4.39

Rutgers 72.39 ± 14.09 75.10 ± 8.95 65.45 ± 14.78 74.14 ± 6.24

Average 79.09 ± 7.34 74.58 ± 9.59 79.57 ± 8.67 79.54 ± 5.49

Table 2.5: Average scores and standard deviations per team over the different centers for the live challenge. Note

that team UBUdG did not participate in the live challenge and as such is not included here.

emetrics that were used result in a good separation between algorithms and the conver-

sion into per case scores keeps these differences intact. Other metrics were also considered,

for example the Jaccard index, sensitivity/specificity and regular Hausdorff distance. Jaccard

index is a volume-based metric with similar characteristics as the Dice coefficient, however,

in prostate segmentation literature, the Dice coefficient is more oen used. To allow beer

comparison to existing and future literature we chose the Dice coefficient. Sensitivity and

specificity are generally not useful in prostate segmentation because specificity will not be

very discriminative: the prostate is always a relative small part of the total image volume.

Finally, the modified 95% Hausdorff distance was used because the regular Hausdorff distance

can be harsh and sensitive to noise: a single pixel can determine overall image segmentation

outcome.

One issue with basing case scores on observer reference standards is that very high scores

end up in the realm of inter-observer variability. A score higher than 85 is probably still

indicative of improved performance, as the second observer segmentations are less accurate

than the reference standard, but it is difficult to say whether a score of e.g. 94 is indeed beer

or just different and equally accurate than a score of 92. However, in general, the algorithms in

this challenge do not obtain these scores on average, so this is not an issue. Visual inspection

of the segmentation results also confirms this, the largest segmentation errors made by the

algorithms would not be made by an experienced observer.

An alternative scoring approach that is not sensitive to inter-observer variability is to rank

algorithms based on their average rank for each of the sub-scores over all algorithms (e.g. if

an algorithm has the highest average Dice of all algorithms, it will have rank 1 for Dice. If the
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Team Name Average Boundary Distance
Overall Base Apex Score (Overall) Score (Base) Score (Apex)

Imorphics 2.10 ± 0.68 2.18 ± 1.14 1.96 ± 0.80 82.66 ± 5.60 85.20 ± 7.75 88.44 ± 4.71
ScrAutoProstate 2.13 ± 0.48 2.23 ± 0.70 2.18 ± 0.68 82.42 ± 3.93 84.87 ± 4.73 87.17 ± 3.98
CBA 2.33 ± 0.59 2.60 ± 1.47 2.44 ± 0.81 80.77 ± 4.88 82.31 ± 9.96 85.62 ± 4.75
Robarts 2.65 ± 0.37 2.92 ± 0.88 3.49 ± 0.95 78.09 ± 3.06 80.14 ± 5.97 79.45 ± 5.58
Utwente 3.03 ± 1.06 3.45 ± 1.96 2.68 ± 0.98 74.96 ± 8.73 76.54 ± 13.34 84.20 ± 5.79
Grislies 2.96 ± 1.55 3.19 ± 2.00 2.46 ± 1.26 75.55 ± 12.80 78.35 ± 13.59 85.50 ± 7.42
ICProstateSeg 2.86 ± 0.82 3.18 ± 1.32 2.89 ± 1.05 76.34 ± 6.78 78.38 ± 9.00 82.99 ± 6.21
DIAG 3.40 ± 1.72 4.23 ± 3.06 2.72 ± 1.75 71.90 ± 14.18 71.29 ± 20.81 84.01 ± 10.33
SBIA 2.85 ± 0.72 2.82 ± 1.02 2.13 ± 0.80 76.47 ± 5.94 80.86 ± 6.93 87.44 ± 4.74
Rutgers 4.06 ± 1.80 4.82 ± 2.64* 3.71 ± 1.26* 66.47 ± 14.87 63.06 ± 23.71 74.68 ± 16.56
UBUdG 4.26 ± 1.58 4.21 ± 1.42 4.53 ± 1.71 64.84 ± 13.09 71.40 ± 9.63 73.33 ± 10.08
All combined 2.06 ± 0.78 2.60 ± 1.53 2.04 ± 0.81 82.96 ± 6.46 82.30 ± 10.36 87.98 ± 4.76
Top 5 combined 1.94 ± 0.48 2.10 ± 0.82 1.77 ± 0.62 84.00 ± 3.95 85.70 ± 5.56 89.57 ± 3.63
Maximum 1.78 ± 0.35 1.82 ± 0.52 1.58 ± 0.35 85.28 ± 2.91 87.66 ± 3.51 90.70 ± 2.06
SecondObserver 1.82 ± 0.36 2.21 ± 0.80 2.55 ± 1.08 85.00 ± 2.93 85.00 ± 5.42 85.00 ± 6.34
Team Name 95% Hausdorff Distance

Overall Base Apex Score (Overall) Score (Base) Score (Apex)
Imorphics 5.94 ± 2.14 5.45 ± 2.58 4.73 ± 1.68 84.20 ± 5.70 86.98 ± 6.15 88.84 ± 3.97
ScrAutoProstate 5.58 ± 1.49 5.60 ± 2.35 4.93 ± 1.38 85.15 ± 3.98 86.63 ± 5.62 88.37 ± 3.25
CBA 6.57 ± 2.11 6.64 ± 4.07 5.75 ± 1.91 82.50 ± 5.61 84.15 ± 9.73 86.43 ± 4.52
Robarts 6.48 ± 1.56 6.83 ± 2.26 7.36 ± 2.11 82.76 ± 4.15 83.70 ± 5.39 82.62 ± 4.98
Utwente 7.32 ± 2.44 7.69 ± 3.75 5.89 ± 1.93 80.52 ± 6.48 81.64 ± 8.94 86.11 ± 4.57
Grislies 7.90 ± 3.83 7.61 ± 4.11 5.82 ± 2.82 78.97 ± 10.19 81.85 ± 9.81 86.26 ± 6.65
ICProstateSeg 7.20 ± 1.96 7.27 ± 2.92 6.51 ± 2.31 80.84 ± 5.21 82.64 ± 6.97 84.62 ± 5.46
DIAG 8.59 ± 4.00 9.00 ± 4.62 5.91 ± 3.68 77.15 ± 10.66 78.52 ± 11.04 86.05 ± 8.69
SBIA 7.73 ± 2.68 6.99 ± 2.25 4.60 ± 1.31 79.43 ± 7.14 83.32 ± 5.37 89.14 ± 3.10
Rutgers 9.25 ± 3.76 9.88 ± 4.04* 7.58 ± 2.35* 75.37 ± 10.00 71.18 ± 21.41 78.82 ± 16.23
Rutgers 9.25 ± 3.76 9.88 ± 4.04* 7.58 ± 2.35* 75.37 ± 10.00 71.18 ± 21.41 78.82 ± 16.23
UBUdG 9.17 ± 3.48 9.06 ± 2.71 9.54 ± 3.52 75.59 ± 9.27 78.38 ± 6.46 77.48 ± 8.30
All combined 5.43 ± 2.18 6.00 ± 3.06 4.97 ± 1.94 85.55 ± 5.81 85.67 ± 7.30 88.26 ± 4.57
Top 5 combined 5.30 ± 1.60 5.37 ± 2.38 4.22 ± 1.25 85.91 ± 4.26 87.19 ± 5.67 90.04 ± 2.94
Maximum 4.63 ± 1.06 4.32 ± 1.28 3.67 ± 0.70 87.67 ± 2.81 89.68 ± 3.05 91.34 ± 1.64
SecondObserver 5.64 ± 1.73 6.28 ± 2.95 6.36 ± 2.40 85.00 ± 4.61 85.00 ± 7.04 85.00 ± 5.66
Team Name Dice Coefficient

Overall Base Apex Score (Overall) Score (Base) Score (Apex)
Imorphics 0.88 ± 0.04 0.86 ± 0.08 0.85 ± 0.08 81.96 ± 6.62 84.76 ± 8.93 88.57 ± 6.13
ScrAutoProstate 0.87 ± 0.04 0.86 ± 0.04 0.83 ± 0.07 81.14 ± 5.39 85.02 ± 4.58 87.79 ± 5.23
CBA 0.87 ± 0.04 0.84 ± 0.07 0.80 ± 0.11 79.80 ± 5.36 82.87 ± 8.07 85.46 ± 7.98
Robarts 0.84 ± 0.03 0.81 ± 0.05 0.71 ± 0.12 75.32 ± 4.25 79.77 ± 5.82 78.70 ± 8.84
Utwente 0.82 ± 0.07 0.78 ± 0.13 0.78 ± 0.09 72.97 ± 9.77 76.12 ± 13.85 84.10 ± 6.44
Grislies 0.83 ± 0.08 0.81 ± 0.11 0.82 ± 0.10 75.10 ± 12.38 79.17 ± 11.85 86.65 ± 7.09
ICProstateSeg 0.82 ± 0.06 0.76 ± 0.13 0.74 ± 0.13 72.68 ± 9.40 74.12 ± 14.15 80.47 ± 9.41
DIAG 0.80 ± 0.09 0.71 ± 0.22 0.79 ± 0.12 69.62 ± 14.20 68.38 ± 23.42 84.82 ± 8.77
SBIA 0.84 ± 0.06 0.81 ± 0.08 0.84 ± 0.07 75.29 ± 8.27 79.29 ± 9.07 88.11 ± 5.31
Rutgers 0.74 ± 0.10 0.61 ± 0.25 0.66 ± 0.17 61.05 ± 15.36 57.75 ± 25.70 74.93 ± 12.60
UBUdG 0.71 ± 0.11 0.71 ± 0.12 0.63 ± 0.14 56.73 ± 16.09 68.17 ± 12.80 72.53 ± 10.20
All combined 0.88 ± 0.05 0.81 ± 0.13 0.81 ± 0.11 81.29 ± 7.55 78.90 ± 14.20 86.31 ± 8.39
Top 5 combined 0.89 ± 0.03 0.87 ± 0.05 0.87 ± 0.06 83.65 ± 4.82 85.79 ± 5.96 90.32 ± 4.63
Maximum 0.90 ± 0.02 0.89 ± 0.03 0.88 ± 0.03 85.08 ± 3.55 88.20 ± 3.80 91.46 ± 2.50
SecondObserver 0.90 ± 0.03 0.86 ± 0.06 0.80 ± 0.11 85.00 ± 3.82 85.00 ± 6.14 85.00 ± 8.39
Team Name Relative Volume Difference

Overall Base Apex Score (Overall) Score (Base) Score (Apex)
Imorphics 2.92 ± 15.71 1.01 ± 19.56 0.65 ± 30.68 72.53 ± 25.31 84.03 ± 16.94 84.20 ± 16.97
ScrAutoProstate 11.53 ± 14.05 9.65 ± 16.52 14.08 ± 34.25 68.18 ± 27.94 82.67 ± 14.82 82.52 ± 18.44
CBA 12.75 ± 13.99 18.85 ± 24.88 0.41 ± 28.63 63.48 ± 25.38 72.51 ± 24.00 82.04 ± 11.91
Robarts 10.31 ± 17.92 12.69 ± 26.26 -3.27 ± 39.09 61.70 ± 28.63 70.65 ± 18.41 74.96 ± 15.61
Utwente 22.30 ± 27.88 27.52 ± 41.86 15.10 ± 41.30 50.19 ± 32.42 57.94 ± 31.74 77.45 ± 23.46
Grislies 19.81 ± 31.93 23.12 ± 44.71 15.46 ± 43.71 59.25 ± 38.47 64.73 ± 31.20 79.31 ± 23.00
ICProstateSeg -2.61 ± 24.86 -4.47 ± 35.14 -13.31 ± 43.42 57.96 ± 34.16 66.62 ± 25.50 75.09 ± 20.77
DIAG 4.66 ± 28.30 -9.34 ± 43.13 11.66 ± 54.14 51.04 ± 31.02 60.62 ± 31.86 76.15 ± 24.37
SBIA 16.19 ± 25.35 13.47 ± 30.78 11.26 ± 35.57 51.63 ± 35.95 67.71 ± 23.49 81.33 ± 21.19
Rutgers -5.83 ± 30.81 -22.11 ± 57.39 -16.68 ± 46.37 52.18 ± 30.04 44.52 ± 31.99 71.58 ± 24.00
UBUdG -5.16 ± 21.40 -7.33 ± 28.05 -14.55 ± 33.25 59.02 ± 24.71 69.96 ± 16.63 77.87 ± 16.16
All combined -10.02 ± 14.62 -15.45 ± 25.94 -19.44 ± 22.45 67.17 ± 25.33 73.19 ± 23.89 81.67 ± 13.00
Top 5 combined 7.63 ± 13.45 7.32 ± 18.53 6.37 ± 27.31 73.70 ± 25.02 82.15 ± 15.60 86.50 ± 16.37
Maximum 2.76 ± 3.05 4.50 ± 4.80 4.23 ± 4.21 93.48 ± 7.19 94.61 ± 5.76 96.78 ± 3.21
SecondObserver -1.87 ± 7.32 -6.17 ± 13.49 -16.24 ± 21.13 85.00 ± 9.23 85.00 ± 9.23 85.00 ± 13.57

Table 2.6: Averages and standard deviations for all metrics for all teams in the online challenge. Entries indicated

with an asterisk had cases with infinite boundary distance measures removed from the average, which could

occur due to empty base or apex segmentation results.
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Team Name Average Boundary Distance
Overall Base Apex Score (Overall) Score (Base) Score (Apex)

Imorphics 1.95 ± 0.36 2.45 ± 0.65 1.83 ± 0.53 85.53 ± 2.70 87.12 ± 3.41 88.21 ± 3.39
ScrAutoProstate 2.18 ± 0.36 2.34 ± 0.78 2.16 ± 0.70 83.86 ± 2.65 87.73 ± 4.12 86.05 ± 4.50
CBA 2.56 ± 0.96 2.48 ± 1.55 119.28 ± 522.54 81.03 ± 7.10 86.95 ± 8.13 80.06 ± 21.12
Robarts 2.67 ± 0.62 2.66 ± 0.90 3.93 ± 2.42 80.23 ± 4.56 86.01 ± 4.74 74.64 ± 15.57
Utwente 2.87 ± 0.79 3.47 ± 1.33 2.43 ± 0.72 78.79 ± 5.87 81.76 ± 6.96 84.32 ± 4.62
Grislies 4.17 ± 2.35 3.75 ± 2.25 2.82 ± 1.06 69.14 ± 17.43 80.31 ± 11.80 81.81 ± 6.84
ICProstateSeg 2.35 ± 0.99 2.62 ± 1.37 1.95 ± 0.96 82.63 ± 7.35 86.23 ± 7.21 87.46 ± 6.16
DIAG 3.21 ± 1.39 237.53 ± 718.80 2.31 ± 0.71 76.26 ± 10.29 71.09 ± 27.15 85.11 ± 4.57
SBIA 3.13 ± 0.74* 3.13 ± 0.64* 2.89 ± 1.03* 61.49 ± 31.92 66.83 ± 34.41 65.10 ± 33.91
Rutgers 3.84 ± 1.37 3.70 ± 1.12* 4.21 ± 1.83 71.54 ± 10.18 72.52 ± 25.41 72.87 ± 11.80
All combined 1.97 ± 0.34 2.18 ± 0.64 1.82 ± 0.53 85.43 ± 2.51 88.55 ± 3.35 88.28 ± 3.41
Top 5 combined 1.90 ± 0.32 2.15 ± 0.80 1.92 ± 0.64 85.93 ± 2.37 88.70 ± 4.18 87.61 ± 4.14
Maximum 1.87 ± 0.30 1.82 ± 0.45 1.53 ± 0.30 86.17 ± 2.20 90.44 ± 2.36 90.17 ± 1.88
SecondObserver 2.03 ± 0.50 2.86 ± 1.26 2.33 ± 1.35 85.00 ± 3.73 85.00 ± 6.63 85.00 ± 8.69
Team Name 95% Hausdorff Distance

Overall Base Apex Score (Overall) Score (Base) Score (Apex)
Imorphics 5.54 ± 1.74 6.09 ± 1.61 4.58 ± 1.36 86.35 ± 4.28 87.96 ± 3.19 87.03 ± 3.86
ScrAutoProstate 6.04 ± 1.67 5.64 ± 2.17 4.60 ± 1.39 85.11 ± 4.12 88.84 ± 4.29 86.96 ± 3.94
CBA 7.34 ± 3.08 6.29 ± 3.03 122.28 ± 523.16 81.90 ± 7.59 87.55 ± 6.00 80.72 ± 20.05
Robarts 7.15 ± 2.08 6.12 ± 2.14 7.76 ± 3.20 82.38 ± 5.12 87.89 ± 4.22 78.01 ± 9.06
Utwente 6.72 ± 1.42 7.42 ± 2.38 5.68 ± 1.66 83.43 ± 3.51 85.33 ± 4.71 83.91 ± 4.70
Grislies 11.08 ± 5.85 8.68 ± 4.61 6.88 ± 2.21 72.68 ± 14.42 82.83 ± 9.11 80.49 ± 6.27
ICProstateSeg 5.89 ± 2.59 5.64 ± 2.73 4.58 ± 2.35 85.48 ± 6.38 88.83 ± 5.41 87.00 ± 6.67
DIAG 7.95 ± 3.21 242.13 ± 719.85 4.74 ± 1.34 80.40 ± 7.91 75.30 ± 26.69 86.56 ± 3.79
SBIA 7.07 ± 1.64* 7.21 ± 1.96* 5.93 ± 1.69* 66.05 ± 34.07 68.59 ± 35.35 66.54 ± 34.40
Rutgers 8.48 ± 2.53 242.00 ± 719.42 7.82 ± 2.42 79.09 ± 6.23 75.29 ± 26.10 77.82 ± 6.86
All combined 5.67 ± 1.82 5.14 ± 1.40 4.46 ± 1.46 86.01 ± 4.49 89.84 ± 2.78 87.35 ± 4.13
Top 5 combined 5.49 ± 1.54 5.48 ± 2.24 4.56 ± 1.51 86.45 ± 3.80 89.16 ± 4.43 87.07 ± 4.27
Maximum 4.80 ± 1.02 4.20 ± 0.94 3.53 ± 0.76 88.17 ± 2.52 91.69 ± 1.86 90.13 ± 2.10
SecondObserver 6.08 ± 2.23 7.58 ± 3.90 5.29 ± 2.53 85.00 ± 5.50 85.00 ± 7.71 85.00 ± 7.17
Team Name Dice Coefficient

Overall Base Apex Score (Overall) Score (Base) Score (Apex)
Imorphics 0.89 ± 0.03 0.84 ± 0.06 0.86 ± 0.07 85.51 ± 3.92 86.98 ± 5.21 89.15 ± 5.66
ScrAutoProstate 0.87 ± 0.03 0.85 ± 0.06 0.83 ± 0.10 83.17 ± 3.53 87.35 ± 5.20 86.81 ± 7.47
CBA 0.85 ± 0.08 0.85 ± 0.10 0.77 ± 0.23 79.69 ± 10.77 87.82 ± 8.16 82.13 ± 17.39
Robarts 0.84 ± 0.04 0.84 ± 0.06 0.67 ± 0.22 78.82 ± 5.40 86.62 ± 4.90 74.31 ± 17.27
Utwente 0.83 ± 0.06 0.77 ± 0.10 0.79 ± 0.10 77.46 ± 7.61 81.40 ± 7.81 84.12 ± 7.47
Grislies 0.77 ± 0.12 0.78 ± 0.12 0.79 ± 0.09 70.04 ± 16.09 81.93 ± 9.79 83.82 ± 7.30
ICProstateSeg 0.76 ± 0.26 0.72 ± 0.26 0.74 ± 0.26 71.70 ± 25.03 77.24 ± 21.30 80.26 ± 20.36
DIAG 0.80 ± 0.07 0.63 ± 0.30 0.82 ± 0.07 73.81 ± 9.43 69.73 ± 24.09 86.18 ± 5.71
SBIA 0.65 ± 0.34 0.64 ± 0.34 0.63 ± 0.33 60.41 ± 31.93 70.99 ± 27.41 71.78 ± 25.83
Rutgers 0.75 ± 0.10 0.68 ± 0.25 0.62 ± 0.22 67.41 ± 13.75 73.93 ± 20.13 70.85 ± 17.08
All combined 0.89 ± 0.03 0.87 ± 0.05 0.86 ± 0.08 86.10 ± 3.30 89.01 ± 4.10 88.93 ± 5.88
Top 5 combined 0.89 ± 0.02 0.87 ± 0.06 0.85 ± 0.09 86.12 ± 2.90 89.03 ± 4.94 88.21 ± 6.58
Maximum 0.90 ± 0.02 0.89 ± 0.03 0.89 ± 0.03 86.51 ± 2.47 90.97 ± 2.82 91.90 ± 1.97
SecondObserver 0.89 ± 0.03 0.82 ± 0.10 0.81 ± 0.15 85.00 ± 4.18 85.00 ± 8.32 85.00 ± 11.56
Team Name Relative Volume Difference

Overall Base Apex Score (Overall) Score (Base) Score (Apex)
Imorphics -1.50 ± 9.15 -8.31 ± 18.08 -1.03 ± 23.97 86.31 ± 13.01 87.15 ± 7.70 87.55 ± 10.37
ScrAutoProstate 10.05 ± 11.56 7.77 ± 22.01 9.59 ± 30.51 73.96 ± 17.56 86.55 ± 11.38 84.60 ± 15.29
CBA 12.26 ± 17.73 24.75 ± 41.69 -7.05 ± 39.63 63.49 ± 24.70 81.63 ± 24.91 81.50 ± 20.08
Robarts -1.72 ± 17.47 5.30 ± 25.52 -29.19 ± 37.14 71.84 ± 21.87 86.46 ± 14.29 73.77 ± 18.61
Utwente 12.62 ± 22.25 20.75 ± 37.43 0.66 ± 28.70 62.15 ± 30.81 75.02 ± 20.62 85.40 ± 12.77
Grislies 43.13 ± 65.32 36.41 ± 58.73 7.23 ± 38.19 37.72 ± 40.30 72.42 ± 29.35 79.01 ± 15.76
ICProstateSeg -8.49 ± 34.17 -14.15 ± 34.88 -14.88 ± 36.55 69.10 ± 29.32 81.82 ± 22.02 80.77 ± 18.68
DIAG -12.34 ± 18.38 -38.10 ± 32.87 1.61 ± 28.65 64.59 ± 25.81 70.54 ± 24.65 84.60 ± 11.74
SBIA 6.55 ± 59.45 2.66 ± 57.32 12.12 ± 68.31 30.65 ± 34.34 64.84 ± 24.89 62.50 ± 28.06
Rutgers -14.59 ± 26.52 -24.79 ± 31.88 -24.37 ± 47.01 50.76 ± 27.17 76.87 ± 20.18 72.31 ± 22.95
All combined 2.69 ± 9.75 -0.16 ± 13.09 -2.25 ± 24.49 83.77 ± 12.66 91.64 ± 5.14 87.48 ± 10.93
Top 5 combined 4.69 ± 9.95 6.89 ± 20.16 -3.07 ± 26.74 82.19 ± 13.65 88.57 ± 11.35 86.10 ± 11.74
Maximum 1.80 ± 1.43 3.65 ± 3.24 3.58 ± 3.99 96.28 ± 2.94 97.21 ± 2.47 97.52 ± 2.74
SecondObserver -5.72 ± 7.44 -17.49 ± 18.12 -17.97 ± 22.90 85.00 ± 12.07 85.00 ± 11.93 85.00 ± 13.03

Table 2.7: Averages and standard deviations for all metrics for all teams in the live challenge. Entries indicated

with an asterisk had cases with infinite boundary distance measures removed from the average, which could

occur due to empty segmentation results.
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same algorithm has rank 5 for average boundary distance over all algorithms, his average total

rank would be 3). is approach has its own disadvantage, e.g. high ranks do not mean good

segmentations and algorithm ranking is not only based on the performance of the algorithm

itself, but also on the results of other algorithms, i.e. a new algorithm which does very poorly

on all metrics except one might influence the ranking of all other algorithms by changing their

average rank.

