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Purpose: To determine the best features to discriminate prostate 
cancer from benign disease and its relationship to benign 
disease class and cancer grade.

Materials and 
Methods:

The institutional review board approved this study and 
waived the need for informed consent. A retrospective 
cohort of 70 patients (age range, 48–70 years; median, 
62 years), all of whom were scheduled to undergo radi-
cal prostatectomy and underwent preoperative 3-T multi-
parametric magnetic resonance (MR) imaging, including 
T2-weighted, diffusion-weighted, and dynamic contrast 
material–enhanced imaging, were included. The digi-
tized prostatectomy slides were annotated for cancer and 
noncancerous disease and coregistered to MR imaging 
with an interactive deformable coregistration scheme. 
Computer-identified features for each of the noncancer-
ous disease categories (eg, benign prostatic hyperplasia 
[BPH], prostatic intraepithelial neoplasia [PIN], inflam-
mation, and atrophy) and prostate cancer were extracted. 
Feature selection was performed to identify the features 
with the highest discriminatory power. The performance 
of these five features was evaluated by using the area un-
der the receiver operating characteristic curve (AUC).

Results: High-b-value diffusion-weighted images were more discrim-
inative in distinguishing BPH from prostate cancer than 
apparent diffusion coefficient, which was most suitable for 
distinguishing PIN from prostate cancer. The focal appear-
ance of lesions on dynamic contrast-enhanced images may 
help discriminate atrophy and inflammation from cancer. 
Which imaging features are discriminative for different be-
nign lesions is influenced by cancer grade. The apparent 
diffusion coefficient appeared to be the most discriminative 
feature in identifying high-grade cancer. Classification re-
sults showed increased performance by taking into account 
specific benign types (AUC = 0.70) compared with grouping 
all noncancerous findings together (AUC = 0.62).

Conclusion: The best features with which to discriminate prostate can-
cer from noncancerous benign disease depend on the type 
of benign disease and cancer grade. Use of the best fea-
tures may result in better diagnostic performance.
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Our hypothesis is that, by investi-
gating the use of computer-extracted 
features in the context of discriminat-
ing different benign disease classes 
from prostate cancer, we can provide 
initial input for more granular diagnos-
tic guidelines as an addendum to the 
established PIRADS reporting strategy 
for prostate MR imaging. The purpose 
of this work was to determine the best 
features to discriminate prostate can-
cer from benign disease and their rela-
tionship to the class of benign disease 
and cancer grade.

Materials and Methods

Patients
The institutional review board approved 
this retrospective study and waived the 
requirement of informed consent. In the 
period from January 1, 2009, to June 1, 
2013, a total of 271 patients underwent 

inflammation, and benign prostatic hy-
perplasia (BPH).

Some previous research has fo-
cused on identifying discriminatory fea-
tures to separate cancer from specific 
benign disease (8–10). Oto et al (8) in-
vestigated the use of apparent diffusion 
coefficient (ADC) values to differentiate 
between central gland (transition plus 
central zone) tumors and glandular and 
stromal hyperplasia by visually regis-
tering pathologic slides to MR images. 
They were able to achieve an area under 
the receiver operating characteristics 
curve (AUC) of 0.78 and 0.99 for differ-
entiating stromal and glandular hyper-
plasia and prostate cancer, respectively. 
Liu et al (9) designed a biexponential 
diffusion model with 10 b values to 
characterize central gland lesions as 
prostate cancer and BPH. They found 
that the biexponential model substan-
tially improved the discriminative per-
formance of diffusion-weighted imaging 
(AUC = 0.92) compared with a mono-
exponential model (AUC = 0.80). Gins-
berg et al (10) investigated the relative 
importance of MR imaging sequences 
in depicting cancer. They showed that 
T2-weighted imaging is most important 
to identify cancer in the transition zone, 
whereas diffusion-weighted imaging 
was most important to identify cancer 
in the peripheral zone.