Participation in the initial phase of the challenge was similar to what we have seen in

other segmentation challenges, for example113 and the knee cartilage segmentation challenge

(SKI10, http://www.ski10.org). e literature on prostate segmentation is well represented

by the competing algorithms, which include active shapemodels, atlas-basedmethods, paern

recognition algorithms and variants.

We specifically chose to allow only single submissions per algorithm instead of allowing

each group to submit results with different parameter seings, to make sure there would be

’no training on the test set’.

2.6.2 Challenge results

All algorithms submied to the challenge produced reasonable to excellent results on average

(online and live challenge combined scores ranging from 68.97 - 85.72). One point to note is

that although some algorithms may have received the same average score, the variability can

differ substantially, as shown in Tables 2.6, 2.7 and 2.3. For example, the algorithm presented

by Robarts140 scored 77.32 and 80.08 in the online and live challenge respectively, but has a very

low variability: 5.51 score standard deviation overall. is is much lower than the algorithms

that had similar scores, for example 7.86 for CBA132 and 9.37 for Utwente143. Depending on

the purpose for which an algorithm is used in the clinic, this can be a very important aspect.

As such, it might be good to incorporate performance variability directly in algorithm ranking

in future challenges.

It is worth noting that the top 2 algorithms by Imorphics126 and ScrAutoProstate129 were

completely automatic and even outperformed the completely interactive method presented by

CBA. Whereas the algorithm by Imorphics performed best overall, the algorithm by ScrAuto-

Prostate should be noted for its exceptionally fast segmentation speed (2.3 seconds, Table 2.8),

the fastest of all algorithms. Further details about interaction, implementation details and

computation time can be found in Table 2.8. Algorithm computation times varied, with the

active shape model based approaches oen having computation times in the order of minutes,

whereas the atlas based approaches required substantially more time or computing power

(e.g. clusters, GPU). It is important to note that some algorithms were implemented in higher

level programming languages like Matlab, whereas some where implemented in low-level lan-

guages like C++, computation time is thus not only dependent on algorithm efficiency but also
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on the development platform.

Inspecting the illustrative results in Figure 2.5 one can see that algorithms can differ quite

substantially per case. In this figure we present the best, worst and a reasonable case with re-

spect to average algorithm performance. Case 25 was especially tricky as it had a large area of

fat around the prostate, especially near the base which appears very similar to prostate periph-

eral zone. Most algorithms oversegmented the prostatic fat, and as the prostate was relatively

small, this results in large volumetric errors. However, if one inspects case 25 carefully, it is

possible to make the distinction between fat and prostate, especially if you go through the

different slices. It is thus no surprise that the interactive segmentation technique of CBA per-

formed the best. Further inspection of the results shows that in the cases with low average

algorithm performance the interactive method is usually the best algorithm (e.g. (Figure 2.3):

cases 4, 16 and 21 of the online challenge). is indicates that these cases cause problems for

automated methods.

In this challenge we explicitly included segmentation results at the base and the apex of

the prostate into the algorithm scoring because these areas are usually the most difficult to

segment. is can also be observed in the results, especially Tables 2.6 and 2.7. Every algorithm

performed worse on the apex and base if we look at the metric values (especially the Dice

coefficient and the relative volume difference) themselves; however, as these areas are also the

most difficult for the human observer, the scores for apex and base tend to be higher than the

overall score. Interesting to note is that the top 2 algorithms outperform the second observer at

almost every metric for both apex and base, whereas the overall score is lower than the second

observer. For the live challenge the Imorphics algorithm even outperforms the second observer

in the overall score. is indicates that for this part of the prostate automatic algorithms might

improve over human observers.

Interestingly, similar to the SLIVER07-challenge, active shape based algorithms seemed to

give the best results (places 1, 2, 4 and 5), although two of these systems are semi-automatic.

Looking at the results in more detail, we can see that the atlas based systems comparatively

have more trouble with cases which are not well represented by the training set, for example

case 23, which has a prostate volume of 325 mL, while the average is around 50 mL.

One interactive method was included (team CBA) which on average scored 80.94, which is

considerably lower than the second observer. is is mostly caused by over-segmentation at

the base of the prostate, oen the seminal vesicles were included in the prostate segmentation.

us this algorithm is very dependent on the operator; in principle the algorithm should be

able to get close to expert performance given an expert reader.

ere were several semi-automatic algorithms (e.g. Robarts, UTwente and UBUdG) which

needed manual interaction to initialize the algorithms. e interaction types and the influence

this interaction has on segmentation accuracy will differ between the algorithms. Although

none of the teams have explicitly tested the robustness to different initializations, some gen-
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eral comments can be made. For the Robarts algorithm a number of points on the prostate

boundary have to be set (8 to 10) to initialize a shape and the initial foreground and back-

ground distributions. As such, the algorithm is robust to misplacing single points. For the

Utwente algorithm, the prostate center has to be indicated to initialize the active appearance

and shape models. Big deviations in point selection can cause problems for active appearance

and shape models, however in general they are prey robust against small deviations128. For

the UBUdG method, the user has to select the first and last slice of the prostate. As such, the

algorithm will be unable to segment the prostate if it extends beyond those slices, which is an

issue if users cannot correctly identify the start and end slice of the prostate.

Another aspect which plays a role in this challenge was the robustness of the algorithms

to multi-center data. e image differences between the centers were actually quite large,

especially between the endorectal coil and non-endorectal coil cases, as can be seen in Figure

2.1. Differences include coil artifacts near the peripheral zone, coil profiles, image intensities,

slice thickness and resolution. However, if we look at for example Tables 2.4, 2.5 and Figure

2.3, it can be seen that all submied algorithms are at least reasonably robust against these

differences. We could not find any significant differences in the performance of the algorithms

relative to the different centers using ANOVA (p=0.118).

We also investigated whether segmentation performance could be improved by making

several algorithm combinations. First, a majority voting on the segmentation results of all

algorithms and the top 5 best performing was calculated. Second, to get a reference for the

best possible combination we took the best performing score per case. e summary results

of these combinations can be found in Table 2.2. Taking the best results per case results in

a substantially beer average score than the best performing algorithms. is might be an

indication that certain cases might be beer suited to some algorithms, and as such, that algo-

rithm selection should be performed on a case-by-case basis. e combinations of algorithms

using majority voting also shows that given the correct combination, algorithm results can

be improved (84.36 to 85.38 for the online challenge and 87.07 to 87.70 for the live challenge).

Although the increase in score is small, it is accompanied by a reduction of the standard devi-

ation (for the top 5 combination strategy, Table 2.2), as the improvements especially occur in

poor performing cases. ese scores and the reduction in standard deviation thus show that

combining algorithms might result in more robust segmentation. ese scores also show that

there still is room for improvement for the individual algorithms. How to combine and which

algorithms to combine is a nontrivial problem and warrants further investigation.

Finally, to assess the statistical significance of differences in algorithm performance we

used repeated measures ANOVA with Bonferroni correction. e methods by Imorphics and

ScrAutoProstate perform significantly beer than all the algorithms outside of the top 3 (p <

0.05).



2.6 Discussion 57

Team Name Avg. time System MT GPU
Imorphics 8 minutes 2.83GHz 4-cores No No
ScrAutoProstate 2.3 seconds 2.7GGz 12-cores Yes
CBA 4 minutes 2.7GHz 2-cores No No
Robarts 45 seconds 3.2GHz 1-core, 512

CUDA-cores

No Yes

Utwente 4 minutes 2.94GHz 4-cores Yes No
Grislies 7 minutes 2.5GHz 4-cores No No
ICProstateSeg 30 minutes 3.2GHz 4-cores, 96

CUDA-cores

No Yes

DIAG 22 minutes 2.27GHz 8-cores No No
SBIA 40 minutes 2.9GHz, 2 cores No No
Rutgers 3 minutes 2.67GHz, 8-cores Yes No
UBUdG 100 seconds 3.2GHz 4-cores No No

Team Name Availability Remarks
Imorphics Commercially available (http:

//www.imorphics.com/).
ScrAutoProstate Not available No
CBA Binaries available at: http://www.cb.uu.

se/~filip/SmartPaint/
Fully interactive painting

Robarts Available at http://goo.gl/ZAbPpC User indicates 8 to 10 points on prostate sur-

face
Utwente Not available User indicates prostate center
Grislies Not available
ICProstateSeg Not available
DIAG Registration algorithm available on http:

//elastix.isi.uu.nl/
Runs algorithm on a cluster of 50 cores, av-

erage time without cluster 7 minutes per at-

las
SBIA Registration algorithm available on

http://www.rad.upenn.edu/sbia/
software/dramms/

Runs algorithm on a cluster of 140 cores, av-

erage time without cluster 25 minutes per

atlas
Rutgers Not available
UBUdG Not available User selects first and last prostate slice

Table 2.8: Details on computation time, interaction and computer systems used for the different algorithms. If

algorithms where multi-threaded (MT) or used the GPU this is also indicated.
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2.7 Future work and concluding remarks

Although in general the segmentation algorithms, especially the top 2, gave good segmenta-

tion results, some challenges still remain. As we could see in case 25 (Figure 2.5), algorithms

sometimes struggle with the interface between the prostate and surrounding tissue. is is

not only true for peri-prostatic fat, but also for the interface between the prostate and the

rectum, the bladder and the seminal vesicles. Part of these challenges could be addressed by

increasing through-plane resolution, but integration of these structures into the segmentation

algorithms might also improve performance. Examples included coupled active appearance

models150 or hierarchical segmentation strategies151. Furthermore, the enormous volume dif-

ferences that can occur in the prostate can also be problematic: case 23 had a volume which

was approximately 6 times as large as the average. Automatically selecting appropriate atlas

sets or appearance models based on an initial segmentation could be a solution. In the difficult

cases the interactive segmentation method of team CBA was oen the best. is shows that

automated performance could still be improved.

Future work on prostate segmentation might also focus on the segmentation of related

prostatic structures or substructures. Examples are segmentation of the prostatic zones (tran-

sition, central and peripheral), the neurovascular bundles or the seminal vesicles.

Solving these remaining issues might lead to algorithms which, for any case, can replace

the tedious task of manually outlining by humans without any intervention. Until we are at

that level, the challenge itself will remain online for new submissions and can thus be used

as a reference for algorithm performance on multi-center data. As such it could lead to more

transparency in medical image analysis.
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3.1 Introduction

Prostate cancer is a major health problem in the Western world, with one in six men af-

fected during their lifetime152. Multi-parametric magnetic resonance imaging (MPMR) has

been shown to play an important role in the diagnosis of prostate cancer32. A typical MR

exam contains T2-weighted, dynamic-contrast-enhanced and diffusion-weighted imaging. In-

terpretation of MPMR prostate studies is challenging, and therefore the use of computer-aided

diagnosis techniques has been investigated88. For correct interpretation of MPMR knowledge

about the zonal anatomy of the prostate is required, because the occurrence and appearance

of cancer is dependant on its zonal location95. From a radiological point of view the prostate is

usually considered to have two visible zones onMRI, the central gland (CG) and the peripheral

zone (PZ)153. We are exploring options to integrate knowledge about the zonal anatomy into

CAD systems. For this automated segmentation of the zones is the first step. e availability

of zonal segmentation is also mandatory for those CAD methods in literature that focus on

the PZ only, as for example in88.

Although much research has been done on prostate segmentation108,110, only recently the

first study on segmentation of the individual zones was published by Makni et al.154. In their

study they investigated the use of an evidential C-means clustering (ECM) approach to cluster

voxels into their respective zones. In addition, they extended the ECM approach to incorporate

the spatial relation between voxels. Using this method they obtained good results on their

data set (0.87 ± 0.04 mean Dice coefficient for the central gland compared to a simultaneous

truth and performance level estimation (STAPLE) obtained ground truth134). To the best of

the authors knowledge their paper remains the only published paper evaluating prostate zone

segmentation.

e purpose of this paper was to investigate a paern recognition algorithm to segment

the prostate zones. e paern recognition approach uses several image features with a voxel

classifier to detect the zones. is is a method that has been explored in many other segmen-

tation problems. We compare it to a multi-parametric multi-atlas approach which is used to

simultaneously segment the prostate and the prostate zones. Additionally, we will compare

our results to inter-observer variability and the results obtained by Makni et al.154

3.2 Methods

3.2.1 Multi-parametric multi-atlas segmentation

Multi-atlas segmentation is an accurate method for prostate segmentation, as has been shown

by Klein et al.108 We have chosen a similar approach, but extended it to use multi-parametric

data. We evaluated the atlas method with both majority voting and STAPLE134 to obtain the

final binary segmentation.
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(a) (b)

(c) (d)

(e) ()

Figure 3.1: Example data set with T2-W image and ADC map in a and b and segmentation results in c, d, e

and f. Figure c shows a central gland observer segmentation (red, cyan and green contours for observer 1,2

and 3). Figure d shows the corresponding peripheral zone segmentation. Figures e and f show the automatic

segmentation results for the central gland and peripheral zone respectively. Contours are colored red, cyan

and green for atlas (voting), atlas (STAPLE) and voxel classification respectively, the STAPLE constructed ’true’

segmentation is overlayed in yellow
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e registration of the atlases to the new case is performed using the elastix soware pack-

age155. For the registration we use local normalized mutual information as a similarity metric.

We register both the T2-weighted image and the quantitative apparent diffusion coefficient

(ADC) map simultaneously. We chose to add the ADC map to the registration because it

contains additional information on the zonal distribution within the prostate. In a previous

experiment we investigated the added value of the ADC in zonal segmentation and we noticed

that it improved performance. e cost function we then optimize can be expressed as

C(Tµ; IF, IM) =
1∑N

i=1 ωi

N∑
i=1

ωiC(Tµ; IiF, I
i
M) (3.1)

were C is the cost function, Tµ is the registration transformation, IF is the fixed (the unknown

case) and IM the moving image (the atlas). Furthermore, ωi is the weight for each of the

multi-parametric images i were i = 1 is the T2-weighted image and and i = 2 is the ADC

map. We chose ω to be 0.5 for both i.

e registration consists of two distinct steps. In the first step we register using only a

translation transform to align the images to the new case. e second step is an elastic regis-

tration using a b-spline transformation. Aer the registration the obtained transformation is

used to transform the known binary segmentation to the target image space. ese can sub-

sequently be used to construct the unknown binary segmentation. Several approaches exist

in literate, of which majority voting is the simplest and best known method108. We compare

this approach with optimizing the segmentation by using STAPLE134.

3.2.2 Voxel classification segmentation

For the voxel classification segmentation we determined a set of features that represent the dif-

ference between the two zones. ese features can be separated into three categories: anatomy

(positional), intensity and texture.

For the anatomy features we use the information we know from the normal prostate com-

position. e peripheral zone is usually situated at the dorsal side of the prostate, geing

thicker towards the apex of the prostate. We chose to model this by developing a set of three

relative position and distance features. Given the whole prostate mask we can calculate a

relative position in each direction for each voxel, resulting in a value between 0 and 1. We

calculate this feature in the ventrodorsal direction and the craniocaudal direction. In addition,

the relative distance (also between 0 and 1) to the prostate boundary is given as a feature.

Two intensity features are included in the voxel classification step. e first intensity fea-

ture we use is the apparent diffusion coefficient (ADC) for each voxel, which itself should be

a quantitative feature. e second intensity feature we use is a calculated T2 value for each

voxel. Using the T2 relaxation time instead of the T2-weighted voxel values will make this

feature much more robust to changes in scan parameters. To this end we used the following
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signal model equation for turbo-spin-echo sequences:

T2p = −TE

(
log e

−TE
T2m

SPD
m ST2W

p

ST2W
m SPD

p

)−1

(3.2)

Here T2 is the estimated T2 relaxation time, TE is the echo time for the MR pulse sequence, S

the signal intensity. e superscript PD and T2W represent either the proton density weighted

image or the T2-weighted image. e subscript p and m denote prostate and muscle respec-

tively. Using this equation and a region of interest placed in a skeletal muscle we can calculate

the true T2 relaxation time for each voxel given the proton density and T2-weighted images.

e muscle ROI is automatically selected using a search method. Starting from the boom

slice of the T2-weighted image an Otsu threshold is performed to separate the dark areas

(including the muscles) from the bright areas. We are looking for the two muscles alongside

the prostate, sowe suppress the center of the imagewith a rectangular block. en a connected

component analysis is used to find individual dark components in the image. e two largest

connected components should correspond to the le and right muscle. We make sure this

is the case by investigating the shape and symmetry of the two connected components. e

muscle are less wide than long and they should have approximately the same shape on the le

and right. We mirror the le connected component and investigate the Jaccard index with the

right connected component. e minimum value for width divided by the length is 0.75 and

the threshold for the Jaccard index is 0.5. e resulting connected components are eroded to

ensure that the ROI is completely in the muscle.

e third set of features consists of five texture features. e first two features are homo-

geneity and correlation calculated using the co-occurrence matrix156. We used 16 gray value

bins for the histogram and took the average over all 2D directions. e third and fourth feature

are entropy and texture strength, based on the Neighborhood Gray-Tone Difference Matrix157.

Here also 16 gray level bins were used, in combination with an evaluation distance of 1. For all

of these features the kernel size was 10x10x1 voxels. e fih feature was the local binary pat-

tern at each voxel158, which was calculated over a 3x3x1 voxel neighborhood. For this feature

the images were down-sampled using Gaussian re-sampling such that a 3x3x1 neighborhood

corresponded to a 12x12x1 neighborhood.

Aer calculating the features a balanced training set is constructed. Hard classification us-

ing a linear discriminant classifier is performed to obtain a binary segmentation of the central

gland. To smoothen the initial boundary some post-processing is performed. Firstly, con-

nected component analysis is used to select the largest connected component. Erosion and

dilation are then performed to remove small objects aached to the segmentation. Finally the

edge voxels between the central gland and the peripheral zone are selected and a thin plate

spline is fied through these voxels. is results in our final segmentation.
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3.3 Validation

For validation we used 48 multi-parametric MR studies with manual segmentations of the

whole prostate. For each case the transversal T2-weighted scan (resolution 0.6x0.6x4 mm)

and the apparent diffusion coefficient map (2x2x4 mm) were used. In addition, for the voxel

classification step, the proton density weighted image was used to calculate the T2 values. e

ADC and proton density images were inspected to assess the alignment with the T2-weighted

image. If needed, they were corrected to obtain good alignment.

e ground truth was constructed by STAPLE134 to merge the manual segmentations done

by three observers. e observers made manual segmentations by indicating the zonal bound-

ary on each T2-weighted image slice given the the manual whole prostate segmentation. We

validated the automatic segmentations by calculating three similarity measures: the Jaccard

index (JI), the Dice similarity coefficient (DSC) and the volume difference (VD). e Jaccard

index is given as J = |V1∩V2|

|V1∪V2|
, were V1 and V2 are the automated segmentation and the STAPLE

ground truth respectively. e Dice coefficient is similar to the Jaccard index and can be ex-

pressed as D = 2|V1∩V2|

|V1|+|V2|
. Lastly, the volume difference can be expressed as VD = |V1| − |V2|.

Validation was performed in a leave-one-out-manner, thus the case to be segmented was re-

moved from the set of atlases for the atlas method and from the training data for the voxel

classification.

3.4 Results

In figures 3.2a, 3.2c and 3.2e the results of the segmentations of the central gland are presented.

An example case is also shown in figure 3.1. We can see that the observers all performwell with

respect to the STAPLE ground truth. For the segmentation methods the voxel classification

approach outperforms the atlas based methods (mean DSC 0.89 ± 0.03 vs 0.80 ± 0.013 for

majority voting and 0.80± 0.17 for STAPLE), although it is not as good as the human observers

(mean DSC’s 0.95 ± 0.06, 0.97 ± 0.05, 0.96 ± 0.06). e JI and VD (figure 3.2b and figure 3.2c)

show similar results. e VD results show that our methods in general under-segment the

central gland. If we compare our results to those in Makni et al.154 we perform slightly beer

using our voxel classification approach, as they report a mean DSC of 0.87 ± 0.04. For the

peripheral zone we see similar results (figures 3.2b, 3.2d and 3.2f). Our paern recognition

approach outperforms the atlas based method and is relatively close to the observer scores.

Here the paern recognition approach has a mean DSC of 0.75 ± 0.07 compared to 0.82 ±
0.15, 0.89 ± 0.12 and 0.86 ± 0.11 for the observers. e atlas methods both perform poorly

with respect to the peripheral zone with a mean DSC of 0.57± 0.19 and 0.48± 0.22. Compared

to the state of the art we perform slightly worse, with a mean DSC of 0.76± 0.06 compared to

our 0.75 ± 0.07.
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Figure 3.2: Results of the segmentation methods. e captions on the x-axes correspond to observers 1, 2 and 3,

the atlas method using majority voting, the atlas method using STAPLE and the voxel classification approach.
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3.5 Discussion

In this paper we investigated a paern recognition approach to zonal segmentation of the

prostate. We compared our method to an atlas based method and to the method published by

Makni et al. Our results show that the voxel classification method outperforms the atlas based

method. It also shows similar performance compared to the method published by Makni et

al. We believe the paern recognition approach outperforms the atlas-based method because

it is less restrictive as an atlas, which is limited to the shapes available within the atlases.