Recently, several groups started 
investigating the potential of comput-
er-extracted features to improve the 
diagnosis of cancer at MR imaging, 
an application that was successful for 
both breast and prostate MR imaging 
(10,11). The general concept uses im-
age analysis algorithms to extract subvi-
sual image features that are not readily 
apparent to the human visual system. A 
good example of this is texture features, 
which can enhance edges or, con-
versely, areas of intensity homogeneity.
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Advances in Knowledge

 n Benign prostatic hyperplasia is 
best discriminated from cancer 
with high-b-value diffusion-
weighted images.

 n Areas of inflammation typically 
have a more focal appearance 
than prostate cancer on dynamic 
contrast-enhanced and 
T2-weighted images.

 n The most useful computer-
extracted features from 
T2-weighted, diffusion-weighted, 
and dynamic contrast-enhanced 
MR images that help distinguish 
prostate cancer from benign 
disease vary and depend on 
cancer grade.

 n Use of only the most useful fea-
tures to discriminate each class 
of benign disease from cancer 
results in a higher overall area 
under the receiver-operating 
characteristic curve than when 
all features are used (0.70 vs 
0.62).

Implication for Patient Care

 n Increased understanding of the 
imaging characteristics of benign 
disease can improve the ability of 
radiologists to distinguish non-
cancerous disease from prostate 
cancer.

Magnetic resonance (MR) imag-
ing is becoming an increasingly 
used tool for diagnosing pros-

tate cancer, which has led to the de-
velopment of standardized guidelines 
for acquiring, reading, and reporting 
prostate MR images and findings by 
the European Society of Urogential 
Radiologists: the Prostate Imaging and 
Reporting Data Standard (PIRADS) 
(1–3). Initial results that used the Euro-
pean Society of Urogential Radiologists 
PIRADS guidelines have been promis-
ing, both with respect to overall perfor-
mance and interreader agreement (4–
6). However, these initial studies have 
also shown a large trade-off between 
sensitivity and specificity, depending on 
the PIRADS score that was used as a 
threshold for biopsy.

In a recent publication by Rosen-
krantz et al (7), four out of the 10 
named pitfalls in prostate MR imaging 
are related to noncancerous disease 
mimicking the appearance of cancer. 
Some typical examples are prostatic in-
traepithelial neoplasia (PIN), atrophy, 
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The hematoxylin-eosin–stained sec-
tion that contained the tumor with the 
highest Gleason score was selected to 
be digitized with a digital slide scanner 
(VS120-S5; Olympus, Tokyo, Japan) and 
310 or 320 magnification, which cor-
responds to a resolution of 0.6 and 0.3 
mm, respectively. If multiple sections 
contained tumor with the same Gleason 
grade, the section with the largest tumor 
volume was digitized.

Approximately one-half (n = 41) of 
the specimens were whole-mount sec-
tions, and the other one-half (n = 40) 
consisted of parts of sections (usually 
two or four). When the specimen con-
sisted of parts, all parts belonging to one 
slide were digitized.

After digitization, the digital slides 
were annotated by using the freehand 
annotation tool in Aperio ImageScope 
(Aperio, Vista, Calif) for the presence 
of cancer, BPH, PIN, atrophy, or inflam-
mation by one of two pathologists (N.S., 
with 8 years of experience, or R.E., with 
7 years of experience). No minimum 
sizes were specified for the tumor an-
notations, and all foci of tumor were an-
notated. If tumor foci were close but not 
touching, they were annotated as sepa-
rate foci. For benign lesions, the annotat-
ing pathologists were asked to annotate 
representative areas (larger, connected 
areas with no or little mixing) for each 

with 3.4–4.7-second temporal resolu-
tion and 15 mL of Dotarem (Guerbet, 
Paris, France). Transverse T2-weighted 
images were acquired perpendicular to 
the rectal wall; diffusion-weighted and 
dynamic contrast-enhanced images 
were acquired in the same orientation. 
Further acquisition details are detailed 
in Table 1.

Prostatectomy Slide Selection and 
Annotation
After radical prostatectomy, prostate 
specimens were uniformly processed 
and submitted for histologic investiga-
tion in their entirety. Immediately after 
surgical resection, specimens were fixed 
in 10% neutral buffered formalin by us-
ing fine needle formalin injections and 
were stored overnight. Subsequently, 
the entire surface was marked with ink 
by using three different colors, then the 
entire prostate specimen was cut into 
serial transverse 4.0-mm-thick sections. 
Sections were cut perpendicular to the 
dorsal-rectal surface to ensure the same 
section orientation as in the MR imag-
ing sequences. All sections were macro-
scopically photographed with a charge-
coupled device camera. Thin portions 
of the sections were stained with hema-
toxylin-eosin stain and evaluated by one 
expert urologic pathologist (C.H.-v.d.K, 
with 17 years of experience).