Additionally, paer recognition allow for non-linear combination of all features, including

texture features.

is study also has limitations. A true comparison with the results from Makni et al. is

difficult, mostly due to differences in the data used, for example in resolution. Additionally,

for the atlas method we did not use the manual whole prostate segmentations because this

method segments the whole prostate and the zones at the same time. is might cause some

bias compared to the voxel classification approach were we did use the whole prostate manual

segmentation. We did investigate using the manual whole prostate mask for the atlas method

by only evaluating the registration metric within the mask. However, this approach gave

worse results than not using the whole prostate mask at all. Both methods performed worst

when the peripheral zone is very thin, then partial volume effects and unclear boundaries

between the zones make it difficult to segment them. Finally, our voxel classification approach

might be improved by incorporating additional texture features (e.g. Gaussian or Gabor based

texture features) or by incorporating global information like prostate volume154.

Summarizing, a new paern recognition approach to segment the prostate zones was pre-

sented, incorporating anatomical, intensity and texture features. It outperforms an atlas based

method, is relatively close to the inter-observer performance and shows similar performance

compared to the state of the art.
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4.1 Introduction

MRI is becoming an increasingly popular tool for prostate cancer diagnosis31,32,44,49, leading to

the release of standardized guidelines for acquiring, reading and reporting prostate MRI by the

European Society of Urogential Radiologists (ESUR): the Prostate Imaging and Reporting Data

Standard (PIRADS)33. Initial results on reporting prostate MRI using the ESUR guidelines have

been promising, both with respect to overall performance and inter-reader agreement58–60,62.

However, these initial studies have also shown a large trade-off between sensitivity and speci-

ficity, depending on the PIRADS score used as a threshold for biopsy58,59,62.

In a recent publication by Rosenkrantz et al.159, 5 out of the 10 named pitfalls in prostate

MRI are related to benign confounders, i.e. benign disease mimicking the appearance of can-

cer. Some typical confounders are prostatic intra-epithelial neoplasia (PIN), atrophy, inflam-

mation and benign prostatic hyperplasia (BPH). For example, it is well known that the ap-

parent diffusion coefficient (ADC) obtained from diffusion-weighted imaging (DWI) is a very

capable feature in identifying cancer in the peripheral zone51,160. However, it is much more

difficult to use in the transition zone103,161, where the presence of BPH, which tends to have

similar appearance to adenocarcinoma on ADC maps, is a major confounder. Additionally,

prostatitis and other inflammatory processes within the prostate have been known to cause

similar appearance to cancer on dynamic-contrast enhanced (DCE) MRI162. Improved under-

standing of the imaging characteristics of these confounders across MRI parameters might

help radiologists improve their diagnostic ability.

Previous research has only peripherally focused on identifying discriminatory features to

separate cancer from specific confounders163–166. Oto et al. investigated the use of the appar-

ent diffusion coefficient (ADC) to differentiate between central gland tumors and glandular

and stromal hyperplasia by visually registering the pathology slides to the MR images. ey

were able to achieve an area under the curve of 0.78 and 0.99 for differentiation of stromal and

glandular hyperplasia and prostate cancer, respectively. Liu et al. designed a bi-exponential

diffusion model using 10 b-values to characterize central gland lesions as prostate cancer and

BPH. ey found that the bi-exponential model (AUC of 0. 92 for ADCs) significantly im-

proved the discriminative performance of DWI compared to a mono-exponential model (ADC

of 0.8 for ADC). Chesnais et al. used a multi-parameter approach to differentiate central gland

nodules. ey found that the T2-weighted features and the ADC values appeared to play a

substantial role in characterizing central gland nodules and that DCE imaging did not seem to

provide complementary information. However, they did not evaluate the accuracy of different

feature subsets.

e goal of this work is to identify the best combination of MRI parameters and computer-

extracted features for each pair-wise classification task, i.e. cancer vs. BPH, PIN, inflammation

and atrophy, respectively. is approach has recently seen successful application in discrim-
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inating different types of breast cancer167. Our hypothesis is that each confounding class

requires a distinct set of features to be able to discriminate it from prostate cancer successfully

and that this pair-wise classification approach will yield improved discriminability compared

to a monolithic classifier aempting to distinguish cancer from all benign classes simultane-

ously.

4.2 Materials and methods

4.2.1 Patient data

Pre-operative multi-parametric MRIs and radical prostatectomy specimens were included ret-

rospectively for 70 patients at the Radboud University Nijmegen Medical Centre. MRIs were

acquired between January 1st 2009 and June 1st 2013. e Institutional Review Board waived

the need for informed consent.

4.2.2 MRI acquisition

MRI acquisition was performed using a 3 Tesla MRI scanner (either a TrioTim or a Skyra;

Siemens, Erlangen, Germany). Cases were acquired both with and without an endorectal coil.

A pelvic phased array coil was always used. e multi-parametric protocol consisted of three

T2-weighted images in orthogonal directions, diffusion-weighted imaging (three b-values av-

eraged over three orthogonal directions, 50, 400-500 and 800) and dynamic contrast-enhanced

imaging (15 mL of Dotarem; Guerbet, France). e transversal T2-weighted images were

acquired perpendicular to the rectal wall, the diffusion-weighted imaging and the dynamic

contrast-enhanced imaging were acquired in the same orientation. Further acquisition details

can be found in Table 4.1.

4.2.3 Prostatectomy slide selection and annotation

staining the specimens were evaluated by one expert urological pathologist (C.H.v.d.K, with 20

years of experience). e pathology slides were cut in the same orientation as the acquisition

of the transversal MRI to remove angulation errors in subsequent registration steps. Tumors

were outlined on the microscopic slides and subsequently transferred to the macroscopic pho-

tographs of the specimens.

e H&E stained slide containing the tumor with the highest Gleason score was selected

to be digitized using a digital slide scanner (VS120-S5, Olympus, Japan) at 10x or 20x, cor-

responding to a resolution of 0.6 um and 0.3 um respectively. If multiple slices contained a

tumor with the same Gleason grades, the slice with the largest tumor volume was digitized.

Approximately half of the specimens were whole-mount slides, the other half consisted of

parts (usually two or four). In case the specimen consisted of parts, all parts belonging to
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PS SR ST NS ET RT FA Other

T2W Turbo

spin-

echo

0.28 – 0.6

mm

3.0 – 4.0

mm

13 - 19 101 – 104

ms

3540 –

6840 ms

120 - 160 Acquired in three orthogo-

nal directions: transversal,

sagial and coronal.

DWI Echo pla-

nar

1.6 - 2

mm

3 mm - 4

mm

15 - 20 61 – 81

ms

2300 –

3600 ms

90 3 b-values: 50, 400 – 500, 800

averaged over 3 directions.

Apparent diffusion coeffi-

cient map calculated by the

scanner soware. Some

scans also include b-value 0.

DCE Turbo

Flash

1.5 – 1.8

mm

3.2 – 5

mm

12 - 15 1.41 -

1.47 ms

36 ms 10 - 14 Temporal resolution of 3.38

– 4.65 seconds, 36 – 50

timepoints. 15 mL contrast

agent used (Dotarem, Guer-

bet, France)

Table 4.1: MRI sequence details for the different types of acquisitions. PS = pulse sequence, SR = spatial resolution,

ST = slice thickness, NS = number of slices, ET = echo time, RT = repetition time, FA = flip angle.

one slide were digitized. Aer digitization the digital slides were annotated using the Aperio

ImageScope soware (Aperio, USA) for the presence of cancer, BPH, PIN, atrophy or inflam-

mation by one of two urological pathologists (N.S. with 8 years of experience or R.E. with 7

years of experience).

4.2.4 Co-registration of prostatectomy specimens and MRI

Tomap the annotations on the histopathology sections to the corresponding MRI sections, the

MRI and the pathology slide have to be registered. First, the slice in the MRI corresponding to

the prostatectomy slide has to be established168. e number of slices in the MRI the prostate

was visible on were counted. Subsequently, the number of slides in the prostatectomy was

counted. Using the number of the prostatectomy slide the most likely corresponding MRI

slice is then given as:

SMR =
TMR

TP
SP (4.1)

where SMR is the slice number in the MRI, TMR the total number of prostate slices in the MRI,

TP the total number of prostate slices in pathology and SP the slice number of the selected

pathology slice. is is similar to the approach presented by Hambrock et al.51. e selected

MR and pathology slices where subsequently visually assessed for correspondence by a med-

ical imaging researcher (G.L., four years of experience with prostate MRI) and corrected if

deemed necessary. Aer establishing the corresponding slice it was registered to the MRI us-

ing an interactive b-spline elastic registration method, which has successfully been applied in
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a number of studies94,95. To drive the registration corresponding points on the boundary of the

prostate on the MRI and the pathology were selected by a medical imaging researcher (G.L.,

four years of experience with prostate MRI). Aer the corresponding points were established,

the registration algorithm mapped the prostatectomy slide and the annotations to the corre-

sponding MRI section. During selection of the boundary points, the researcher was blinded to

the pathology annotations. An example of the process is illustrated in Figure 4.1.

4.2.5 Computer-extracted features

Following co-registration, a number of MRI and computer-extracted features were obtained

fromwithin the regions corresponding to the cancer, BPH, PIN, atrophy and inflammation. To

obtain a single feature vector per region of interest (ROI) mapped onto the MRI, the median

value of each feature across the voxels within the ROI is calculated. All features are calculated

in 2D, as we register a single prostatectomy slide to the MRI, resulting in 2D annotations. A

listing of these features and their associated descriptions can be found in Table 4.2.

Category Feature name Calculated on Parameters

Intensity

T2Ws 169 T2W (Transversal)

ADC DWI

b800 DWI

Texture

2D multi-scale Gaussian

derivatives

T2Ws Up to 2nd order, σ=2.0, 2.7,

4.1 and 6.0mm

2D multi-angle Gabor T2Ws θ=0, π
4 ,

π
2 ,

3π
4 . λ=2, 3 and 4

mm

2D Li multi-scale blob-

ness 170

T2Ws, ADC, b800, Ktrans,

kep, ve, time-to-peak, max-

imum enhancement, wash-

out rate

σ=2.0, 2.7, 4.1 and 6mm

Pharmacokinetic

Time-to-peak 55 DCE

Maximum enhancement 55 DCE

Wash-out rate 55 DCE

Ktrans 57 DCE

ve
57 DCE

kep
57 DCE

Table 4.2: Overview of all the features that are used in this paper including references to the relevant papers.
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MR intensity features

MR intensity features are extracted from the transversal T2-weighted image volume and the

diffusion-weighted imaging. In T2-weighted imaging the non-standardness of the MR intensi-

ties, especially between endorectal coil and non-endorectal coil cases, can cause problems for

quantitative computerized analysis. As such we developed a method which uses MR pulse se-

quence equations, a proton-density-weighted image and an automatically segmented muscle

ROI to remove most of the T2-weighted intensity non-standardness169.

In addition to the standardized T2-intensity we included the apparent diffusion coefficient

(ADC) as a feature in combination with the image intensity of the b800 image.

Texture features

We calculated several popular texture filters, namely Gaussian derivatives and Gabor features,

which have shown to be successful in discriminating prostate cancer from other tissue in previ-

ous studies94,95. To make sure these feature do not also suffer from intensity non-standardness

we calculated them on the standardized T2W image.

Furthermore, to assess the focality of lesion appearance on the different MRI parameters,

several blobness features were calculated using the techniques presented by Li et al170. Pa-

rameter seings for these features are listed in Table 4.2.

Pharmacokinetic features

DCE MRI has been shown to differentiate between inflammation and prostate cancer relative

to normal tissue162. In clinical diagnosis oen the shape of the enhancement curve is used to

assess lesion malignancy. However, several groups have developed methods to more quanti-

tatively evaluate the tissue curves, including pharmacokinetic modelling55,162,171. We use the

methods presented by Huisman et al.55 and Vos et al.57 to calculate pharmacokinetic features.

4.2.6 Feature selection and classification

We used sequential forward floating feature selection (SFFS,172) in combination with a linear

discriminant classifier to assess the most discriminative features. SFFS is a feature selection

technique in which at each step one feature is added or removed based on a performance met-

ric; we used the area under the receiver-operating characteristic curve (AUC). In our setup we

force the feature selection to find the 5 most relevant features for each pair-wise classification

task (cancer vs. BPH, atrophy, inflammation and PIN, respectively).

We repeated the SFFS procedure to investigate whether the selected features are influenced

by cancer grade. We specifically looked at intermediate- and high-grade cancer. Intermediate-

grade cancer was defined as cancer with a Gleason grade 3+4 and high-grade cancer was

defined as any cancer with a major 4 or any 5 component.
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In order not to bias the feature selection scheme, a two-fold, patient-stratified, cross-

validation scheme was employed to select the features and the procedure was repeated 100

times. We identified the 5 features that most frequently appeared in the top 5 selected fea-

tures.

Subsequently we wanted to assess whether using these features could result in accurate

classification. A ten-fold, patient-stratified, cross-validation scheme was employed to train

a random forest classifier (RFC)74 in conjunction with the top ranked features identified for

each of the pair-wise classification tasks (BPH, PIN, inflammation and atrophy vs. cancer).

is experiment was also performed specifically for the subsets of the intermediate-grade and

high-grade cancers to assess whether any differences in classification performance could be

observed. e performance of the classifiers was evaluated using the area under the receiver

operating characteristic curve (AUC). Bootstrapping was used to obtain the 95% confidence

intervals for the AUCs. Finally, we also performed the feature selection and classification

experiments for a monolithic classifier that aempted to distinguish cancer from all the benign

confounders, grouped as a single benign category.

4.3 Results

4.3.1 Patient data

Aer annotation and co-registration of the prostatectomy slides and the multi-parametric MRI

for all patients 92 PIN, 64 atrophy, 120 inflammation and 73 BPH ROIs were identified. In

addition, 128 cancer ROIs were identified: 33 Gleason 3+3, 55 Gleason 3+4, 23 Gleason 4+3, 8

Gleason 4+4 and 9 Gleason 4+5. ese results are also summarized in Table 4.3. Additionally,

two example results for the MRI/pathology fusion are illustrated in Figure 4.1.

4.3.2 Feature selection

e results for the feature selection experiments are shown in Table 4.4, Figure 4.2 and Figure

4.3. In Table 4.4 it is interesting to note that the most highly ranked feature is different for

all pair-wise classification tasks. Furthermore, distinctly different feature sets are chosen for

each of the confounder classes. To gain some insight into why these features are selected, we

present some quantitative and qualitative results in Figure 4.2 and Figure 4.3. e graphs in Fig-

ure 4.2 represent fied histograms for the feature value distributions of a specific confounder,

all benign confounders grouped together, and cancer. Figures 4.2a, 4.2b, 4.2c and 4.2d show

atrophy, BPH, inflammation and PIN, respectively. e plots illustrate that the value distribu-

tion for the top selected feature in all pair-wise classification tasks shows a distinctly different

distribution than when all the confounders are grouped together. For example, in Figure 4.2d

we show that the ADC value of PIN has less overlap with cancer than all the confounders
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Number of patients 70

PSA level, mg/ml, median (range) 9.2 (1 – 76)

Age, yr, median (range) 62 (48 – 70)

Gleason score No. of lesions Category

Normal/Benign 349 Total 477

3 + 3 33 Atrophy 64

3 + 4 55 Inflammation 120

4 + 3 23 BPH 73

4 + 4 8 PIN 92

4 + 5 9 Cancer 128

Table 4.3: Characteristics of patients and identified lesions. PSA ranges were determined on 49 patients, for 21

patients PSA levels prior to MRI were unknown.

Figure 4.1: Two examples of co-registration results of the MRI and the prostatectomy slide. e last column

shows the annotations made on the pathology images overlayed on the MRI/pathology fused images.
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grouped together. In Figure 4.3 qualitative results for the top three features for each of the

benign classes versus cancer are presented. Here one can appreciate the visual difference for

the feature values in cancer and the individual benign confounding classes. e influence of

cancer grade on the selected features was also assessed and is presented in Table 4.4. It may be

appreciated that for high-grade cancer, ADC is the most important feature across all pair-wise

classification tasks. e variety in selected features across the different pair-wise classifica-

tion tasks is reduced compared to discriminating confounders from all cancer grades grouped

together, with a focus mostly on T2-weighted (texture) and diffusion-weighted imaging fea-

tures. For intermediate grade cancer (Gleason score 3+4) the types of selected features show

more variety between the pair-wise classification tasks (similar to all cancer grades grouped

together) and also include more dynamic contrast-enhanced features.

4.3.3 Classification

Table 4.5 shows the quantitative classification results illustrating the performance of the pair-

wise classifiers when using only the selected five features.

e average area under the curve for the pair-wise classification was 0.70 (BPH, PIN, in-

flammation and atrophy versus cancer had AUCs of 0.69, 0.73, 0.63 and 0.75, respectively) and

for the monolithic classifier (cancer versus all benign classes) 0.62 using only the top-selected

features.

e results for discriminating confounders from high-grade and intermediate-grade cancer

are also presented in Table 4.5 (2nd and 3rd rows). On average the AUCs for discriminating

high-grade cancer from the benign confounders are a bit higher, whereas the AUCs for dis-

criminating intermediate-grade cancers are a bit lower.

4.4 Discussion

Presence of benign confounding disease (e.g. BPH, inflammation, PIN, atrophy) is the most

common reason for false positives in prostate cancer diagnosis on multi-parametric prostate

MRI159. In this study we used computerized image analysis and feature extraction to identify

sets of features to best separate each of the confounding classes (BPH, PIN, inflammation and

atrophy) from prostate cancer on MP-MRI.

Our study shows that the appearance of a lesion on a high b-value image might have a

higher discriminatory value than the ADC when BPH is present (Figures 4.2b and 4.3, second

row, second column), which also is in line with previous reports in literature103,161. Addition-

ally, if the patient is at high risk of prostate inflammation at the time of the MRI, for example

due to recent biopsy, the results suggest that looking at lesion focality (i.e. roundness, diffuse

or well-defined edges) on both T2-weighted imaging and dynamic contrast-enhanced imaging

(Table 4.4, Figure 4.2c) could help in discriminating inflammatory processes from prostate can-
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All PIN N Atrophy N Inflammation N BPH N Monolithic N

1 ADC 117 Blob. (ve) 117 Blob.

(T2Map)

127 Blob. (b800) 105 ADC 179

2 Gauss. Deriv.

(XX, σ=4.1)

99 Blob. (b800) 116 ADC 83 Blob.

(T2Map)

94 Blob. (b800) 101

3 T2Map 81 Ktrans 109 Blob. (ve) 69 ADC 86 Gabor (b=1,

λ=2, θ=0.4)

79

4 Blob. (Ktrans) 66 Washout 91 Blob. (Ktrans) 63 Blob. (kep) 86 Blob.

(T2Map)

77

5 Gauss. Deriv.

(XX, σ=6)

65 ADC 87 Washout 52 Time-to-peak 59 Blob (Max.

Enh.)

75

HG PIN N Atrophy N Inflammation N BPH N Monolithic N

1 ADC 117 ADC 114 ADC 83 ADC 117 ADC 149

2 Blob. (Time-

to-peak)

88 Blob. (Max.

Enh.)

52 Blob. (ADC) 80 Blob.

(T2Map)

82 Blob. (ADC) 106

3 Blob. (ADC) 84 Gabor (b=1,

λ=2, θ=0)

52 Blob.

(T2Map)

76 Blob. (b800) 50 Gauss. Deriv.

(YY, σ=4.1)

50

4 Gabor (b=1,

λ=4, θ=0.4)

70 Ktrans 52 Gauss. Deriv.

(XY, σ=6)

72 Gauss. Deriv.

(YY, σ=4.1)

50 ve 49

5 Gauss. Deriv.

(Y, σ=6)

57 kep 51 Blob. (kep) 71 Gauss. Deriv.

(XY, σ=6)

49 Blob. (Time-

to-peak)

47

Inter. PIN N Atrophy N Inflammation N BPH N Monolithic N

1 Gauss. Deriv.

(XX, σ=4.1)

128 Gabor (b=1,

λ=2, θ=0)

105 ADC 84 Blob. (b800) 145 Blob.

(T2Map)

121

2 ADC 98 Washout 84 Ktrans 73 ADC 86 Blob. (ve) 120

3 Gabor (b=1,

λ=2, θ=0)

86 Ktrans 80 Blob. (ve) 57 Gabor (b=1,

λ=2, θ=0)

70 ADC 109

4 Blob. (Time-

to-peak)

67 Blob. (b800) 77 Gabor (b=1,

λ=2, θ=0.8)

53 Blob.

(T2Map)

66 Blob. (b800) 84

5 Gauss. Deriv.

(XX, σ=6)

58 Time-to-peak 76 Gabor (b=1,

λ=4, θ=0.8)

51 Gabor (b=1,

λ=4, θ=0)

62 Blob. (Ktrans) 77

Table 4.4: Selected features for each of the different pair-wise classification tasks considered in this work (e.g.

PIN versus cancer, BPH versus cancer).e N columns show how oen a feature was selected during the feature

selection phase. e last two columns show the features selected for the monolithic classification task. e top

part of the table shows the results for discriminating the benign confounders from all cancer. e middle part

for discriminating confounders from only high-grade cancer and the boom part for discriminating confounders

from intermediate-grade cancer. For features which were calculated with different parameters the parameter

values are presented in addition to the feature, e.g. Gaussian derivatives show the order and the scale on which

they are calculated.
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Grade PIN Atrophy Inflammation BPH Monolithic

All 0.73 (0.67 – 0.80) 0.75 (0.69 – 0.82) 0.63 (0.54 – 0.70) 0.69 (0.61 – 0.76) 0.62 (0.53 – 0.70)

High 0.73 (0.63 – 0.81) 0.77 (0.66 – 0.86) 0.77 (0.67 – 0.84) 0.69 (0.55 – 0.82) 0.64 (0.55 – 0.74)

Intermediate 0.65 (0.57 – 0.72) 0.70 (0.61 – 0.79) 0.57 (0.47 - 0.66) 0.63 (0.54 – 0.73) 0.62 (0.56 – 0.69)

Table 4.5: Classification performance (area under the receiver operating characteristic curve, AUC) of a random

forest classifier for each of the pair-wise classification tasks (PIN, atrophy, inflammation and BPH vs. cancer).

Furthermore, the AUC for amonolithic classification (grouping all benign confounders together as a single benign

class) is presented in the last column. e second and third row show the AUCs when looking at a high-grade or

intermediate-grade subset of cancer.

cer. is appears to support our initial hypothesis that each benign confounding class appears

to have a distinct set of imaging descriptors that can help characterize them. is is further

confirmed by the classification results presented in Table 4.5, where the average and individ-

ual AUCs of the pair-wise classification tasks seem higher than the AUC for the monolithic

classification.

If we inspect the influence of cancer grade on the selected features it is apparent that

for high-grade cancer the variety of selected features across the pair-wise classification tasks

(Table 4.4) is reduced. is is accompanied by an increased AUC for the diagnosis of high-

grade cancer relative to all cancer grades grouped together (Table 4.5). Both these results

indicate that high-grade cancer seems to have its own distinct imaging characteristics (low

ADC, distinctly different texture) compared to all other classes (even to low- and intermediate-

grade cancer) and is easier to discriminate from benign disease than intermediate-grade cancer

(which has a lower AUC on average). Results presented in literature on ADC also show that

the difference between benign/normal prostate lesions and high-grade cancer is so large that

it is relatively easy to discriminate between the two, even in the presence of BPH, by just using

ADC51,163, whereas the overlap in ADC between intermediate-grade cancer and benign disease

is much larger, requiring more and more specific features to allow discrimination.

We acknowledge that our study had its limitations. ere is invariably a time lapse be-

tween the MRI and the prostatectomy, as such sometimes the appearance or size of a lesion

is not completely similar between the two. Additionally, we limited our analysis to a single

prostatectomy slide, as 3D reconstruction of an entire prostatectomy and subsequent mapping

to the MRI is difficult and oen impossible in current diagnostic practice. Choyke et al. pre-

sented a method using a 3D printed mold, which could be an avenue for future research173.

Additionally, to keep the data unbiased we did not edit or remove annotations based on size

or MR visibility. Some annotations on the prostatectomy resulted in lesions which are only a

couple of voxels large and suffer from partial volume effect, making it difficult to register and

characterize them correctly. No statistical significance test was performed on the difference

between the monolithic and the pairwise classification. e monolithic classification contains
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Figure 4.2: Distributions of the feature values of the top selected feature of each of the classification tasks for

cancer, all benign confounders and the confounder to discriminate. Figures (a) and (b) show atrophy and BPH

respectively,
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Figure 4.2: Distributions of the feature values of the top selected feature of each of the classification tasks for

cancer, all benign confounders and the confounder to discriminate. Figures (c) and (d) show inflammation and

PIN, respectively.
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all benign samples, whereas each pair-wise classification only contains the specific benign

confounder class, making it impossible to perform a paired t-test. As the samples are not in-

dependent a regular t-test is also not applicable. In the future this could be solved by including

a completely separate test set for the monolithic classification. Last, multi-center evaluation

is an important pre-requisite for further validation of the results.

4.5 Concluding remarks

We explored and showed the utility of computerized image and feature analysis in conjunction

with multi-parametric MRI to distinguish between prostate cancer and benign confounders.

For each pair of HGPIN, atrophy, BPH, inflammation versus cancer we identified a unique set

of features which could help improve the differential diagnosis of prostate cancer.
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Figure 4.3: Feature maps of the top 3 selected features for each of the classification tasks. Cancer is contoured

in red and the specific benign confounder in yellow. e first column contains the axial T2-weighted image as a

reference. e first row is atrophy, the second row is BPH, the third row is PIB and last row is inflammation.
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5.1 Introduction

Only 15% of men diagnosed with prostate cancer show a disease specific mortality. e mor-

tality in the US in 2010 was 30000, with 220000 new prostate cancer cases diagnosed174. us

in order to tailor treatment from more radical therapy to active surveillance protocols, accu-

rate cancer aggressiveness risk stratification is very important. e most useful estimator of

cancer aggressiveness is the Gleason score (GS), a histopathological scoring system used on

biopsy and prostatectomy specimens. It has become such an integral part in prostate cancer

evaluation, that patient management is largely influenced by the assessment thereof175–177.

Recently, the apparent diffusion coefficient (ADC) values determined in diffusion-weighted

magnetic resonance imaging (DWI-MRI) showed to be inversely correlated to GS51,178,179. As

a result, ADC has been proposed as a useful non-invasive biomarker for prostate cancer ag-

gressiveness. However, the discriminative power of ADC depends in part on the variability of

the ADC measurement. is variability is machine – i.e. vendor, seings, noise - and patient

dependent, the laer caused by natural tissue heterogeneity. Based on the large inter-patient

distribution of normal PZ ADC values (1.2 – 2.2×10−3 mm2

s
) observed on a single MR scanner,

we hypothesize that a substantial histo-physiological heterogeneity between patients must

exist (inter-patient variation)51,160.

Inter-patient ADC variation could affect the discriminative power of ADC both for prostate

cancer localization as well as for the determination of prostate cancer aggressiveness. Since

normal prostate PZ tissue fluctuates significantly in ADC value, the ADC values of an aggres-

sive tumor may show similar fluctuations. Considering normal PZ and tumor ADC simulta-

neously may lead to beer estimates of aggressiveness.

e purpose of this study was to determine the inter-patient variability of prostate periph-

eral zone (PZ) apparent diffusion coefficient values (ADC) at 3T and the effect this has on the

assessment of prostate cancer aggressiveness.

5.2 Materials and Methods

5.2.1 Patients

Imaging data of two retrospective patient cohorts was used in our experiments. e require-

ment to obtain institutional review board approval was waived for both cohorts. To deter-

mine the significance of the inter-patient variance relative to the measurement variability we

included 10 patients (February 2008 to June 2011, interval between scans 6 – 12 months) who

had repeated measurements of normal PZ ADC values at three separate MR imaging sessions

at 3T. e indication for the studies was continuously high PSA level and at least one nega-

tive transrectal ultrasound biopsy. Patients were followed up if PSA level remained high. In

these patients no peripheral zone cancer was found in all three imaging sessions by an expert
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radiologist (J.O.B., with 18 years of experience). If a suspicious lesion was indicated by the

radiologist subsequent MR-guided biopsy found no traces of tumor.

In addition, to determine the effect of the inter-patient variation of ADC on the predic-

tion of prostate cancer aggressiveness a second cohort was included. Between August 2006

and January 2009, 70 consecutive patients with biopsy proven PZ prostate cancer , sched-

uled for radical prostatectomy, were referred from the departments of urology at the Radboud

University Nijmegen Medical Centre and the Canisius Wilhelmina Hospital in Nijmegen, e

Netherlands, for clinically routine pre-operative MRI of the prostate.

Clinical aracteristics

Prostate Specific Antigen (PSA) level (ng/mL) 6.8 (1.7 – 42)

Age (y) 64 (49 – 69)

Pathologic aracteristics (per patient)

Stage T2a 5

Stage T2c 23

Stage T3a 18

Stage T3b 4

Stage T4 1

Gleason grade (per tumor)

3 + 2 3

3 + 3 18

2 + 4 1

3 + 4 13

3 + 4 + 5 4

4 + 3 13

4 + 3 + 5 5

4 + 4 2

4 + 5 3

Table 5.1: Summary of clinical and pathologic characteristics for the second cohort of 51 patients.

5.2.2 MR Imaging Protocol

MR imaging of the prostate was performed using a 3T MR scanner (Siemens Trio Tim, Erlan-

gen, Germany). e first cohort of 10 patients was scanned with only the pelvic phased array

coils.

e second cohort was scanned with the use of combined endorectal coil (ERC) (Medrad,

Pisburgh, U.S.A) and pelvic phased array coils. e ERC was filled with a 40-mL Perfluoro-

carbon preparation (Fomblin, Solvay-Solexis, Milan, Italy)
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Figure 5.1: Flowcharts expressing the diagnostic accuracy of (a) the method including only tumor ADC and (b)

the method incorporating both tumor and normal PZ ADC. FN = false negative, FP = false positive, TN = true

negative, TP = true positive.
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In both cohorts peristalsis was suppressed with an intramuscular administration of 20-mg

Butylscopolaminebromide (Buscopan, Boehringer-Ingelheim, Ingelheim, Germany) and 1 mg

of glucagon (Glucagen, Nordisk, Gentoe, Denmark).

e MR imaging protocol included: anatomical T2-weighted turbo spin echo sequences in

axial, sagial and coronal planes covering the entire prostate and seminal vesicles. Axial diffu-

sion weighted imaging was performed using a single-shot-echo-planar imaging sequence with

diffusion modules and fat suppression pulses implemented. Water diffusion was measured in

3-scan trace mode using b-values of 0, 50, 500, and 800 s
mm2 . ADC-maps were automatically

calculated by the scanner soware using all b-values. Complete pulse sequence details can be

found in Table 5.2 for the first cohort containing 10 patients with repeated measurements and

Table 5.3 for the second cohort.

PS ST NS SR RT ET AV Other

T2W TSE 3.5 - 4 mm 13-19 0.6 mm 3540 ms 104 ms 2 -3 ree orthog-

onal directions

(axial, sagial,

coronal)

DWI SE-EPI 3.5 - 4 mm 15-20 1.6 – 2.0 mm 2300 ms 61 ms 6 - 10 b-values used 0,

50, 500, 800 mm2

s

DCE Turbo FLASH 3.5 - 4 mm 14 1.8 mm 37 ms 1.47 ms 1 -

Table 5.2: Pulse sequence details for the first patient cohort with repeated measurements. In-plane resolution is

the same in both directions. PS = pulse sequence, SR = spatial resolution, ST = slice thickness, NS = number of

slices, ET = echo time, RT = repetition time, FA = flip angle, AV = number of averages.

PS ST NS SR RT ET AV Other

T2W TSE 4 mm 15-19 0.4 - 0.5 mm 3540 - 3810 ms 105 ms 2 ree orthogonal

directions (axial,

sagial, coronal)

DWI SE-EPI 4 mm 15-19 2.0 mm 2800 ms 81 ms 10 b-values used 0,

50, 500, 800 mm2

s

DCE Turbo FLASH 4 mm 14 1.8 mm 37 ms 1.47 ms 1 -

Table 5.3: Pulse sequence details for the second patient cohort with repeated measurements. In-plane resolution

is the same in both directions. PS = pulse sequence, SR = spatial resolution, ST = slice thickness, NS = number of

slices, ET = echo time, RT = repetition time, FA = flip angle, AV = number of averages.

5.2.3 Whole-Mount Step-Section Preparation

e second cohort of patients underwent radical prostatectomy aer imaging. Aer the radi-

cal prostatectomy, prostate specimens were uniformly processed and submied for histologic
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investigation in their entirety. Aer histologic staining, all specimens were evaluated by one

expert urological pathologist (C.A.H.v.d.K. with 17 years of experience). Each individual tu-

mor was graded according to the 2005 International Society of Urological Pathology Modified

Gleason Grading System.

Peripheral zone tumors, with a size of >0.5 cc in volume, were divided in two groups,

and classified as low- and high-grade tumors. Tumors with a Gleason grade 4 or 5 component

were defined as high-grade. Low-grade tumorswere defined as tumors harboring onlyGleason

grades 2 and 3.

5.2.4 Annotation of MR images

All annotations were performed using an in-house developed MR viewing and reporting sys-

tem. In the first cohort the center slice of the prostate in the axial direction was used to

annotate the peripheral zone. For this slice the whole peripheral zone was annotated and the

median ADC value was extracted from this annotation.

For the second cohort, ADC maps were acquired in the same orientation and of similar

thickness as the histopathology step-section. A previously described translation technique

was used to match every tumor containing histopathology step-section to a corresponding

ADC map51. Using histopathology as gold standard, a region of interest (ROI) was placed by

one radiologist (T.H. with four years of experience) and one urologist (with one year of expe-

rience) in consensus, on the ADC maps. e size and extent of the ROI were chosen such that

it matched the tumor size and extent obtained from histological examination as closely as pos-

sible. Median ADC values were extracted for each tumor slice separately. In clinical practice,

the ADC slice revealing the lowest signal intensity for tumor alerts radiologists. erefore,

for each individual PZ tumor, the tumor slice revealing the lowest ADC values was used for

further assessment.

Lastly, to determine the effect of incorporating normal PZ ADC values on the prediction

of cancer aggressiveness, an ROI was placed in the normal PZ tissue of every patient. is

region was always selected adjacent to the tumor, in order to be the most representative area

of normal PZ ADC value at the tumor location. is was done to aempt to minimize intra-

patient heterogeneity. Median ADC values were extracted from all ROIs. Median values were

used because they are more robust to image artifacts that might occur due to ADC calculation

by the scanner.

5.2.5 Statistical analysis

Our first hypothesis is that there is a significant degree of inter-patient variation in normal PZ

ADC values. is was assessed using a repeated-measures ANOVA. Mauchly’s sphericity test

will be performed to test the hypothesis of sphericity. If sphericity can not be assumed the
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Figure 5.2: ree median ADC measurements of the peripheral zone of 10 patients. e circles represent the

individual measurements, the vertical axis shows the median ADC value, the horizontal axis shows to which

patient the measurement belongs.

Greenhouse-Geisser corrected p-value will be reported. e repeated measure was the median

ADC value of normal PZ tissue, which was obtained three times for each of the 10 patients in

the first cohort.

Our second hypothesis is that joint analysis of the normal PZ ADC values and the tumor

ADC values will result in an improved prediction of cancer aggressiveness, because this im-

plicitly corrects for the inter-patient variations in normal PZ ADC. Multivariate linear logistic

regression was used to test this hypothesis. We can express a regression model of cancer grade

as:

z = C+ βTADCT + βNADCN (5.1)

p =
ez

1+ ez
(5.2)

e p indicates the probability that a cancer is high-grade and the ADC variables indicate

the median ADC of the corresponding ROI. Subscripts T and N are tumor and normal PZ

respectively. e beta terms are the regression coefficient corresponding to these variables.

Equation 2 represents the conversion from z to the probability p.

e linear logistic regression results in values for βT and βN and the significance of these

variables in the regression model. Two regression models were created to compare diagnostic

performance: using only tumorADCvalues and using tumor and normal PZADCvalues. SPSS

(SPSS, version 16.0.01, Chicago, U.S.A.) was used for the statistical analysis. Furthermore, a
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Figure 5.3: Decision Boundary at p=.5 of the logistic regression model. e line represents the decision boundary,

the green dots the low-grade cancer and the red dots the high-grade cancers.

visual assessment is given for the correlation between tumor ADC and normal peripheral zone

ADC by ploing the low- and high-grade tumors with respect to their ADC values and the

corresponding normal PZ ADC values.

Our third hypothesis is that the improved prediction of prostate cancer aggressiveness may

result in a significant improvement in diagnostic accuracy in separating low- and high-grade

cancer. Receiver-operating characteristic (ROC) curves were constructed for a standalone tu-

mor ADC regressionmodel and the regressionmodel, which incorporates normal PZADC val-

ues. e areas under the ROC curves were tested for significant differences using the ROCKIT

soware package (Kurt Rossmann Laboratories, University of Chicago, Chicago).180

5.2.6 Nomogram construction

Additionally, the regression model incorporating tumor and normal PZ ADC can be used to

construct a nomogram by evaluating the obtained equation for a range of ADC values. e

ranges used to construct the nomogram are 0.5 – 1.7×10−3 mm2

s
for the tumor ADC value and

0.8 – 2.2×10−3 mm2

s
for the normal PZ ADC value. ese ranges are slightly larger than the

ranges found in this study to accommodate more extreme values.
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5.3 Results

For the first cohort of 10 patients, no patients were excluded. e median patient age was 58.5

years (47 – 67). e median PSA at the time of the first MRI was 8.25 (1.8 – 26).

For the second cohort of 70 consecutive patients, 56 patients had clinically significant tu-

mor (>0.5mL). Of the remaining 14 patients 11 had a tumor in the central gland and 3 had a

peripheral zone tumor smaller than 0.5 mL. Of the 56 patients 5 patients were excluded due

to severe motion artifacts (n=3), hemorrhage (n=1) or ghosting (n=1). Characteristics of these

patients are reported in Table 5.1. In these 51 patients a total of 62 different peripheral zone tu-

mors were found. Of these tumors 21 were low-grade tumors and 41 were high grade tumors.

emean ADC for the low-grade tumors was 1.35± 0.26×10−3 mm2

s
and 0.926± 0.18×10−3 mm2

s

for the high-grade tumors. e mean value of the normal peripheral zone for patients with a

low grade tumor was 1.65 ± 0.21×10−3 mm2

s
and 1.60 ± 0.21×10−3 mm2

s
for patients with a high

grade tumor.

5.3.1 Assessment of inter-patient variation of normal PZ ADC values

Normal PZ ADC values differed significantly between patients relative to measurement vari-

ability (Mauchly’s sphericity test p-value < 0.0001, Greenhouse-Geisser corrected p-value =

0.0058) as assessed using the repeated measures ANOVA. e ADC measurements are ploed

in Figure 5.2.

5.3.2 Effect of including normal PZ ADC values in the prediction of cancer aggres-
siveness

Normal peripheral zone ADC correlates with ADC of high-grade tumors. Its addition to the

regression model results in a significantly improved prediction of aggressiveness (p = 0.013).

is was determined using the logistic regression procedure; the results are summarized in

Table 5.4.

Both regression models show a significant contribution of the tumor ADC (p = 0.003).

Normal PZ ADC values also show a significant contribution to the regression model (p =

0.013). e regression model using standalone tumor ADC values can then be expressed as:

z = 10.76− 9.103ADCT (5.3)

and the model combining tumor and normal PZ ADC values can be expressed as:

z = 0.126− 18.82ADCT + 13.43ADCN (5.4)

In combination with equation 2 these models result in a probability that a given sample is a

high-grade cancer. e model incorporating normal PZ ADC (Eq. 4), together with the data



94 Features to determine cancer grade

Tumor median ADC Tumor and normal PZ median ADC

Parameter Value p Value p

ADCT 9.103 < 0.001 -18.82 0.003

ADCN - - 13.43 0.013

C 10.76 < 0.001 0.126 0.978

Table 5.4: Result of the linear logistic regression for three regressions based on equation 1 and 2. Regressions

performed: using only tumor ADC and using tumor and normal PZ median ADC. e second row shows the

values used in each regression. e regression parameters are presented in the boom three rows, their value

and significance respectively for each regression.

used in the regression, is shown in Figure 5.3. is plot indicates that a relatively high tumor

ADC value might still constitute a high-grade tumor if the normal PZ ADC is high. In addition

one can appreciate that using a static threshold on tumorADC (a vertical line/contour in Figure

5.3) to determine cancer aggressiveness could result in incorrect diagnosis in some patients.

5.3.3 Diagnostic performance of the regression models

Including normal PZ significantly (p = 0.0401) improved diagnostic accuracy. e ROC curves

for the regression models in equations 3 and 4 are shown in Figure 5.5. e area under the

curve increases from 0.91 to 0.96.

e constructed nomogram is shown in Figure 5.4. is nomogram can be used in a clinical

setup to quickly look up the chance that a certain region within the peripheral zone is an

aggressive cancer.

Tumor median ADC (mm
2

/s)

N
o

rm
a

l 
P

Z
 m

e
d

ia
n

 A
D

C
 (

m
m

2
/s

)

 

 

0.6 0.8 1 1.2 1.4 1.6

1

1.2

1.4

1.6

1.8

2.0

0

0.2

0.4

0.6

0.8

1

0.05

0.5

0.95

P
ro

b
a

b
il

it
y

 o
f 

h
ig

h
−

g
ra

d
e

 c
a

n
c

e
r

Figure 5.4: Contour of the probabilities of having an aggressive cancer given the adjacent PZ tissue ADC (vertical

axis) and the tumor ADC (horizontal axis). e point corresponding to these two values will correspond to the

probability of a high-grade cancer. e probability values are specified along the contours and in the color bar

on the right of the figure.
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Figure 5.5: ROC curve of the regression models. e red line shows the diagnostic accuracy when including the

adjacent PZ tissue median ADC in addition to the tumor ADC, the blue line show the diagnostic accuracy when

only using tumor ADC.

5.4 Discussion

In this studywe have shown that there is a significant inter-patient variation in normal periph-

eral zone ADC values (1.2 – 2.0×10−3 mm2

s
), which cannot be solely aributed to measurement

variability (average measurement standard deviation 0.068 ± 0.027×10−3 mm2

s
) . We hypothe-

size that the inter-patient variations arise from natural variations in prostate physiology.

Secondly, adding normal PZ ADC values to the linear logistic regression, results in a sig-

nificantly improved prediction of cancer aggressiveness (p = 0.013). is suggests that tumor

ADC values should not be considered absolute but that these values are influenced by “back-

ground” variation of normal PZ tissue composition.

irdly, the improvement also results in an increased area under the ROC curve, from 0.91

to 0.96 (p < 0.05), thus an improved diagnostic accuracy.

is study has a number of limitations. First, the use of ADC to assess aggressiveness

of transition zone tumors has not been investigated in this study. Second, this study was

limited to the peripheral zone. is was done because it is known that ADC in peripheral and

transition zone tumors can differ substantially. However, the majority of prostate tumors arise

in the PZ. ird, the annotation of ROIs was performed by a single observer; the effect of the

inter-observer variability on the regression model was not assessed. Our nomogram must be

tested and validated in a prospective multi-reader study.

In conclusion, there is a large inter-patient variation in prostate peripheral zone ADC val-

ues. is variation propagates into tumor ADC values. Compensating for this variation by
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combining tumor and normal PZ ADC when assessing cancer grade significantly increases

diagnostic performance.
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6.1 Introduction

Prostate cancer is one of themajor causes of cancer death formen in theWesternworld181. Due

to the increased ageing of the general population the incidence of prostate cancer is steadily

rising181. Current clinical practice for the diagnosis of prostate cancer is to perform a transrec-

tal ultrasound (TRUS) biopsy, which usually is performed due to a positive prostate specific

antigen (PSA) blood test. A large screening trial using PSA and TRUS has shown that is is pos-

sible to reduce prostate cancer mortality by 20-30%21. However, these studies have also shown

that PSA testing in combination with TRUS biopsies has a relatively low specificity. Addition-

ally, cancers are oen undergraded in TRUS biopsies28. ese problems lead to overdiagnosis

and overtreatment of patients and are prohibiting screening for prostate cancer.

MRI is increasingly used to diagnose prostate cancer as it has improved sensitivity and

specificity over PSA and TRUS32. Currently, MRI is most oen used as a second-line modality

aer repeat negative TRUS biopsies. One of the reasons MRI has not yet progressed to a first

line modality for prostate cancer diagnosis is that it requires substantial expertise from the

radiologist to read prostate MRI and such expertise is not widely available. Additionally, due

to the large amount of 3D images, reading prostate MR is quite time consuming.