prostatectomy at our institution, 190 of 
whom were excluded because of equip-
ment availability and time constraints, 
allowing us to digitize histopathologic 
slides for only 81 of the 271 patients. Of 
these 81 patients, all 41 patients from 
2012–2013 with whole-mount prosta-
tectomy specimens (ie, specimens that 
were not cut into parts to fit on reg-
ular glass slides) and who underwent 
multiparametric MR imaging were in-
cluded. The remaining 40 patients were 
randomly selected from the remaining 
patients who underwent multiparamet-
ric MR imaging prior to prostatectomy 
between 2009 and 2011. For these 40 
patients, the prostatectomy specimens 
were cut into parts to fit onto regular 
glass slides.

For these 81 patients, preopera-
tive multiparametric MR imaging and 
radical prostatectomy specimens were 
retrospectively reviewed for inclusion 
in this study. Five patients were ex-
cluded because of previous treatment, 
three patients were excluded because 
the quality of MR images was too poor 
for analysis (eg, due to the presence of 
hip implants), and three patients were 
excluded because multiparametric MR 
imaging did not include all sequences.  
Thus, a total of 70 patients were in-
cluded (age range, 48–70 years; me-
dian, 62 years). The time between 
MR imaging and prostatectomy ranged 
from 2 weeks to 6 months (mean, 10 
weeks).

MR Image Acquisition
MR imaging was performed with a 3-T 
MR imager (TrioTim or Skyra; Sie-
mens, Erlangen, Germany). In some 
cases, images were acquired with an 
endorectal coil (n = 34), and some 
were acquired without an endorectal 
coil (n = 36). A pelvic phased-array 
coil was always used. The multipa-
rametric protocol consisted of three 
T2-weighted images obtained in or-
thogonal directions, diffusion-weighted 
images obtained with three b values 
(50, 400–500, and 800 sec/mm2) and 
averaged over three orthogonal direc-
tions to obtain a direction-insensitive 
measurement, and dynamic contrast 
material–enhanced images obtained 

Table 1

MR Imaging Sequence Details for the Different Types of Acquisitions

Parameter T2 Weighted DW DCE

Sequence name Turbo spin-echo Echoplanar FLASH spoiled GRE 
Spatial resolution (mm) 0.28–0.6 1.6–2 1.5–1.8 
Acquisition matrix 320 3 320–384 3 384 128 3 128 128 3 128
Field of view (mm) 108 3 108–192 3 192 256 3 256 192 3 192–230 3 230 
Number of averages 1–2 6–10 1
Section thickness (mm) 3.0–4.0 3.0–4.0 3.2–5.0
Number of sections 13–19 15–20 12–15
Echo time (msec) 101–104 61–81 1.41–1.47 
Repetition time (msec) 3540–6840 2300–3600 36 
Flip angle (degree) 120–160 90 10–14

Note.—T2-weighted images are acquired in three orthogonal directions (transverse, sagittal, and coronal). Diffusion-weighted 
images are obtained with three b values (50, 400–500, and 800 sec/mm2) averaged over three directions, and ADC maps are 
calculated with the imaging software. Some images also include a b of 0 sec/mm2 and generalized autocalibrating partially 
parallel acquisition (GRAPPA) of 2. Dynamic contrast-enhanced images have temporal resolution of 3.38–4.65 sec and 36–50 
time points, and 15 mL of contrast material is used. DCE = dynamic contrast-enhanced, DW = diffusion weighted, FLASH = fast 
low angle shot, GRE = gradient recalled echo.
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sections that showed the prostate were 
counted, then the number of sections 
in the prostatectomy specimen were 
counted. By using the number asso-
ciated with each prostatectomy glass 
slide, the most likely corresponding MR 
imaging section was identified with the 
following equation:

MR
MR P

P

=
T

S S
T

,

where SMR is the section number in 
MR imaging, TMR the total number of 

acute inflammation and stromal or glan-
dular BPH; thus, those classes contain 
both types.