Automated computer-aided detection and diagnosis (CAD) of prostate cancer could help

reduce both of these problems and open the door to prostate cancer screening using MRI. In

the past several other areas have seen successful CAD applications, such as mammography182,

CT colonography183 and retinopathy184. In the last decade several researchers have investi-

gated the use of these techniques for prostate MRI. erefore, computer-aided detection and

diagnosis of prostate cancer is becoming an active field of research88,89,93,96.

Chan et al.88 were the first to implement a multi-parametric CAD system for the diagno-

sis of prostate cancer. In their approach they used line-scan diffusion, T2 and T2-weighted

images in combination with an SVM classifier to identify predefined areas of the peripheral

zone of the prostate for the presence of prostate cancer. Langer et al.89 included dynamic-

contrast enhanced images and pharmacokinetic parameter maps as extra features to a CAD

system for prostate peripheral zone cancer. ey evaluated their system in predefined regions

of interest, but on a per-voxel basis. Tiwari et al.93 investigated the use of magnetic reso-

nance spectroscopy in combination with T2-weighted imaging to identify the voxels that are

affected by prostate cancer. ey also introduced the use of wavelet embedding to map MRS

and T2-W texture features into a common space. is work was further expanded and evalu-

ated in94. Niaf et al.185 presented the use of computer-aided diagnosis in the peripheral zone of

the prostate (similar to Vos et al.57. ey confirmed the results in discriminating prostate can-

cer from normal regions (area under the ROC curve (AUC)=0.89) and discriminating prostate

cancer from suspicious benign regions (AUC of 0.82). is is a limited CAD method as it is

constrained to predefined regions of interest in only the peripheral zone. Firjani et al.186 in-
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vestigated the use of computer-aided detection in single-parameter MRI using DWI imaging

with transrectal ultrasound guided biopsies as ground truth. ey included registration of

different b-values to obtain a less motion sensitive apparent diffusion coefficient map. Lastly,

Vos et al.96 recently implemented a two-stage computer-aided detection system for prostate

cancer using an initial blob detection approach combined with a candidate segmentation and

classification using statistical region features.

In this paper we investigate a fully automated computer-aided detection system including

a novel combination of segmentation, voxel classification, candidate extraction and candidate

classification, which expands on the work published in187. Other novel aspects include a voxel

classification stage in combination with a candidate classification stage and inclusion of sym-

metry, local contrast and anatomical features like peripheral zone likelihood. Feature design

was based on the standardized guidelines for reading prostate MR, PI-RADS, and include tex-

ture, pharmacokinetic, shape and anatomy, among others33. Furthermore, to the best of the

authors’ knowledge this is the first prostateMRI CAD system that is evaluated on a per-patient

basis and compared to the prospective performance of radiologists. e system was validated

on a large cohort of 347 patients using per-region FROC and per-patient ROC to show the

value of a two stage approach incorporating both voxel and candidate classification.

6.2 Materials and Methods

6.2.1 MRI data

In our hospital we collected a total of 165 consecutive studies with prostate cancer (187 lesions)

and 183 cases without prostate cancer on which to evaluate our CAD-system for a total of 348

studies of 347 patients.

Each MR study was read and reported by or under the supervision of an expert radiologist,

J.B. with more than 20 years of experience in prostate MR. e radiologist indicated areas of

suspicion with a score per modality using a point marker. If an area was considered likely

for cancer a biopsy was performed. All biopsies were performed under MR-guidance and

confirmation scans of the biopsy needle in situ were made to confirm accurate localization.

Biopsy specimen were subsequently graded by a pathologist and these results were used as

ground truth.

All studies included T2-weighted (T2W), proton density-weighted (PD-W), dynamic con-

trast enhanced (DCE) and diffusion-weighted (DW) imaging. It is currently established clinical

consensus that prostate cancer should be diagnosed by T2-weighted imaging with at least two

functional modalities (from DWI, DCE and spectroscopic imaging)32,33. e images were ac-

quired on two different types of Siemens 3T MR scanners, the MAGNETOM Trio and Skyra.

T2-weighted images were acquired using a turbo spin echo sequence and had a resolution of



102 Development of a computer-aided detection system for prostate cancer in MRI

around 0.5 mm in plane and a slice thickness of 3.6 mm. e DCE time series was acquired

using a 3D turbo flash gradient echo sequence with a resolution of around 1.5 mm in-plane, a

slice thickness of 4 mm and a temporal resolution of 3.5 seconds. e proton density weighted

image was acquired prior to the DCE time series using the same sequence with different echo

and repetition times and a different flip angle. Finally, the DWI series were acquired with

a single-shot echo planar imaging sequence with a resolution of 2 mm in-plane and 3.6 mm

slice thickness and with diffusion-encoding gradients in three directions. ree b-values were

acquired (50, 400 and 800), and subsequently, the ADC map was calculated by the scanner

soware. All images were acquired without an endorectal coil, as per the PI-RADS guidelines

for acquisition of prostate MRI33. Although an endorectal coil would allow for further im-

proved resolution of the images, the added value is considered negligible compared to added

patient comfort when only using a pelvic phased array coil. e transversal T2W image, the

PD-W image, the entire DCE time series and from the DWI the apparent diffusion coefficient

map and the b800-image were used in this study. ese images were chosen because they are

explicitly incorporated in the PI-RADS standard, except the PD-W image, which was added

purely for feature calculation purposes.

6.2.2 Overview of the CAD pipeline

e pipeline of the CAD system is visualized schematically in figure 6.1 and follows a two

stage approach.

Prostate 

segmentation

Voxel feature 

calculation

Voxel 

classification

Candidate 

detection

Candidate 

segmentation

Candidate 

feature 

calculation

Candidate 

classification

Figure 6.1: Flowchart showing the different steps of the computer-aided detection system

e first (detection) stage consists of segmentation of the prostate on the transversal T2-

weighted image, extraction of voxel features from the image volumes, classification of the vox-

els and candidate selection. e second (diagnosis) stage consists of candidate segmentation,

candidate feature extraction and candidate classification. Each of the steps will be described

in more detail in the corresponding subsections.

6.2.3 Segmentation

e segmentation of the prostate is required to reduce the complexity of the detection task for

the classifiers in the later stages. In our system we use an atlas based segmentation approach

similar to the one presented in108, using the atlas selection mechanism presented in146, named

SIMPLE (Selective and Iterative Method for Performance Level Estimation).

Let the image to be segmented be denoted as I(x), where x is a spatial location within the

image. A labeled image, L(x) has to be determined. e following steps are similar in most
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multi-atlas based systems. A set of N manually labeled images A is non-rigidly registered to

the unknown case I(x). e i-th atlas in this set A is denoted as Ai(x), where each Ai(x)

consists of the atlas image and the label image: Ai(x) = {Ii(x),Li(x)}. Aer registration of

the atlas image Ii(x) the obtained transformation Ti(x) is applied to the label image of the

atlas, Li(x).

An important part of the registration procedure is the similarity metric that is used. In this

approach we used the localized mutual information metric188. Aer atlas registration we have

a transformed label image Li ◦ Ti(x) for each atlas. We use the SIMPLE method, presented by

Langerak et al146, to combine these label images into one final segmentation. Example results

are shown in figure 6.2. is algorithm competed in the prostate MR image segmentation

(PROMISE12) challenge (http://promise12.grand-challenge.org), where it obtained a

9th place out of 12. Overall segmentation results were still reasonably good, with a median

Dice’s coefficient of 0.83.

6.2.4 Voxel features

Aer prostate segmentation we calculated voxel features from the image volumes. e types

of features can be categorized in intensity, pharmacokinetic, texture, blobness and anatomical

features. A complete overview of the voxel features is given in table 6.1, implementation

details are given in the corresponding subsections.

Intensity

One of the major issues in image analysis for MRI is the absence of a standardized signal

intensity, like Hounsfield units in CT. is usually means that an algorithm will give different

results as scanners, sequences or even sequence parameters are changed. Tomitigate this issue

we developed several algorithms to standardize signal intensity in the different MRmodalities.

First, for the T2-weighted imaging a T2-estimate map is generated by using the MR signal

equation, the proton density image and a reference tissue. is process was automated and is

explained in more detail in169. is map was added as a voxel feature in addition to the original

transversal T2-weighted image. Second, the MR scanner soware automatically calculates the

apparent diffusion coefficient map from the diffusion-weighted images, by fiing a mono-

exponential function to the signal decay across the different b-values. Furthermore, studies

have shown that the highest b-value image has additional diagnostic value, therefore, the b800

image was also added as a feature.

Anatomical

For the anatomical features we used the relative distance to the prostate boundary:
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Name Type Description

T2W Intensity T2-weighted voxel grey value, related to voxel T2

ADC Intensity Apparent diffusion coefficient, measure for cellular density

b800 Intensity High b-value image, areas with low diffusivity appear bright

T2-map Intensity T2-map based on proton density and transversal T2W image 169

x-pos Anatomical Relative cumulative position within the prostate in the x-direction

y-pos Anatomical Relative cumulative position within the prostate in the y-direction

z-pos Anatomical Relative cumulative position within the prostate in the z-direction

Distance Anatomical Relative distance to the prostate boundary between 0 and 1

PZ likelihood Anatomical Likelihood of being a peripheral zone voxel between 0 and 1 169

Ktrans Pharmacokinetic Parameter related to vessel permeability

kep Pharmacokinetic Parameter related to permeability and extracellular volume

tau Pharmacokinetic Time-to-peak of contrast agent concentration

LateWash Pharmacokinetic Curve parameter related to the washout of contrast agent

Gaussian texture bank Texture Calculate multi-scale Gaussian derivatives on the T2W image

ADC Blob Blobness Multi-scale blob detection using the Li blobness filter 170

KtransBlob Blobness Multi-scale blob detection using the Li blobness filter 170

LateWash Blob Blobness Multi-scale blob detection using the Li blobness filter 170

tau Blob Blobness Multi-scale blob detection using the Li blobness filter 170

Table 6.1: Overview of voxel features used in the CAD system.

B(x) = min
y∈Pb

d(x,y) (6.1)

RD(x) =
B(x)

max
x∈P

B(x)
(6.2)

where x is the position of a voxel, d is the Euclidean distance operator, P is the set of

prostate voxels and Pb the set of prostate boundary voxels.

Additionally, we also use relative position features in x, y, and z directions. e relative

position features are defined as:

RP(xi) =
xi −min

x∈P
xi

max
x∈P

xi −min
x∈P

xi
(6.3)

where x is the position of a voxel and i is the image axis, either x, y or z, and P the set of prostate

voxels. Both the relative distance and the relative position features are calculated with respect

to the prostate mask obtained through the multi-atlas method. Finally, we also implemented
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a peripheral zone probability feature, which gives a likelihood per voxel that it belongs to the

peripheral zone. is feature uses a paern recognition framework incorporating intensity,

texture and anatomical features. is results in a likelihood for each voxel within a prostate

mask of belonging to either the peripheral zone or the central gland. More implementation

details of this filter can be found in169. is feature is important because we know from clinical

practice that prostate cancer appearance can differ substantially between the peripheral zone

and the central gland33.

Pharmacokinetic

In the clinic it is common practice to use the DCE time curve to diagnose prostate cancer33. e

approach used is described as the curve type method, were the radiologist looks at the curve

and assesses two characteristics based on the first, last, and peak enhancement time points33.

ese characteristics are whether there is fast initial enhancement and if there is persistent

enhancement, an enhancement plateau or wash-out. Slow initial, persistent enhancement

(curve type I) or slow initial, constant enhancement (curve type II) are associated with normal

and benign findings whereas fast initial enhancement combined with washout are indicative

for malignancy (curve type III).

e traditional analysis is incorporated in our CAD system by using a curve-fiing tech-

nique to fit, per voxel, a bi-exponential curve to the time data, as presented in55. Of these curve

parameters we incorporated the parameter tau (which corresponds to time-to-peak of the en-

hancement curve) and the parameter LateWash (which corresponds to the slope of the last part

of the curve). ere are two major problems with only using this type of analysis. First, the

assessment of the curve is scanner and patient dependent, e.g. different protocols or patient

anxiety (which increases blood flow). Second, not all information present in the curve is used.

To counter these disadvantages pharmacokinetic modeling of the contrast agent concentra-

tions has been proposed and applied in breast, brain and prostate MRI57,189. We implemented

the standard Tos pharmacokinetic model35 including an automated reference tissue method

to estimate the arterial input function, as proposed in55,57. is model provides us with three

parameter maps for the DCE time series. e parameters represent the permeability of the

micro-vasculature, Ktrans, the fraction of extracellular, extravascular space, veand the quotient

of the two, kep. Due to fast and sloppy vessel construction and tightly packed cells in a can-

cerous region it is expected that Ktransand vewill differ between cancerous and normal/benign

tissue.

Texture and blobness

Most cancers show textural distortions in T2-weighted images33,95. To capture these charac-

teristics in features we use a Gaussian texture bank. For the Gaussian feature bank we used
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5 different scales, from 2 mm to 8 mm exponentially and derivatives up to the second order.

is scale range was selected to encompass the typical size ranges of lesions in prostate MRI

(between 5mm and 20mm in diameter)190–192. Due to the large slice thickness the features were

calculated on a slice-by-slice basis. is results in a total of 30 Gaussian texture features.

Prostate cancer tends to appear as a focal, blob-like lesion in diffusion-weighted and dy-

namic contrast enhanced MRI. is characteristic has been previously used to detect prostate

cancer96. ere are many different blobness measures, we chose to incorporate the blobness-

filter presented by Li et al.170 because this filter incorporates both a shape term and a blobness

strength term. e blobness feature was calculated with scales ranging from 2 mm to 8 mm,

with 5 different, exponentially increasing scales. Again, this range encompasses the size of

most lesions encountered in prostate MRI190–192. e maximum (bright blobs) or minimum

(dark blobs) value of the blobness output across scales at each voxel was used as the final blob-

ness measure. Blobness was calculated on the ADC, tau and LateWash images (dark blobs) and

on the Ktrans and Kep images (bright blobs).

6.2.5 Voxel classification

Aer feature calculation a voxel classification is performed, which results in a likelihood be-

tween 0 and 1 per voxel, 0 indicating no suspicion of prostate cancer and 1 indicating very high

suspicion of prostate cancer. In this step we experimented with three different classifiers, a lin-

ear discriminant classifier, a GentleBoost classifier73 (with regression stumps as weak learners)

and a RandomForest-classifier with regression trees74. Both the GentleBoost and the Random-

Forest classifiers are very robust to over-training73,74, thus parameter optimization is usually

not needed93. erefore, both the RandomForest and the GentleBoost classifier were le at the

default seings. For the RandomForest the default seings are that a minimum of 0.1 percent

of all samples in the dataset is required to split a tree node, the square root of the number of

features is used as the number of active variables at each node and the maximum tree depth

was equal to the number of features. For both classifiers the number of weak learners has to be

set, where, as explained in73 and74, adding more weak learners does not result in over-fiing,

but produces a limiting value of the generalization error. We did a small pilot experiment

using two fold cross-validation to roughly determine the amount of weak learners needed to

achieve the minimal generalization error. is resulted in around 100 regression stumps for

the GentleBoost classifier and 300 trees for the RandomForest classifier.

We compared the performance of the different classifiers using ROC-analysis. e output

of the classifier with the highest area under the ROC curve was used for further analysis. An

example of a obtained likelihood map is shown in figure 6.2.
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Figure 6.2: Example results for the CAD system for different patients. Figure (a) shows a prostate segmentation

result, Figure (b) a likelihoodmap aer voxel classification and Figure (c) a region classification result.

6.2.6 Candidate selection

Aer voxel classification a likelihoodmap is obtained, indicating per voxel the likelihood that it

contains cancer. On this likelihood-map we perform local maxima detection using a spherical

windowwith a diameter of 10mm, which is about the average lesion size in prostateMRI190–192.

Aer initial local maxima detection the local maxima which are less than 10 mm apart are

merged. is merging step leaves only the local maximumwith the highest probability within

the 10 mm range. is is iterated until no more merging occurs.

6.2.7 Candidate segmentation

For each of the local maxima obtained in the previous step, a region segmentation will be per-

formed. e SmartOpening-algorithm, which has had successful applications in both nodule

segmentation in CT and cancer segmentation in breast MRI, was used193,194. e segmenta-

tion was performed on the likelihood-map itself instead of one of the original clinical images.

e main reason for this is that lesions can show slight deviations in size and even position

between the different diagnostic images. e likelihood map is essentially a combination of

all original images through a classification step and thus should give a good approximation

of the lesion extent across all diagnostic images. Aer initial segmentation, regions which

overlapped for more than 50% were merged.

6.2.8 Candidate features

Aer candidate segmentation and merging new candidate features can be calculated given

the original feature images and the candidate segmentation. ese can be categorized as:

statistical (voxel feature statistics), local contrast, symmetry and shape features.

Statistical

Statistical candidate features are calculated within the candidate segmentation. Statistics in-

clude mean, standard deviation and histogram percentiles. On all the initial voxel features we
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calculate the mean and standard deviation of the feature values within the candidate segmen-

tation. Additionally, for the ADC and pharmacokinetic features we calculate either the 25th

or 75th percentiles, depending on whether low or high values are indicative of malignancy.

e percentiles are calculated because 60% of all tumors are heterogeneous191, with a more

aggressive hot spot within the tumor that for example has lower ADC values. In addition, we

also calculated the mean, standard deviation and 75th percentile of the voxel likelihood.

Local Contrast

In previous work we have shown that relating tumor feature values to those of surrounding

normal tissue can lead to improved characterization of tumor aggressiveness195. We incor-

porate this knowledge into our CAD system by using local contrast candidate features. e

local contrast feature is calculated by dilating the original segmentation and then subtracting

the original to obtain a rim of tissue outside the candidate. e local contrast is then obtained

by taking the quotient of the average candidate and the average rim intensities. We use a 2D

kernel with a size of 3 mm for dilation. e local contrast feature is calculated on the b800,

ADC, Ktrans, Kep, tau and LateWash voxel feature maps. Additionally, it was also calculated

on the voxel likelihood map.

Symmetry

A normal prostate has a distinct symmetric appearance in the transversal plane. Radiologist

have reported that symmetry in prostate MRI can be important to detect prostate cancer33.

e CAD system incorporates this knowledge by including a symmetry feature. We take the

relative position of a candidate along the x-axis in the transversal plane and mirror it to the

other side of the prostate (e.g. if the relative position is 0.25 we map the mirrored candidate

segmentation to a relative position of 0.75). en we calculate the mean intensity value for

both the mirrored and the original candidate segmentation and take the quotient. e result is

used as the symmetry feature. We calculate this symmetry feature on the b800, ADC, Ktrans,

Kep, tau, LateWash voxel feature maps and the voxel likelihood map.

Shape

e last candidate feature set are the shape features. Prostate lesions tend to be somewhat

spherical and compact. During initial stages of development, most false positives we encoun-

tered were due to small segmentation errors , large non-spherical areas of low ADC due to

extensive benign prostatic hyperplasia and small artifacts caused by the scanner. By incorpo-

rating shape features like volume, sphericity and compactness the classifier can easily remove

these false positives from the data. e sphericity is calculated as the ratio of the volume of

a sphere having the same diameter as the maximum bounding box length of the candidate
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segmentation and the total volume of the candidate segmentation. e compactness is calcu-

lated as the candidate segmentation volume divided by the volume of the bounding box of the

candidate segmentation.

6.2.9 Candidate classification

Aer candidate feature extraction the final classification is performed. ree different clas-

sifiers were tried to obtain the best possible performance, a linear discriminant classifier, a

GentleBoost classifier (with regression stumps as weak learners) and a RandomForest classi-

fier with regression trees. e seings we used at this stage were the same as in the voxel

classification stage. Aer classification we obtain a likelihood between 0 and 1 per candidate,

0 indicating no prostate cancer and 1 indicating definite prostate cancer. Examples of a final

candidate result can be seen in figure 6.2

6.2.10 Relative feature and MR sequence importance in voxel and candidate classi-
fication

To establish the importance of individual features and MR sequences to the overall classifi-

cation results, we performed two experiments at both the voxel and candidate levels. First,

using the selected classifiers, we established the classification performance of each feature in-

dividually based on area under the ROC curve (using leave-one-patient-out crossvalidation).

Subsequently, we repeated this experiment on a per-sequence basis, i.e. only include features

calculated using one MR sequence, for example only using T2-texture features or only using

DWI features.

6.2.11 Validation

Training data

For the voxel classification stage voxels in a 10 mm area around the radiologist annotation

were extracted as prostate cancer samples. is area was truncated by the prostate mask, to

ensure no voxels outside the prostate were included in the training set. Furthermore, we only

selected voxels which had specific feature characteristics: the ADC value had to be below the

median of the area and the pharmacokinetic features had to be above the median of the area.

We know from clinical experience and literature that these are usually good characteristics of

prostate cancer and reduces the chance of sampling normal voxels into the malignant class.

For the normal class we randomly sample within the prostate mask of normal patients. e

resultant voxel dataset is used to train the voxel classifiers.

In the candidate classification stage we extract candidate features from the initially de-

tected true positives and the false positives in normal patients aer initial classification. e

definition of true and false positives is given in the next section.
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FROC analysis

e detection performance of the CAD system is evaluated using free-response receiver op-

erating characteristic curve (FROC) analysis. FROC analysis provides the number of false

positives per normal patient for a given sensitivity (i.e. the percentage of cancer detected).

e occurrence of false positives in normal patients is one of the most relevant problems in

prostate cancer diagnosis on MRI as each false positive in a normal patient has the potential

to lead to an unnecessary biopsy, and thus patient morbidity and healthcare cost. As such,

the number of false positives should be as low as possible at reasonable sensitivity. FROC

analysis can be used both aer the initial and final stage, which also allows us to assess the

performance gained by the second stage of the CAD system. For evaluation of the first stage

the criterion for a true positive is that a local maximum should be within 10 mm of the marker

annotated by the radiologist. 10 mm corresponds to the average lesions size190–192. For the

final classification a true positive is defined as a candidate segmentation which has a center

of gravity within 10 mm of the marker. Each candidate segmentation is only allowed to cor-

respond to one annotation. is rule is chosen to make sure the system does not have a bias

toward large segmentations, i.e. a candidate segmentation covering the entire prostate would

cover all lesions, but would generally not result in an accurate localization. We evaluated the

system both for the detection of all tumors and the detection of high-grade tumors (first or

secondary Gleason component > 3). In the second seing a hit on a low-grade tumor is not

considered a false positive, the reasoning for this is that in principle low-grade prostate cancer

will not require treatment, but it is not detrimental for the patient to detect it.

ROC analysis and comparison to the radiologists

In addition to FROC analysis we also performed patient based receiver operating characteristic

(ROC) analysis both aer the initial voxel classification and aer the candidate classification.

is is relevant evaluation in a screening seing, where the first thing a clinician wants to

know is whether a patient has cancer or not (i.e. the localization aspect captured by the FROC

analysis in the previous section is of secondary importance). A CAD system could play a role

here by separating out the easy from the difficult to diagnose patients, which could improve

the efficiency of the radiologist. In each patient, the voxel (voxel stage) or candidate (candidate

stage) with the highest likelihood is used as the patient score, both for patients with prostate

cancer and normal patients. In this setup the CAD system can stratify patient as requiring a

biopsy or not requiring a biopsy.

Additionally, we compare the system to the overall radiologist performance on this data set.

In total 10 radiologists read cases in our patient cohort, each case was read prospectively by

one radiologist. erefore, we can compare the system performance to the actual prospective

clinical performance in our hospital.
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Figure 6.3: Classifier comparison using leave-one-patient-out ROC analysis at the voxel and candidate levels.

95% confidence intervals estimated using bootstrapping are shown as transparent areas around the mean curves.

Input for the comparison at the voxel level are voxel in a cancerous areas and voxels in the prostate of normal

patients. Input for the comparison at the candidate level is true and false positives aer initial voxel classification.

Figure a shows the voxel classification results and Figure b the region classification results.

6.3 Results

6.3.1 Classifier comparison and selection

Bootstrapping and ROC analysis were used to compare classifiers for both CAD stages: the

voxel classification stage and the candidate classification stage. For both stages we performed

a leave-one-patient-out cross-validation on the training data. Results are shown in figure

6.3. Statistical significance testing was performed using the area under the ROC curve. Both

the RandomForest and the Gentleboost classifier performed significantly beer than the linear

discriminant classifier in both stages (p < 0.001). For the voxel classification stage the random

forest classifier also performed significantly beer than the Gentleboost classifier (p < 0.01).

Further analysis of the system was performed using the RandomForest classifier for the voxel

stage. Although the mean area under curve was higher for the RandomForest classifier than

the Gentleboost classifier in the candidate stage, this was not significantly different. Because

the mean area under the curve was slightly higher we chose to use the RandomForest classifier

for the candidate stage.

6.3.2 Relative feature and MR sequence importance

e rankings for each feature and each MR sequence based on there individual classification

performance using the RFC classifer are shown in Tables 6.2 and 6.3. Although the ADC

intensity is the single most important feature in the voxel stage, overall the features calculated

using the T2W MR sequence are the most important in voxel classification. Additionally, we

can see from the performance of individual features in the voxel stage that features from each
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Figure 6.4: ROC analysis on a per-patient level, comparison of the CAD system aer the voxel stage and aer the

candidate stage to the prospective radiologist performance. e raw ROC curve is shown as the solid line and the

mean bootstrapped curve as a dashed line. e 95% confidence intervals obtained using bootstrapping are shown

as transparent areas around the mean bootstrapped curve. e radiologist ROC curve and confidence intervals

are only ploed for the four PIRADS thresholds. Figure (a) shows the results for cancer versus normal/benign

and Figure (b) shows the results for high-grade cancer versus normal/benign.

of the MR sequences are selected, showing the importance of using multi-parametric MRI over

single-parameter MRI. Finally, the performance per modality is much lower than the overall

per-voxel performance (0.76 area under the ROC curve for just T2W and 0.89 when combining

all MR sequences).

Inspecting Table 6.3, it is interesting to see that especially heterogeneity of feature values

within the candidates have high individual performance. Additionally, in the candidate stage,

DWI is by far the best performing individual sequence. Furthermore, the initial voxel like-

lihood plays an important part in classification in the candidate stage. Finally, in this stage

features from the DWI imaging are almost as good as using features from the combination of

the three MR sequences.

6.3.3 FROC analysis

e FROC curves for detection of prostate cancer and the detection of high-grade prostate

cancer are shown in figure 6.5. e results show that adding a candidate classification step

reduced the number of false positives at constant sensitivity, e.g. a reduction from approxi-

mately 7 to 1.5 false positives per normal case at a sensitivity of 80%. At similar false positive

levels, sensitivities were significantly higher aer the candidate classification step, e.g. aer

voxel classification, at 1 false positive per normal case, a sensitivity of 55% is reached, whereas

the sensitivity is 75% aer the candidate stage (p < 0.001). Additionally, the partial area under

the curve between 0.1 to 10 false positives per normal case is also significantly higher (7.11

versus 8.74, p < 0.01). Furthermore, in figure 6.5b the FROC curves are shown for the de-
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Figure 6.5: FROC analysis of the results of the CAD system. Number of false positives per normal case is shown

on a logarithmic scale. e raw FROC curve is shown as the solid line and the mean bootstrapped curve as a

dashed line. e 95% confidence intervals obtained using bootstrapping are shown as transparent areas around

the mean bootstrapped curve. Figure (a) compares the results aer voxel classification and the results aer

candidate classification. Adding the candidate classification step shows a marked improvement over just voxel

classification. Figure (b) shows the results of the candidate classification step for cancer vs. normal/benign and

high-grade cancer vs. normal/benign
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tection of high-grade cancer vs. normal/benign in addition to the detection of all cancer vs.

normal/benign. Here, at one false positive per normal case the sensitivity for detecting high-

grade cancer is 0.82 and 0.75 for all cancer. is difference is not significant. Additionally, the

partial area under the curve between 0.1 and 10 false positives per normal case is not signifi-

cantly different (8.74 versus 9.06). e maximum sensitivity reached by the system in cancer

versus normal/benign case is 0.94 and 0.97 for the high-grade cancer versus normal/benign

case. is is caused by 11 and 5 false negatives in those cases respectively. Examples of a

true positive and a false positive are shown in figure 6.7. An example of two false negatives is

shown in figure 6.6.

6.3.4 ROC analysis

eROC curves for classifying patients as either having prostate cancer or not having prostate

cancer are shown in figure 6.4. Again we also show the improved performance obtained by

adding a candidate classification step compared to just using a voxel classification step. In

these figures the CAD system is also compared to the clinical diagnosis made by the radiologist

for each patient on the basis of the PIRADS system. A radiologist scores each suspicious lesion

on a scale from 1 to 5, 1 meaning definitely not cancer and 5 meaning definitely cancer. e

patient score is than obtained by taking the highest PIRADS score. For the radiologist only

the confidence intervals for the four actual PIRADS thresholds are used for evaluation, as the

ROC curve is not well defined at other positions due to the low number of thresholds.

e addition of the candidate classification shows a marked improvement when evaluating

on a per-patient basis, with an increase in AUC from 0.722 to 0.81 (p < 0.01) and from 0.73

to 0.83 (p < 0.01) for high-grade cancer versus normal/benign. At a high specificity (le part

of the ROC curve) of 0.88 (PIRADS score 5), there is no significant difference between the

radiologist and the CAD system (p = 0.334 for detection of cancer, p = 0.37 for detection of

high-grade cancer). At the other thresholds the radiologist performance is significantly beer

than the CAD system (p < 0.01). e radiologist is significantly beer at every PI-RADS

threshold compared to CAD system when only using the voxel stage.

6.4 Discussion

A CAD system which detects prostate cancer in MRI images was presented in this paper.

e performance of the system was evaluated on a large consecutive set of patients, with

MR-guided biopsy as a reference standard. antitatively, the area under the ROC curve for

classifying patients was 0.81. If we investigate the performance from an FROC perspective,

at 1 false positive per image we obtain a sensitivity of 0.75 for detecting any cancer lesion

and 0.83 for detecting a high-grade cancer lesion. Compared to the radiologist, the system

shows no significant differences in performance at high specificity (Figure 6.4, le part of
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Figure 6.6: Examples of false negatives (FN). e location of the false negatives is indicated with the red circle.

False negative 1 (a,b) is caused by segmentation errors. In Figure (a) (axial view) the prostate segmentation is

indicated in yellow. e segmentation most likely fails due to the fact that the prostate is growing into the

bladder, as can be seen in (b) (sagial view). False negative 2 is caused by our evaluation criterion, the region

segmentation (indicated in yellow in figures (c) (ADC) and (d) (DCE+Ktrans) is quite large and therefore the mark

(the red sphere) and the center of gravity of the region segmentation are more than 10mm apart.

the curve). However, at lower specificity the radiologist performs significantly beer (p <

0.01). Furthermore, in both Figure 6.5 and Figure 6.4 we show that adding a candidate stage in

addition to a voxel stage significantly improves performances on both a per-lesion (sensitivity

at 1 false positive per normal patient increases from 0.55 to 0.75) and per-patient level (area

under the ROC curve increases from 0.72 to 0.81).

If we compare our system to the current state-of-the-art, two types of systems can be dis-

tinguished: systems which perform only a voxel-based analysis and systems which perform

both a voxel-based analysis and a candidate evaluation step. For the first type of system, Ti-

wari et al. have shown the best voxel classification performance using a system with manual

prostate segmentation and MR spectroscopy. ey obtain an average area under the curve

of 0.89, which is similar to our results obtained during the classifier comparison at the voxel

level figure 6, average area under the curve of 0.889). However, we show in our study set

that a voxel classification performance of 0.89 only results in a per-lesion classification per-

formance of 0.55 sensitivity at 1 false positive per normal patient and a per-patient area under

the ROC curve of 0.72. Our addition of a subsequent candidate classification step increases the

performance of the system by a significant amount (0.75 sensitivity at 1 false positive per nor-

mal patient (p < 0.01), figure 8 and 0.81 area under the ROC curve for a per-patient analysis

(p < 0.01). However, as Tiwari et al. did not extend their system to a per-region and per-

patient evaluation we cannot directly compare this. We do have to note that this comparison

has not been made on the same data set, which is unfortunate, but there is no open availability

of a significant amount of multi-parametric prostate MRI data. We are currently considering

organizing a prostate cancer detection challenge similar to other grand challenges in medical

image analysis to allow our algorithm to fairly compete against others. For the second type of

system incorporating a candidate detection and a candidate classification step we can compare

our results to Vos et al.96, which is the only other two-stage system. Instead of a voxel classi-

fication step, they use a blob detector to obtain the candidates. At 0.1, 1 and 10 false positives
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Figure 6.7: Examples of a true positive (a-b) and a false positive (c-d) on T2-weighted imaging (a,c) and the ADC

map (b,d).

Feature AUC Modality AUC

ADC 0.666 T2W 0.760

Gauss. Texture (Order=-, Scale=2.0) 0.633 DWI 0.746

tau Blob 0.632 DCE 0.714

KTrans 0.629

T2-map 0.620

kep 0.604

KTrans Blob 0.600

Gauss. Texture (Order=YY, Scale=5.1) 0.599

Gauss. Texture (Order=-, Scale=3.17) 0.597

b800 0.588

Table 6.2: Results for relative feature and modality importance experiment based on leave-one-patient-out cross-

validation for voxel classification.

per normal case they obtained a sensitivity of 0.15, 0.48 and 0.89 where we obtain a sensitivity

of 0.42, 0.75 and 0.89. Especially at the lower false positive rates we obtain a substantially

beer performance.

e use of multi-parametric MRI over single-parameter MRI is already part of clinical

guidelines33. In this study we investigated the performance of individual features and MR

sequences in both the voxel and candidate stages of our CAD system. Especially in the voxel

stage, the combined interpretation of all three MR sequences, T2-weighted imaging, diffusion-

weighted imaging and dynamic contrast-enhanced imaging shows a large improvement over

using any single MR sequence (highest performing single sequences AUC is 0.76, combination

is 0.89), and all play about an equal role. In the subsequent candidate stage there is a preference

for DWI over DCE over T2W., is experiment also showed that the individual performance

of features was relatively low compared to the combination of all features (best performing

feature in the voxel stage had a AUC of 0.66, whereas the overall voxel stage AUC was 0.89).

ese observations confirm clinical practice. A limitation of this study is the fact that the

ROC evaluation is positively biased toward the radiologist. Although the reference standard



6.4 Discussion 117

Feature AUC Modality AUC

b800 (standard deviation) 0.805 DWI 0.910

ADC (standard deviation) 0.790 DCE 0.814

Voxel likelihood (mean) 0.765 T2W 0.719

LateWash Blob (standard deviation) 0.750

ADC Blob (standard deviation) 0.741

LateWash (standard deviation) 0.731

Voxel likelihood (75th percentile) 0.727

Voxel likelihood (standard deviation) 0.723

kep (standard deviation) 0.723

Volume 0.716

Table 6.3: Results for relative feature and modality importance experiment based on leave-one-patient-out cross-

validation for voxel classification.

for cancerous regions is well defined by the MR-guided biopsy specimens, for most of the nor-

mal regions we have to depend on the opinion of the radiologist. While we incorporated only

data with either negative biopsy results or very low PI-RADS scores (1 and 2) there is still

the risk that some areas we deem normal are actually prostate cancer. Furthermore, in the

evaluation and the comparison to the radiologist, it may well be that the radiologists did have

some false negatives. Recently, prospective preliminary results were published by ompson

et al.62 ey found that the sensitivity for radiologists for detecting high-grade prostate cancer

was 96%. If we look at the potential of our CAD system in such a seing, at a operating point

with a sensitivity of 96%, the specificity of the CAD system is between 15-40%. is could

indicate that between 15-40% of all studies could be read by the CAD system and would po-

tentially require no human intervention, which could reduce the workload of the radiologist

substantially. Another limitation is the fact that although the multi-parametric MRI is implic-

itly registered (all sequences are acquired in one go, without the patient leaving the scanner),

registration errors between the different sequences could occur due to patient movement. is

was mostly circumvented in our data by a. not using an endorectal coil, which significantly

improves patient comfort and as such reduces patient movement and b. by administering Bus-

copan prior to the MRI to reduce bowel movement and c. using multi-scale features (Gaussian

texture, blobness) where exact voxel alignment is less important. Further improvement could

be achieved by implementing a registration algorithm for prostate MRI, however, this is cur-

rently an unsolved problem. To the best of our knowledge there are currently no publications

on the registration of multi-parametric prostate MRI.

e false negatives in our system are mostly caused by prostate segmentation errors. Of

the 11 false negatives aer candidate classification, 6 are caused by the prostate segmentation
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missing the lesion entirely or partly. Most of these issues can be solved by incorporating a

segmentation method which is more robust to strange prostate shapes. An example is shown

in figure 6.6. Although the prostate segmentation algorithm is a candidate for improvement,

it is missing only 6 out of 183 lesions (or 3% of total sensitivity), which is still a reasonable

result. e segmentation algorithm only finished 9 out of 12 in the PROMISE12-challenge,

however overall segmentations were prey accurate, with a median Dice’s coefficient of 0.83.

For the remaining false negatives, in four cases the lesion was detected, but the candidate

segmentations were so large that the center of the candidate segmentation and the lesion

marker were more than 10 mm apart, thus failing our criterion for a true positive. is can

happen because in big lesions the radiologist did not always put the point annotation at the

center of the lesion. For one false negative the areawas not identified by the voxel classification

and the local maxima detection and thus lost to the second part of the system.

e motivation for the development of a CAD system is to aid radiologists by improving

efficiency and performance. e amount of cases a radiologist has to read in a screening

seing is enormous, and our CAD system will be most useful in such a situation. However,

we have not yet evaluated the system on screening data as the data in this study only includes

patients with previous negative TRUS biopsies. erefore we cannot make any claims on the

performance of the system in a screening seing. Summarizing, a fully automatic CAD system

was developed for the detection of prostate cancer in MRI images. Performance evaluation

shows that it outperforms the state-of-the-art, although the comparison has its limitations

due to different evaluation data sets. Furthermore, the system is not significantly different

from radiologist performance at high specificity. erefore we believe it to be a potentially

valuable tool to aid radiologists in the clinic.
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7.1 Introduction

Multi-parametric magnetic resonance imaging (mpMRI) is emerging as an important modality

in prostate cancer diagnosis33,196,197. Multi-parametric MRI combines T2-weighted, diffusion-

weighted, and dynamic contrast-enhanced techniques to provide information, respectively,

on abnormal anatomy, cell-density, and neo-vascularity. Several studies have shown that in

patients with initial negative trans-rectal ultrasound-guided biopsies (TRUSGB) expert readers

using mpMRI find cancer in 38 - 59% of the cases44,198. Furthermore, it has been shown that

mpMRI upgrades cancer aggression of previously TRUSGB detected cancers in up to 30% of

cases199. Several other studies found that the negative predictive value of mpMRI is high

enough to avoid TRUSGB in 30-50% of men with elevated PSA62,200. However, one of the main

limitations for broader acceptance of mpMRI is the lack of required expertise, especially in the

interpretation of the MR images31,32,102.

In order to improve the acquisition and interpretation of mpMRI the European Society for

Urogenital Radiology (ESUR) established initial guidelines for acquisition and standardized

interpretation of mpMRI33. ese guidelines have been evaluated by several groups, both for

detection of cancer prior to biopsy62,63 and aer initial negative TRUSGB58–61. Pokorny et al.

found that using mpMRI and MR-guided biopsy in biopsy-naïve men results in a large reduc-

tion of over-diagnosis of low-grade cancer (82%) while detecting 17% more intermediate/high-

grade cancers than TRUSGB. ompson et al.62 showed that an mpMRI score of 3 or higher

(on a 5 point scale) would result in a sensitivity of 97% and a specificity of 50% for the detec-

tion of high Gleason grade cancer using saturation template biopsy as a reference standard.

Deferring biopsy to a score of 4 or higher would result in a substantially improved specificity

of 92%, but a sensitivity of only 67%.

To further improve prostate mpMRI interpretation, biomarkers and computerized deci-

sion aids are actively researched to help detect intermediate/high-grade prostate cancer. Sev-

eral groups have focused on correlating individual MR parameters (DCE47, DWI51,160 or spec-

troscopy201) to cancer grade, estimating their usefulness as quantitative biomarkers of prostate

cancer aggressiveness. However, none have yet focused on multi-variate quantitative analy-

sis to determine cancer grade. Various groups are developing computer-aided diagnosis al-

gorithms (CAD) to detect aggressive tumours94,96,97. ey have shown that CAD can help

improve the interpretation, especially for inexperienced radiologists97,202. However, the eval-

uation of such systems has been limited to observer studies and ROIs pre-selected by the re-

searchers97,202, or to specific sub-parts of the prostate, like the peripheral zone202.

e purpose of this study is to investigate the clinical effect of a recently developed, state-

of-the-art computer-aided diagnosis (CAD) system203 on the diagnostic accuracy of prostate

MRI PIRADS reporting and to study the ability of CAD to help assess prostate cancer aggres-

siveness.
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Eligible patients
N = 130

Included patients
N = 107

Excluded patients
N = 23

No dynamic contrast 
enhance imaging

N = 2

Failed diffusion-
weighted imaging

N = 2

Receive prior treatment 
for prostate cancer

N = 18

Lesion could not be 
found during MR-

guided biopsy
N = 1

Total cancer suspicious 
regions
N = 141

Benign/normal
N = 45

Low grade
N = 28

Intermediate grade
N = 37

High grade
N = 31

Figure 7.1: STARD diagram of inclusion and exclusion criteria of the prospective patient cohort.

7.2 Materials and Methods

7.2.1 Patient data

e institutional review board waived the need for informed consent as only imaging data and

MR-guided biopsy results obtained from regular care were used. To prospectively evaluate the

CAD system we included all 130 patients from January 1st to September 1st 2013 that received

both an mpMRI and a subsequent MR-guided biopsy at our institution. e inclusion criteria

for the detection MRI were an initial negative TRUSGB and persistently elevated PSA. Multi-

parametric MRIs were acquired according to the ESUR guidelines and included T2-weighted

imaging in three orthogonal directions, diffusion-weighted imaging and dynamic contrast en-

hanced imaging. All MRIs were performed at a Siemens 3T MRI scanner (TRIOTIM or Skyra)

without an endo-rectal coil. Full acquisition details are presented in Table 7.1.

MRIs were read prospectively by one radiologist out of the group of radiologists that re-

port prostate MRI in our clinic. Experience levels of the reporting radiologist ranged from

inexperienced (1 year) to very experienced (J.B., 20 years of experience with prostate MRI).

MRI studies were read according to the ESUR prostate imaging reporting and data system (PI-

RADS) classification including ongoing local and international score refinements63. Cancer

suspicious regions were given a final PIRADS score from 1 to 5, where 1 means ‘definitely not

cancer’ and 5 means ‘definitely cancer’. Per patient all regions with a PIRADS 3, 4 or 5 were

indicated. If no lesion with PIRADS 3-5 was present, a lesion or normal tissue with a PIRADS

1 or 2 score was identified. us in each study at least one region was indicated. Cancer

suspicious regions (PIRADS 4 and 5) were subsequently biopsied under direct MR-guidance.

PIRADS 3 lesions were biopsied only if there was a high clinical suspicion for prostate cancer

(e.g. extremely high PSA, as assessed by the radiologist). A PIRADS 2 lesion was only biop-

sied, when a biopsy was already required due to the presence of a PIRADS 3, 4 or 5 lesion. All
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PS SR ST ET RT FA Other

T2W Turbo

spin-

echo

0.28 – 0.6

mm

3.0 – 3.2

mm

101 – 104

ms

4480 –

6840 ms

120 - 160 Acquired in three orthogo-

nal directions: transversal,

sagial and coronal.

DWI Echo

planar

2 mm 3 mm 63 – 81

ms

2800 –

3600 ms

90 3 b-values: 50, 400 – 500,

800 averaged over 3 direc-

tions. Apparent diffusion

coefficient map calculated

by the scanner soware.

DCE Turbo

FLASH

1.5 – 1.8

mm

3.2 – 5

mm

1.41 ms 36 ms 10 - 14 Temporal resolution of 3.38

– 4.65 seconds, 36 – 50

timepoints. 15 mL contrast

agent used (Dotarem, Guer-

bet, France)

Table 7.1: MRI sequence details for the different types of acquisitions. PS = pulse sequence SR = spatial resolution,

ST = slice thickness, ET = echo time, RT = repetition time, FA = flip angle.

other PIRADS 1, 2 or 3 lesions were not biopsied and not further considered in this study.