Coregistration of Prostatectomy 
Specimens and MR Imaging
To map the annotations on the histo-
pathologic sections to the correspond-
ing MR imaging sections, the MR im-
age and the pathologic slide have to be 
registered. First, the section in the MR 
image that corresponds to the prosta-
tectomy section has to be established 
(12). The number of MR imaging 

class, but no minimum size was speci-
fied. Diffusely spread out, nonmalignant 
lesions were not included because they 
would result in annotations with widths 
smaller than even the smallest MR imag-
ing voxel. For example, inflammation can 
have multiple thin strands extending into 
the tissue. These strands would have a 
width much smaller than the MR imag-
ing voxel size, making it impossible to 
correctly characterize the inflammation 
at MR imaging. Furthermore, no specific 
subdivisions were made according to be-
nign disease types, such as chronic or 

Figure 1

Figure 1: Pathologic-MR imaging mapping procedure in two patients. (a) MR image (left), pathologic image (center), 
and MR image overlaid with pathologic image (right) show prostate cancer (yellow line). The large lesion has a Gleason 
score of 3 + 4, and the other two lesions have a Gleason score of 3 + 3. Inflammation (green line), PIN (blue line), and 
atrophy (orange line) are also seen. (b) MR image (left), pathologic image (center), and MR image overlaid with patho-
logic image (right) show a lesion with a Gleason score of 3 + 4 (yellow line), atrophy (orange line), and BPH (blue line).
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Determining the Best Features to 
Discriminate Specific Noncancerous 
Tissue Categories from Cancer
We used sequential forward floating 
feature selection (SFFS) analysis to 
identify the best combination of MR 
imaging parameters to discriminate 
among benign classes (22). SFFS was 
used in combination with a linear dis-
criminant classifier, and the perfor-
mance metric was the AUC. In our 
setup, we force the SFFS to find the 
five most discriminative features for 
each pair-wise classification task (can-
cer vs BPH, atrophy, inflammation, 
and PIN). In addition to the pair-wise 
classification tasks, we also performed 
a monolithic classification, in which all 
benign diseases were grouped together 
as a single noncancerous class.

To analyze the effect of cancer 
grade, we repeated the SFFS procedure 
for the intermediate- and high-grade 
cancer subsets. Intermediate-grade 
cancer was defined as cancer with a 
Gleason grade of 3 + 4, and high-grade 
cancer was defined as any cancer with 
a major grade 4 or any grade 5 compo-
nent (13).

A two-fold patient-stratified cross-
validation scheme was used in the 
SFFS analysis, and the procedure was 
repeated 100 times. Because of the pa-
tient stratification, no lesions within a 
single patient could simultaneously oc-
cur in the training and test folds, which 
helped mitigate bias in our results. We 
identified the five features that most 
frequently appeared in the top five se-
lected features.

Last, because of the differences in 
protocol (both with and without an en-
dorectal coil), we investigated whether 
the selected features were affected by 
the presence of a coil. To this end, we 
performed the monolithic classification 
twice: once including all data and once 
excluding the cases in which an en-
dorectal coil.

Classification
To evaluate whether the selected fea-
tures resulted in improved classification 
between benign disease and prostate 
cancer, we compared the histograms 
of feature values for the top selected 

of the prostate at MR imaging and the 
pathologic specimen were selected by a 
medical imaging researcher (G.L., with 
4 years of experience with prostate MR 
imaging). The coregistration methodol-
ogy is shown in Figure 1.

Computer-extracted Features
After coregistration, a number of MR 
imaging and computer-extracted fea-
tures were obtained from within the 
regions that corresponded to the can-
cer, BPH, PIN, atrophy, and inflamma-
tion. To obtain a single feature vector 
per region of interest (ROI) mapped 
onto the MR image, the median value 
of each feature across the voxels within 
the ROI is calculated. All features are 
calculated in two dimensions because 
we register a single prostatectomy 
slide to the MR image, which results in 
two-dimensional annotations. A listing 
of these features and their associated 
descriptions can be found in Table 2. 
More detailed descriptions of feature 
calculation can be found in Appendix 
E1 (online).

prostate sections at MR imaging, TP 
the total number of prostate sections at 
pathologic analysis, and SP is the sec-
tion number of the selected pathologic 
section. This approach is similar to 
that presented by Hambrock et al (13). 
Subsequently, the selected MR imag-
ing and pathologic sections were visu-
ally assessed for correspondence by a 
nonclinical medical imaging researcher 
(G.L., with 4 years of experience with 
prostate MR imaging) and corrected 
if deemed necessary. Subsequently, a 
radiologist with 7 years of experience 
with prostate MR imaging checked the 
section correspondences.