Lesions were categorized into either benign/low-grade (indolent) or intermediate/high-

grade cancer (aggressive) based on the MR-guided biopsy Gleason scores. For brevity, the two

categories will be subsequently referred to as indolent and aggressive. e lesion categoriza-

tion strategy is similar to51. Details can be found in Table 7.2.

7.2.2 Computer-aided diagnosis system

e computer-aided diagnosis system evaluated in this paper was previously presented in203.

is system can fully automatically analyze prostate MRIs by first segmenting the prostate.

Next, quantitative voxel features are computed based on the PIRADS guidelines (e.g. the ap-

parent diffusion coefficient, the presence and amount of washout in the DCE MRI). Machine

learning techniques summarize the voxel features into a likelihood of cancer per voxel. Lo-

cal maxima detection is then used to identify suspicious regions in the voxel likelihood map.

ese regions are analyzed in more detail with region-based features (e.g. voxel statistics like

the 25th percentile of the ADC within a region, symmetry within the prostate and local con-

trast). A second machine learning step combines the region features into a region likelihood.

e systemwas trained with retrospective patient data, which had no overlap with the data set

used in this study. e retrospective data was acquired in a similar manner as the prospective

data and had the same reference standard strategy. Details of the retrospective cohort can be

found in Table 7.4.

For the study in this paper one modification was made to the system. e system nor-

mally operates autonomously and chooses areas deemed suspicious enough for the second
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Grade Gleason scores

Low 3+3 or lower, no 4 or 5 component

Intermediate 2+4, 3+4, 2+5

High 3+5, any cancer with a major 4 or 5 component

Table 7.2: Mapping of Gleason scores to cancer grade

Detection

(radiologist)

PIRADS

(radiologist)

Likelihood

(CAD)

Decision

(urologist + 

radiologist)

Aggressive cancer?

Figure 7.2: Suggestedworkflow for the proposed CAD system. e biopsy decision can bemade by the radiologist,

another aending clinician or by using a nomogram (Figure 7.3) to independently combine the PIRADS score

and the CAD likelihood.

stage analysis independently. However, for the purpose of this study we used the radiologist-

indicated suspicious location(s) as input for the second stage of the CAD system (replacing

the local maxima detection). is modification was made to ensure a likelihood from the CAD

system is obtained for each region indicated by the radiologist, even if the CAD system itself

deemed the region not suspicious enough aer the first stage.

7.2.3 Combination of the CAD system and the radiologist

euse of the system as suggested in this paper is presented schematically in Figure 1. e ini-

tial identification of potential suspicious regions was performed by the radiologist, aer which

the radiologist and the CAD system gave independent predictions on whether the suspicious

lesion is an indolent or aggressive lesion. e radiologist did this by assigning a PIRADS score,

while the CAD system assigned a continuous cancer likelihood score between 0 and 1.

e reported scores of the radiologists and CAD were combined aerwards using a nomo-

gram, which is a method to map several distinct measurements and observations to a single

outcome variable in an unbiased manner. We developed such a nomogram by using logistic

regression to independently combine the PIRADS score of the radiologist and the likelihood

from the CAD system. is nomogram was created based on the retrospective data that was

also used to train the CAD system and subsequently evaluated on the prospective data pre-
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sented in this paper. It is noted that in a clinical workflow alternativemethods of incorporating

CAD results may be used, such as asking the radiologist to make a final decision based on the

two scores.

7.2.4 Statistical evaluation

e statistical evaluation consisted of three parts. First, we investigated the potential increase

in predictive power of the radiologist/CAD-combination over the radiologist alone using the

likelihood ratio test on the logistic regression models.

Second, the diagnostic performance of the CAD system, the radiologist and the combina-

tion of radiologist/CAD was evaluated using receiver-operating characteristic (ROC) analysis.

e significance of improvement for both sensitivity and specificity was tested using boot-

strapping at the points for which the ROC curve of the radiologist was explicitly defined (i.e.

the different PIRADS thresholds). A total of 10,000 bootstrap samples was used to obtain the

95% confidence intervals.

ird, we investigated whether the likelihoods of aggressive disease obtained from the

CAD system correlate to cancer grade. As cancer grade is an ordinal variable, Spearman’s rank

correlation coefficient was used to estimate this correlation. Furthermore, the likelihood ob-

tained from the radiologist/CAD-combination nomogram was also correlated to cancer grade.

For the evaluation, a correctly identified aggressive lesion was a true positive result. When

an indolent lesion was identified as an aggressive lesion, this was considered a false positive.

Note that we explicitly considered diagnosis of low-grade cancer a false positive; identification

of low-grade cancer can lead to over-diagnosis and over-treatment.

All analysis was done on a per-lesion basis. For all significance tests a p-value threshold of

0.05 was chosen. SPSS (SPSS, version 20.0.01, Chicago, U.S.A) was used for statistical analysis.

7.3 Results

7.3.1 Patient data

e prospective cohort composition is detailed using a STARD diagram in Figure 7.1. Informa-

tion on patient age/PSA ranges and tumor grade distribution are shown in Table 7.3. PSA and

age ranges are similar to other studies using patient data with similar inclusion criteria (initial

negative TRUS biopsy and persistently elevated PSA)58–61. Furthermore, the distribution of

cases between the two categories indolent and aggressive was similar (73 versus 68 lesions).

Information on the retrospective cohort that was used to train the CAD system and ob-

tain the nomogram is presented in Table 7.4. A similar distribution of PSA levels, age and

cancer grade can be observed between the retrospective training cohort and the prospective

evaluation cohort.
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Clinical aracteristics

PSA level, mg/ml, median (range) 13 (1 – 56)

Age, yr, median (range) 66 (48 – 83)

Gleason score Grade No. of lesions

Normal/Benign Normal/Benign 45 No cancer 45

2 + 5 Intermediate 1 Low 28

3 + 2 Low 2 Intermediate 37

3 + 3 Low 26 High 31

3 + 4 Intermediate 36 Total 141

4 + 3 High 12

4 + 4 High 5

4 + 5 High 10

5 + 4 High 3

5 + 5 High 1

Table 7.3: Characteristics of patients and biopsy specimens for the prospective cohort (107 patients). PSA ranges

were determined on 103 patients, for 4 patients PSA levels were unknown.

Clinical aracteristics

PSA level, mg/ml, median (range) 11 (1 – 57)

Age, yr, median (range) 65 (42 – 78)

Gleason score Grade No. of lesions

Normal/Benign - 151 No cancer 151

2 + 3 Low 3 Low 61

2 + 4 Intermediate 1 Intermediate 67

3 + 2 Low 3 High 53

3 + 3 Low 55 Total 332

3 + 4 Intermediate 66

4 + 3 High 28

4 + 4 High 12

4 + 5 High 11

5 + 4 High 2

Table 7.4: Characteristics of patients and biopsy specimens for the retrospective cohort (254 patients). PSA ranges

were determined on 220 patients, for 34 patients PSA levels were unknown.
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Figure 7.3: Nomogram estimated using logistic regression for the combination of the radiologist and the CAD

system. e likelihood for intermediate/high-grade cancer is indicating by the color coding and the contour

labels and ranges from 0 to 1. Green indicates low likelihood and red indicates high likelihood.

7.3.2 Combination of PIRADS and CAD likelihood

TFirst, the logistic regression procedure showed that including the CAD system likelihood

in addition to the radiologist PIRADS score resulted in a model with significantly improved

predictive power (p < 0.001, likelihood ratio test) for aggressive disease. e nomogram

obtained using logistic regression on the retrospective training data of the CAD system is

presented in 7.3. e equation describing this nomogram is:

Likelihood =
1

1+ e−t
(7.1)

t = −7.629+ 3.886C+ 1.295P (7.2)

where C is the CAD system likelihood and P is the radiologist PIRADS score. Second, the

results of using this nomogram prospectively to combine the radiologist score and the CAD

system are presented in Figure 7.4. Here the ROC curves for the CAD system and the combi-

nation are shown. e performance of the radiologist is presented at three different PIRADS

thresholds.

A significantly improved sensitivity was obtained at the PIRADS 4 threshold (0.98 for

the radiologist/CAD-combination versus 0.93 for the radiologist alone, p = 0.029). Further-

more a significantly improved specificity was found for the PIRADS 3 threshold (0.25 for the
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radiologist/CAD-combination versus 0.09 for the radiologist alone, p = 0.013).

7.3.3 Correlation of likelihood and cancer grade

ird, the relations between the CAD system likelihood and cancer grade is presented in Figure

7.5a as box-plots. In Figure 7.5b the same result is presented for the CDS/radiologist combi-

nation. A clear trend can be observed; higher likelihoods relate to higher cancer grade. e

Spearman’s rank correlation coefficient was 0.536 when using only the CAD system, 0.582

for the radiologist alone and 0.694 when combining the CAD system and the radiologist. All

correlations were significant (p < 0.01).

7.4 Discussion

e Results of this study indicate that computerized analysis of prostate regions to character-

ize cancer grade may help improve radiologist performance in selecting biopsy targets in a

prospective seing.

e likelihoods of intermediate-to-high-grade cancer of the CAD system (which combines

all MRI parameters) significantly correlated with cancer grade. An even higher, significant

Spearman’s rank correlation coefficient of 0.694 was obtained by using the nomogram (Figure

7.3) combining the radiologist with the CAD system. As far aswe are aware, there are currently

no prospective studies assessing the correlation of multiple MR parameters with cancer grade.

To translate these results to clinical practice, we tested whether combining the radiolo-

gist and CAD system results in improved sensitivity or specificity at the different PIRADS

thresholds. Inspecting the ROC curve (Figure 7.4) for the CAD system with respect to the

performance of the radiologist at the different PIRADS thresholds, we can appreciate that the

performance of both the radiologist and the CAD system seem similar. However, they pro-

vided complementary information, as the combination of both predictions (PIRADS score and

CAD likelihood) results in an improved ROC curve (blue curve, Figure 7.4). At a PIRADS

threshold 3 a significant increase in specificity was found (p = 0.013) and at the PIRADS 4

threshold a significant increase in sensitivity was found (p = 0.029). us, combing radi-

ological expertise with computational methods to characterize prostate cancer results in an

improved sensitivity and specificity.

In the study by Pokorny et al. it was already established that MRI before any TRUSGB has

the potential to reduce the amount of biopsies by 51% compared to TRUSGB63. Improving the

performance of the reporting radiologist by adding the CAD system as an independent second

reader as presented in this paper might further reduce the amount of biopsies by beer char-

acterizing lesions as aggressive or indolent in vivo. Furthermore, the use of computer-aided

diagnosis system might make reporting prostate MRI feasible for less experienced radiologists

or urologists. Although this was not explicitly investigated in this paper, the high standalone
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Figure 7.4: Receiver-operating characteristic curve showing the performance of the CAD system (orange) and

the radiologist/CAD-system combination (blue). e shaded areas indicated the 95% confidence intervals as

calculated using bootstrapping. e radiologist performance is indicated with point for the different PI-RADS

thresholds. e vertical error bars indicate the 95% confidence interval on the sensitivity and horizontal error

bars indicated the 95% confidence interval on the specificity as estimated by bootstrapping.
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Figure 7.5: Relation between computer system likelihood and cancer grade (a) and the computer sys-

tem/radiologist combination and cancer grade (b) when the system is trained to detect only intermediate-to-

high-grade cancer.
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performance of the CAD system supports this idea.

is study has some limitations. First, although MR-guided biopsy has been described

to have a very high concordance with prostatectomy Gleason grade (95% detection rate for

Gleason 4 and 5 components), it is not 100% accurate28. is potentially implies, that some of

the cancers in our study are under- or over-graded by the MR-guided biopsy.

A second limitation is that each case in this study was read by one radiologist. is means

that inter-observer variability could not be established in this study. However, a consensus

meeting re-evaluated uncertain scores prior to biopsy. In future work it would be beneficial to

compare the performance of the CAD system and radiologist to two radiologists performing a

first and second read. A third limitation is that our evaluation only pertains to a single center,

so we could not test whether our results generalize to different centers.

Last, due to the fact that PIRADS 1 and 2 lesions are generally not biopsiedwe cannot assess

the full performance of the CAD system and the radiologist in negative cases without long-

term follow-up or external reference tests like full template biopsy. However, this has lile

impact on the results of this study. Of all 7 biopsied PIRADS 2 lesions, none was categorized as

aggressive. is indicates that radiologists are already reading at a very high sensitivity level

and they do not need a computer-aid at the lower PIRADS scores. Literature also confirms this

assessment, with the studies byompson et al.62 and Pokorny et al.63 reporting MRI sensitiv-

ities and negative predictive values of 97 and 96.9% respectively when PIRADS 3 and higher

lesions are biopsied. e CAD system has most potential in more accurately discriminating

which PIRADS 3, 4, or 5 lesions require biopsy and the results at these scores are not affected

by the lack of PIRADS 1 or 2 biopsies.

7.5 Conclusions

In this paper the use of a computer-aided diagnosis system in conjunction with the radiologist

to accurately characterize prostate lesions was investigated. Result showed that a significant

increase in diagnostic performance can be achieved when combining the radiologist PIRADS

score and the CAD system likelihood. Furthermore, a significant correlation between CAD

likelihood and cancer grade exists; this increases further when the PIRADS score and the

CAD likelihood are combined using a logistic regression-based nomogram.
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e focus of this thesis was the research and development of a CAD system for detection of

cancer in prostate MRI. It covers segmentation of relevant structures (chapters 2 and 3), fea-

ture discovery (chapters 4 and 5), building the CAD system (chapter 6) and system evaluation

(chapter 7).

In chapter 2 the organization of a challenge for prostate segmentation in MRI is discussed.

e challenge was setup to allow fair and meaningful comparison of different segmentation

algorithms. Challenge design included the acquisition ofmulti-center, multi-vendor andmulti-

protocol data and the development of evaluation measures that would allow us to show clear

separation between algorithms on the basis of performance. e challenge included both an

online component and a live challenge during a workshop at the MICCAI2012-conference in

Nice, France. In total 11 teams participated in this initial phase of the challenge, with distinctly

different algorithms, ranging from active-shape models to multi-atlas registration approaches.

e results indicated that the top-two participating algorithms significantly outperformed all

the algorithms outside of the top-three and had an efficient implementation with a run time of

8 minutes and 3 second per case respectively. Overall, active-shape model based approaches

seemed to outperform other approaches like multi-atlas registration, both on accuracy and

computation time. Average algorithm performance was good to excellent and the Imorphics

algorithm even managed to outperform the second human observer on average. However,

we showed that algorithm combination might lead to further improvement, indicating that

optimal performance for prostate segmentation is not yet obtained.

Segmentation of the prostate zones is a relatively new research topic; initial results of

a paern recognition approach for zonal segmentation are discussed in chapter 3. Zonal

segmentation of the prostate into the central gland and peripheral zone is a useful tool in

computer-aided detection of prostate cancer because occurrence and characteristics of cancer

in both zones differ substantially. We opted for a paern recognition approach because it can

capture the distinct appearance differences through a wide range of quantitative image char-

acteristics and is best suited to deal with the high variability in zonal shapes. e algorithm

incorporates three types of features that can differentiate between the two zones: anatomi-

cal, intensity and texture. It is evaluated against a multi-parametric multi-atlas based method

using 48 multi-parametric MRI studies. Segmentations from three observers were used to as-

sess inter-observer variability and we compared our results against the state of the art. We

obtained a mean Dice coefficient of 0.89 ± 0.03 for the central gland and 0.75 ± 0.07 for the

peripheral zone, compared to 0.87± 0.04 and 0.76± 0.06 for the state of the art. Summarizing,

a paern recognition approach incorporating anatomy, intensity and texture has been shown

to give good results in zonal segmentation of the prostate.

Features to discriminate between specific types of benign disease and prostate cancer are

discussed in chapter 4. e presence of benign disease in the prostate acts as a confounder for

the diagnosis of prostate cancer. e most common types of benign findings in the prostate
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are benign prostatic hyperplasia (BPH), atrophy, inflammation and prostatic intra-epithelial

neoplasia (PIN). To establish the imaging characteristics of these classes we used fusion of MRI

and histopathology, computer-extracted features and classification. Prostatectomy and pre-

operative multi-parametric prostate MRI of 70 patients were included in this study. Intensity,

texture and pharmacokinetic features were extracted for each of the confounding classes and

prostate cancer. Feature selection was performed for each of the pair-wise classification tasks

(cancer vs. BPH, PIN, inflammation and atrophy, respectively) to identify the top five features

for each. In total 92 PIN, 64 atrophy, 120 inflammation and 73 BPH lesions, and 128 cancer

lesions were annotated. For each of the classification tasks distinct features were identified

which provided the best discriminatory performance. Furthermore, for all classification tasks

the area under the ROC curve improved significantly compared to monolithic classification

(all benign confounders considered a single class).

Chapter 5 assessed whether we could improve the potential of the apparent diffusion coef-

ficient in assessing cancer aggressiveness by explicitly incorporating inter-patient variation in

the normal peripheral zone ADC. Intra-, and inter-patient variation of peripheral zone ADC

was determined by repeated measurements of normal regions in a retrospective cohort of 10

consecutive patients over three separate MR imaging sessions at 3T. e effect of this intra-

and inter-patient variation on assessment of prostate cancer aggressiveness was examined in a

second retrospective cohort of 51 patients with prostate cancer who underwent an MRI, prior

to prostatectomy. Logistic regression was used to assess whether incorporating normal ADC

values improved the prediction of cancer aggressiveness. e effect on the diagnostic perfor-

mance was assessed using receiver-operating characteristic analysis. e repeated-measures

ANOVA revealed that inter-patient variability was significantly larger thanmeasurement vari-

ability. Analysis of standalone tumor ADC values showed an AUC of 0.91 for discriminating

low- vs. high-grade tumors. Incorporating normal PZ ADC using linear logistic regression,

significantly improved the AUC to 0.96.

e development of the two-stage CAD system is detailed in chapter 6. In the first stage

we detect initial candidates using multi-atlas-based prostate segmentation, voxel feature ex-

traction, classification and local maxima detection. e second stage segments the candidate

regions and using a classifier we obtain cancer likelihoods for each candidate. Features rep-

resent pharmacokinetic behavior, symmetry and appearance, among others. In both stages

a random forest classifier is used to obtain cancer likelihoods. e system is evaluated on

a large consecutive cohort of 347 patients with MR-guided biopsy as the reference standard.

is set contained 165 patients with and 182 patients without prostate cancer. Performance

evaluation is based on lesion-based FROC and patient-based ROC analysis. e system is also

compared to the prospective clinical performance of radiologists. Results show a sensitivity

of 0.42, 0.75 and 0.89 at 0.1, 1 and 10 false positives per normal case. Additionally, the patient-

based ROC shows no significant difference at high specificity between the CAD system and
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the radiologist.

In chapter 7 the independent combination of the CAD system and the radiologist is in-

vestigated with respect to the potential to improve radiologist performance and assess cancer

aggressiveness. We obtained MRI studies and subsequent histopathologic outcome of MR-

guided biopsies of a consecutive set of 130 patients from January 1st to September 1st 2013.

Logistic regression combined CAD with the radiologist. Bootstrapping was used to analyze

differences in sensitivity and specificity of the CAD/radiologist combination compared to the

radiologist alone. Spearmans’ rank correlation coefficient was used to assess correlation be-

tween CAD likelihood and cancer grade. Of all biopsies performed under MR-guidance, a total

of 68% was positive and 32% was negative for prostate cancer. When detecting intermediate-

to-high-grade cancer a significantly improved sensitivity was found for the CAD/radiologist

combination relative to the radiologist alone (0.98 versus 0.93). Furthermore, a significant cor-

relation was found for the likelihood output of the CAD/radiologist combination and cancer

grade, with a rank correlation coefficient of 0.696.
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We focused on three areas of automated image analysis for prostate cancer MRI: feature dis-

covery, prostate segmentation, and development and evaluation of a computer-aided detection

system. In this chapter the major contributions of this thesis are covered and suggestions for

future work are given.

Feature discovery

MRI is becoming an increasingly popular modality for the detection of prostate cancer due

to its high sensitivity and specificity. However, results in literature on the performance of

prostate MRI vary, caused by differences in acquisition, reader experience, and evaluation

criteria. In the past couple of years guidelines on acquisition and reporting of prostate MRI

have been published and evaluated; they show potential for standardized reporting of prostate

MRI. e first release of these guidelines still lacks granularity and focuses mostly on the

detection of any prostate cancer. Two important questions are not addressed: ’how do we

discriminate different types of benign disease from prostate cancer?’ and ’how can we beer

discriminate aggressive and indolent prostate cancer in vivo?’

Several other groups have made a start in answering these questions, although most are

focused on single parameters or single types of benign disease. In chapter 4 we addressed

the first question by combining histopathology and MRI to discover features which help dis-

criminate prostate cancer from four types of benign disease: BPH, inflammation, PIN and

atrophy. Multiple unique features for each of these classes were identified which had reason-

able performance in discriminating the specific confounding class from prostate cancer. Some

of these features may be explicitly incorporated into prostate MR reporting guidelines in the

near future.

In chapters 5 and 7 we tried to address the second question of assessing cancer aggressive-

ness in vivo. Chapter 5 focused on the use of a single feature, the apparent diffusion coeffi-

cient, to determine cancer aggressiveness (based on Gleason grading) in the peripheral zone.

In previous work it was discovered that the ADC correlates well with cancer grade. However,

we discovered that this correlation can be further improved by explicitly taking into account

inter-patient variation. In chapter 7 we correlated the output of the CAD systemwe developed

to cancer aggression and found a strong correlation between cancer grade and CAD-generated

likelihood.

Prospective evaluation of the features identified in chapter 4 and 5 would further help

cement them as useful contributions to the reporting guidelines. Especially how radiologists

should interpret the features and how to handle situations where there is uncertainty about

more than one class are still unknowns. Expanding the reporting guidelines to also establish

instructions for predicting cancer aggressiveness aer evaluation of multi-parametric MRI is

also an area of further research.
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Feature discovery for confounding disease and cancer aggressiveness would benefit im-

mensely from improved registration of histopathology and prostate MRI. e advent of digital

pathology and the digitization of whole mount prostatectomy slides has opened the door to

more accurate evaluation of MR parameters with respect to the underlying ground truth. e

3D reconstruction of complete prostatectomies and the subsequent mapping to the MRI could

result in improved registration. Establishing artificial landmarks using strands and the use

of ex vivo prostate MRI might be a path to achieve this. Finally, further automation of the

registration process could help remove user variation and dependency.

MR spectroscopy is another method to, in vivo, determine cancer aggressiveness and has

in the past obtained good results in this respect. In this thesis we did not investigate the use

of spectroscopy, mostly because it is not acquired during the regular prostate cancer detection

protocol in our hospital. In general the use of spectroscopy is complex, both on the acquisition

side and the post-processing side, and as such its use in clinical practice is still limited. Never-

theless, it definitely has potential as a tool for cancer detection and aggressiveness assessment.

In addition to MR spectroscopy, several groups are investigating novel MRI acquisitions

and modeling approaches to discover new features. One such an example is the use of bi-

exponential diffusion models to assess slow and fast diffusion within tissue. Other groups

have investigated the use of fractional anisotropy for DWI or more complex pharmacokinetic

models for DCE MRI. Although there is definite value in more complex models and new ac-

quisition strategies, results are still preliminary. ey have not been evaluated in this thesis.

To truly assess cancer aggressiveness, the use of Gleason grading is not enough. Although

pathology is oen considered the ground truth, it is well known that the inter-observer vari-

ability between pathologists assigning Gleason grades is significant. As such there is only one

reliable basis for establishing ground truth: final patient outcome, either biochemical recur-

rence (rise of PSA aer treatment) or lack thereof aer 5 - 20 years.

Prostate segmentation

Chapter 2 discusses the standardization of prostate segmentation evaluation in MRI in the

form of a ’Grand Challenge’. e concept of challenges has entered medical image analysis in

2007, and has become increasingly popular since. e standardized evaluation of algorithms is

especially important in medical imaging, as most evaluation occurs on proprietary data sets,

algorithm code is not made publicly available and evaluation measures differ. Furthermore,

re-implementing methods from literature is prone to errors without help from the original

author as most algorithms tend to be fairly complex, containing many parameters to optimize.

For any challenge to be successful, there are some prerequisites. First of all, the subject the

challenge addresses, e.g. prostate segmentation, needs to be relevant, both to ensure enough

participation and to generate interest. Second, the data provided in the challenge should have
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similar characteristics to the data encountered in an actual clinical seing to make sure the

results generalize well. ird, the evaluation measures used should be reasonable, represent a

quality which is clinically relevant, and allow separation between competing algorithms. For

the prostate MR segmentation challenge (PROMISE12) we tried to adhere to these rules.

e results obtained in the challenge show that several algorithms published in literature

already obtain excellent performance relative to humans. Although none of them are as of

yet able to automatically segment all the difficult cases correctly, in general the top algorithms

will give good results. Depending on the use-case of the algorithm, performance might require

no further improvement. For example, for volume estimation or as a pre-processing step for

computer-aided diagnosis systems the methods are most likely accurate enough. For some

use-cases however, further improvement of the segmentation algorithms for prostate MRI can

be very helpful, e.g. automatically detecting extra-prostatic extension of a cancerous lesion.

As we expect algorithm performance to be further improved, the challenge is currently still

open for new submissions.

Most future work is related to optimizing details and expanding segmentation to the sub-

structures of the prostate and across different MR parameters. Segmentation of the prostate

sub-structures, for example the prostate zones (Chapter 3), can be very useful. It is for example

well known that cancer appearance (and also the appearance and presence of different types

of confounders) is prostate zone dependent. As such, for computer-aided detection algorithms

the knowledge about the locations of the prostate zones can be very useful. One of the most

difficult issues is that the visibility of the zones differswidely frompatient to patient. Literature

on the segmentation of prostate zones (let alone other sub-structures like the neuro-vascular

bundles) is still sparse, and although a challenge on the segmentation of the prostate zones

has already taken place, algorithm performance is still far from the performance of the whole

prostate segmentation algorithms.

e segmentation of the neuro-vascular bundles and seminal vesicles are areas which are

worthwhile to investigate. Patient prognosis for a large part depends on whether the cancer

is still organ confined. When we have accurate segmentations of these sub-structures we can

start to assess whether the tumor is invading these structures. is may help clinicians to

make a more accurate prognosis.

e PROMISE12-challenge focused on the segmentation of the prostate on T2-weighted

images as it contains the best anatomical detail (spatial resolution) and contrast (compared to

diffusion-weighted imaging and dynamic contrast enhanced imaging). However, the use of

the other MRI parameters might allow improvement of segmentation accuracy. In chapter 3

we already use both the ADC map and the axial T2-weighted image to segment the prostate

zones, however this has not yet been applied towhole prostate segmentation. erefore, multi-

parametric segmentation of the prostate is still an important topic for future research.



141

Development and evaluation of a computer-aided detection system for prostate can-
cer

Chapters 6 and 7 discuss the development and evaluation of a completely automated computer-

aided detection system for prostate cancer on MRI. Although several research groups have

investigated the use of CAD systems for prostate MRI, the system presented in this paper is

only the second completely automated system incorporating both a detection and a charac-

terization stage. Furthermore, the performance of the system presented in this thesis is beer

than the performances currently presented in literature. One caveat is that the performance

measures have not been obtained on the same data set, which means there is room for a future

’Grand Challenge’.

e building blocks of the system are quite typical for CAD systems and consist of a seg-

mentation of the organ of interest, extraction of voxel features, voxel classification, candidate

detection, candidate segmentation and finally candidate classification. e two-stage approach

to the system allows us to in the first stage detect all suspicious areas and in the second stage

classify these areas, resulting in different and easier tasks for each of the stages. Chapter 6

also shows that the second stage of the system significantly improves the performance.

Although performance of the complete system is good, it is currently not as good as the

radiologist, although at high specificity there is no significant difference. ere are still some

components which could be improved. e algorithm we used for the segmentation of the

prostate obtained 7th place out of the 11 participating algorithms in the PROMISE12-challenge.

Although the prostate segmentations themselves are quite reasonable, this means we are not

currently using the optimal segmentation strategy, causing us to miss some cancers (around

3%). In the challenge active shape based segmentation approaches seemed to outperform atlas

approaches. erefore, replacing our atlas based strategy with a more successful active shape

based strategy would be worthwhile. However, implementing such an algorithm is not trivial,

and can be the focus of an entire PhD thesis by itself.

Standardization of MR image acquisition is difficult, even within a single institution. Vari-

ability between patients, scanners, and protocols make it challenging to create CAD systems

which can quantitatively assess MRI. We already incorporate a way to standardize the T2-

weighted images in our CAD system, however, also the supposedly quantitative parameters

like the ADC differ substantially across different protocols. Furthermore, imaging artifacts,

signal-to-noise ratio and lack of resolution can be problematic issues.

Another area of improvement is spatial alignment of the different multi-parametric MR

images. Although the different MR images are implicitly registered because they are acquired

sequentially (and thus within the same coordinate frame) patient and bowel movement can

cause problems. In practice there were only a few cases in our database where there is sub-

stantial misregistration within the prostate itself. Co-registration of multiple distinct MR pa-
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rameters is no trivial task and algorithm evaluation difficult. One approach could be to first

register all the within-parameter images (b-values in DWI, time points in DCE and axial, sagit-

tal and coronal T2-weighted acquisitions) and subsequently perform the between-parameter

registration. For evaluation we could potentially use the performance of our CAD system as

a surrogate marker for registration success.

Incorporation of new features like bi-exponential diffusion models or spectroscopy might

also further improve performance. Additionally, the usefulness of texture features on T2-

weighted imaging has not yet been investigated thoroughly. More algorithmic approaches to

feature discovery like sparse coders might be useful in discovering improved texture descrip-

tors.

In chapter 7 the CAD system was prospectively evaluated on a consecutive set of patients.

We used logistic regression to create a model which combines the radiologist and the CAD

system independently. We showed the potential of the CAD system to improve the assessment

of the radiologist and found a large correlation between CAD system likelihoods and cancer

grade.

Evaluating the CAD system in this way allows us to obtain results that are closer to clinical

practice than typical observer studies, as there was no patient selection and the radiologists

reported prospectively without knowledge of the outcome. However, this evaluation has its

own drawbacks. We only use locations that were actually biopsied and as such the locations

which were given a low score by the radiologist are not assessed by the CAD system. In the

more controlled seing of an observer study we could have used patients with subsequent

prostatectomy to obtain ground truth for the entire prostate. Furthermore, observer studies

would have allowed us to assess different usage scenarios of the CAD system (interactive,

before/aer radiologist scoring) instead of the independent combination that was used now.

CAD systems can theoretically be used as independent readers, either as a first reader or a

second reader. As a first reader they could be used as a triage test, e.g. by leing them operate

at very high sensitivity (e.g. 99%) and moderate specificity (e.g. 40%). is would reduce the

amount of cases that need to be read by a radiologist substantially. e first reader strategy for

CAD systems is especially useful in a screening seing, where there are many more healthy

men than men with prostate cancer. Currently, several groups are investigating the use of

pre-biopsy MRI, i.e. MRI aer only an initial PSA test. If such data would become available it

would be of great interest to investigate our current CAD system as a first reader.

Last, the data used in this thesis to evaluate the CAD system all originated from a single

center, although it does consist of multi-scanner, multi-protocol data. e evaluation onmulti-

center data would be a logical next step to assess the generalization performance of the CAD

system.
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Epilogue

Rising healthcare costs will be the major healthcare problem in the coming decades. As the

the average age in the Netherlands (and the world) continuous to rise, more people will put a

strain on the healthcare system. Especially for prostate cancer, for which incidence is highly

correlated to age, offering suitable diagnosis and treatment to everyone will become more and

more difficult. To add insult to injury the current diagnostic pathway for the diagnosis of

prostate cancer is invasive, inaccurate, and causes a significant amount of patient morbidity.

is currently makes it infeasible to perform screening for prostate cancer, which is unfortu-

nate as early detection of aggressive prostate cancer could lead to earlier (and usually cheaper

and less radical) treatment with beer outcome for the patient.

With rising healthcare costs MRI might not seem like an ideal solution for the detection

and diagnosis of prostate cancer as it is commonly viewed as an expensive modality. How-

ever, a recent study by de Rooij et al.64 has already shown that even in their proposed seing

(including a full multi-parametric MRI and an MR-guided biopsy) cost of MRI is almost the

same as the cost of PSA and TRUS-guided biopsies. e cost per quality-of-life-year is even

lower, mostly because of the reduced number of side effects when using MRI. e main reason

for not performing MRI instead of TRUS-guided biopsies is the availability of MRI and the lack

of experienced radiologists.

is thesis does not try to answer the issue of MRI availability. However, some general

comments can be made. In the Netherlands, the availability of MRI is quite high, with 10.8 MR

scanners per 1.000.000 inhabitants, resulting in approximately 180 MR scanners (Brancher-

apport Nederlandse Vereniging van Ziekenhuizen 2012). In the Dutch population around

1.000.000 men would need to be screened according to the suggestions in Schröder et al.21.

Performing, for example, a biennial screening of this group using PSA upfront and subse-

quent MRI (with a PSA threshold of 1, giving us a sensitivity aer PSA of 92% for aggressive

cancer) would result in 3 - 4 scan per day, per scanner. Using a PSA threshold of 4 (sensitivity

for aggressive cancer 40%) would result in 1 scan per day, per scanner. Although this still

seems like a lot, it might be feasible when the multi-parametric MRI protocol is modified a bit.

For screening only acquiring T2-weighted imaging and diffusion-weighted imaging might be

enough to achieve good sensitivity and specificity and would reduce MRI acquisition time,

cost and the dependence on contrast agent. With the current protocol acquiring a sagial and

axial T2-weighted image in addition to a diffusion-weighted series including 3 b-values can be

performed within 10 minutes. Additionally, new techniques like compressed sensing might

revolutionize acquisition speed of MRI in the near future.

e lack of experienced radiologists to read prostate MRI can be partly mediated by train-

ing, but still the volume and time required to read all acquired MRIs, perhaps in a double

reading seing like in mammography screening, would put a large strain on the radiological
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community. is is one of the main problems this thesis tries to address. e current imple-

mentation of CAD systems mostly focuses on being an aid to the radiologist, but the potential

of computerized tools is not restricted to that. eir use as independent readers may have a

larger impact in the long run. is does not mean that the radiologists will be out of a job; it

will give them more time so they can focus on the patients that actually need their expertise.

To give an example, in the screening seing as suggested in the previous paragraph (PSA >

1), around 250000 MRIs are made each year, of which 85% will be normal. ese are not the

cases the clinician wants to spend a lot of their time on. If we can design a computerized sys-

tem which can, at a very high sensitivity, get rid of a substantial percentage of normal cases

that would already result in improved efficiency. In the case of prostate MRI, it might make

screening using MRI much more feasible. In this thesis we could not yet evaluate the CAD

system in this way because we do not yet have MRI screening data, however this would be the

ultimate goal.

Of course there are also some ethical considerations to screening for prostate cancer: every

screening program has to find a balance between costs and benefits. e current diagnostic

pathway already has shown the potential benefits (reduction of prostate cancer mortality), but

at too high a cost, mostly in terms of over-diagnosis and over-treatment. e PSA/MRI path-

waymight offer similar benefits, but the straightforward implementation (all MRIs reported by

clinicians) puts too big a strain on the radiological community. Although there are still many

unanswered question about how to best use computer aids in screening (both from a practical

and a legislative point of view), it does have the potential to make PSA/MRI-based screening

for prostate cancer a reality. For me the biggest gain is the fact that we can reduce cancer

mortality and simultaneously provide healthy men with a clear yes/no-answer regarding the

presence of prostate cancer, reducing anxiety and morbidity relative to the current situation.

Maybe the days of patients suffering through more than 45 biopsy needles will then finally be

behind us.
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De focus van deze thesis was het ontwikkelen van een computer-ondersteund detectiesys-

teem (CAD-systeem) voor het vinden van kanker in prostaat MRI. De benodigde bouwstenen

hiervoor zijn het segmenteren van relevante structuren (hoofdstuk 2 en 3), het ontdekken van

kenmerken van kanker en benigne ziektepatronen (hoofdstuk 4 en 5), het ontwikkelen van het

CAD-systeem (hoofdstuk 6) en de prospectieve evaluatie van het systeem (hoofdstuk 7).

In hoofdstuk 2 werd de organisatie van een internationale wedstrijd voor prostaatsegmen-

tatie op MRI besproken. Deze wedstrijd werd georganiseerd om een eerlijke en betekenis-

volle evaluatie van segmentatiealgoritmen mogelijk te maken. Het ontwerp van de wedstrijd

hield onder andere in dat er multi-instelling, multi-fabrikant en multi-protocol data verzameld

moest worden. Daarnaast moest er gebruik worden gemaakt van evaluatiemethodieken die

een duidelijk onderscheid tussen algoritmen lieten zien op basis van accuratesse. De wedstrijd

bestond uit een online component en een live component, die laatste werd georganiseerd tij-

dens eenworkshop op deMICCAI2012-conferentie in Nice, Frankrijk. In totaal 11 teams deden

mee in deze initiële fase, met ieder unieke algoritmen. De algoritmen bestonden onder andere

uit active-shapemodellen en multi-atlas-registratiemethodieken. De resultaten laten zien dat

de twee beste algoritmes significant beter zijn dan alle andere algoritmes buiten de top drie.

Daarbij hadden zij ook een efficiënte implementatie met een segmentatietijd van 8 minuten en

3 seconden per casus. Gemiddeld gezien waren active-shapemodellen beter dan demulti-atlas-

registratiemethoden, zowel in prestaties als in rekentijd. Alhoewel de gemiddelde prestaties

goed tot uitstekend waren en het Imorphics-algoritme beter presteerde dan de onervaren be-

oordelaar hebben we ook laten zien dat combinaties van algoritmen tot verdere verbetering

zou kunnen leiden. Dit laat zien dat de optimale prestatie in prostaatsegmentatie nog niet

gehaald is.

Segmentatie van de prostaatzones is een relatief nieuw onderzoeksveld en de initiële re-

sultaten verkregen via het gebruik van een patroonherkenningsaanpak werden getoond in

hoofdstuk 3. Automatische verdeling van de prostaat in de centrale klier en de perifere zone is

een zeer bruikbaar gereedschap voor computer-ondersteunde detectie van prostaatkanker om-

dat de prevalentie en de karakteristieken van kanker in beiden zones substantieel verschillen.

De patroonherkenningsaanpak gebruikt drie typen kenmerken om de twee zones uit elkaar

te houden: anatomie, intensiteit en textuur. Deze methode werd vergeleken met een multi-

atlas-registratietechniek die gebruik maakte van 48 multi-parametrische prostaatstudies. Drie

beoordelaars werden ingezet om de inter-beoordelaarvariabiliteit af te schaen en we vergelij-

ken de resultaten met de beste resultaten uit de literatuur. We verkregen een gemiddelde Dice

coefficiënt van 0.89 voor de centrale klier en 0.75 voor de perifere zone, vergeleken met 0.87 en

0.76 in de literatuur. Samenvaend, de patroonherkenningsaanpak die anatomie, intensiteit

en textuur gebruikt gee goede resultaten in de zonale segmentatie van de prostaat.

Kenmerken die onderscheidend zijn voor verschillende benigne ziekten en prostaatkanker

werden beschreven in hoofdstuk 4. De aanwezigheid van benigne ziekten in de prostaat is
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verwarrend voor het diagnosticeren van prostaatkanker. De meest voorkomende typen zijn

benigne prostatische hyperplasie (BPH), atrofie, ontsteking en prostatische, intra-epithele ne-

oplasie (PIN). Om vast te stellen wat de beeldkenmerken zijn van deze klassen gebruiken we

fusie van MRI en histopathologie en computer-geëxtraheerde kenmerken in combinatie met

classificatie. De prostatectomie en de preoperatieve, multi-parametrische MRI van 70 patiën-

ten werden geïncludeerd in deze studie. Intensiteit, textuur en farmacokinetische kenmerken

werden geëxtraheerd voor ieder van de benigne klassen en prostaatkanker. Kenmerkselectie

werd uitgevoerd voor elke classificatietaak om te bepalen wat de vijf belangrijkste kenmer-

ken waren voor ieder van de benigne klassen. In totaal 92 PIN-, 64 atrofie-, 120 ontstekings-

en 73 BPH-laesies werden geannoteerd en daarbij nog 128 prostaatkankerlaesies. Voor elke

classificatietaak was het meest belangrijke kenmerk verschillend ten opzichte van de andere

taken en elke benigne klasse had verschillende unieke kenmerken. Daarbij verbeterde de op-

pervlakte onder de ’receiver-operating characteristic’ (ROC) curve significant voor elke taak

vergeleken met een monolithische classificatie (waarbij alle benigne ziekten als een enkele

klasse beschouwd werden).

In hoofdstuk 5 tesen we of we het potentieel van de ’apparent diffusion coefficient’ (ADC)

voor het bepalen van kankeragressiviteit kunnen verbeteren door expliciet de inter-patiënt va-

riabiliteit in de normale perifere zone mee te nemen. Intra- en inter-patiënt variatie van de

ADCwaarden in de perifere zone werden vastgesteld door middel van herhaaldemetingen van

de ADC in de normale perifere zone in een retrospectieve cohort van 10 patiënten met drie

verschillende MRI sessie op 3 Tesla. Het effect van deze intra- en inter-patiënt variabiliteit op

het bepalen van kankeragressiviteit werd bepaald in een tweede cohort van 51 patiënten met

prostaatkanker die een MRI ondergingen voor de prostatectomie. Logistische regressie werd

gebruikt om te bepalen of het toevoegen van normale ADC waarde de voorspelling van kan-

keragressiviteit zou kunnen verbeteren. Het effect op de diagnostische prestaties werd bepaald

door middel van ROC-analyse. De herhaalde-metingen-ANOVA liet zien dat de inter-patiënt

variatie significant hoger is dan de metingvariatie. Analyse van de tumor-ADC-waarden liet

een oppervlakte onder de ROC curve zien van 0.91, na het toevoegen van de normale ADC-

waarden verbeterde deze significant naar 0.96.

De ontwikkeling van het twee-stadia computer-ondersteund detectiesysteemwerd bespro-

ken in hoofdstuk 6. In het eerste stadiumworden initiële kandidaten gedetecteerd door het ge-

bruik van prostaatsegmentatie, voxelkenmerken, classificatie en lokale-maximadetectie. Het

tweede stadium bestaat uit segmentatie van de kandidaten en het verkrijgen van een kanker-

waarschijnlijkheid door middel van classificatie. Kenmerken die gebruikt werden zijn onder

andere beeldintensiteit, farmacokinetisch gedrag en symmetrie. In beiden stadia wordt een

Random-Forestclassificatie gebruikt om kankerwaarschijnlijkheden te berekenen. Het sys-

teem is geëvalueerd op een grote continue cohort van 347 patiënten met MR-geleide biopten

als de referentiestandaard. Deze set bevae 165 patiënten met prostaatkanker en 182 zon-
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der prostaatkanker. De evaluatie werd gedaan door laesie-gebasseerde ’free-response receiver

operating characteristic’ (FROC-)analyse en patiënt-gebasseerde ROC-analyse. Het systeem

werd ook vergeleken met de prospectieve klinische prestaties van de radioloog. Resultaten la-

ten zien dat bij een sensitiviteit van 0.45, 0.75 en 0.89 er 0.1, 1 en 10 foutpositieven per normale

casus zijn. Daarbij laat de patiënt-gebasseerde ROC analyse zien dat bij hoge specificiteit het

systeem niet significant verschilt van de radioloog.

In hoofdstuk 7 onderzochtenwe de onaankelijke combinatie van het systeem en de radio-

loog. Het doel is het potentieel van het systeem te ontdekkenmet betrekking tot het reduceren

van het aantal biopten en bepalen van kankeragressiviteit. We hebben hiervoorMRI-studies en

MR-geleide bioptuitkomsten van een continue set van 130 patiënten tussen 1 januari en 1 sep-

tember 2013 gebruikt. Logistische regressie werd toegepast om de radioloog en het systeem te

combineren. Daarna werd bootstrapping ingezet om de mogelijke verbetering in sensitiviteit

en specificiteit te bepalen van de systeem/radioloog combinatie ten opzichte van de radioloog

alleen. Spearman’s rangcorrelatiecoëfficiënt werd gebruikt om de correlatie tussen de CAD-

waarschijnlijkheid en kankergraad te bepalen. Van alle biopten waren er 68% positief voor

kanker en de rest negatief. Bij het detecteren van gemiddeld-tot-hoog-gradige kankers kun-

nen we een significant betere sensitiviteit bereiken bij een score van PIRADS 4 (0.93 naar 0.98).

Daarnaast werd er een significante correlatie gevonden voor de waarschijnlijkheidsuitkom-

sten van de systeem/radioloogcombinatie en kankergraad, met een rangcorrelatiecoëfficiënt

van 0.696.
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