After establishing section corre-
spondence, histopathologic and MR 
imaging sections were coregistered by 
using an interactive B-spline elastic reg-
istration method. This approach has 
been successfully applied in a number 
of previous studies in which correspon-
dence between prostate MR images and 
histopathologic specimens needed to be 
established (14,15). The registration 
corresponding points on the boundary 

Table 2

Overview of All the Features That Are Used in This Article Including References to 
Relevant Articles

Category and Feature Pulse Sequence Used Parameter

Signal intensity
 T2-weighted Axial T2 weighted …
 ADC Diffusion weighted …
 b = 800 sec/mm2* Diffusion weighted …
Texture
 2D multiscale Gauss T2 weighted Up to second order, s = 2.0, 2.7,  

4.1 and 6.0 mm
 2D multiangle Gabor filter T2 weighted u = 0, p/4, p/2, 3p/4, l = 2, 3,  

and 4 mm
 2D Li multiscale Hess  

 focality filter
T2 weighted, ADC, b = 800 sec/mm2,  

Ktrans, Kep, Ve, TTP, max, WOR
s = 2.0, 2.7, 4.1, and 6 mm

Pharmacokinetic
 TTP DCE …
 Max DCE …
 WOR DCE …
 Ktrans DCE …
 Ve DCE …
 Kep DCE …

Source.—References 17, 19–21.

Note.—DCE = dynamic contrast-enhanced, Gauss = Gaussian derivative, Hess = Hessian filter, max = maximum enhancement, 
2D = two-dimensional, TTP = time to peak, WOR = washout rate.

* Direct imager signal intensities.
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based on T2-weighted images, which 
indicates that, for this specific subtask, 
T2-weighted images seem to be less im-
portant. For the other types of noncan-
cerous lesions, features from all three 
modalities are included, indicating that 
each parameter in multiparametric MR 
imaging provides additional information 
to the diagnostic process.

The influence of cancer grade on 
the selected features is shown in the 
middle and lower parts of Table 5. 
When separating only high-grade can-
cer from the benign classes, ADC was 
the most important feature in all two-
class classification settings (eg, BPH vs 
high-grade cancer). We can also see 
that, out of the entire pool of features, 
a smaller subset of features is used 
when we only consider high-grade can-
cer, with a focus mostly on diffusion-
weighted imaging and T2-weighted fea-
tures (ie, texture).

When differentiating only inter-
mediate-grade cancer from benign 
disease, the subset of selected fea-
tures is larger (ie, it contains a wider 
variety of features) than that for the 
high-grade cancer and includes more 
dynamic contrast-enhanced features, 
such as washout. The results of the 
experiment to assess whether differ-
ences in MR imaging protocol (ie, the 
presence or absence of an endorec-
tal coil) resulted in different selected 
features are presented in Table 6.  
ADC, b value of 800 sec/mm2, Gabor, 
and maximum enhancement were se-
lected in both situations. The main dif-
ference was that, when including cases 
in which endorectal and nonendorectal 

cancer ROIs that comprised 33 can-
cers with Gleason grade 3 + 3, 55 with 
Gleason grade 3 + 4, 23 with Gleason 
grade 4 + 3, eight with Gleason grade 
4 + 4, and nine with Gleason grade 4 
+ 5. Of the cancerous lesions, 48 were 
located in the central gland (central 
plus transition zone), and 80 were lo-
cated in the peripheral zone. The aver-
age diameter of the analyzed ROIs was 
0.72 cm, with a minimum of 0.13 cm 
and a maximum of 1.88 cm. These re-
sults are also summarized in Tables 3  
and 4 . Two example results for the 
MR imaging/pathologic coregistration 
are illustrated in Figure 1.

Determining the Best Features
The best features for each nonmalig-
nant lesion type are shown in Table 5 
and Figure 2. For each class of benign 
disease, a unique feature was identi-
fied as the most important (eg, ADC 
was identified as the most important 
feature with which to discriminate 
PIN from prostate cancer). For atro-
phy, inflammation, and BPH, Ve maps, 
T2 maps, and images obtained with 
b value of 800 sec/mm2 provided the 
best separation between cancer and 
benign disease. Specifically, the fo-
cality of the appearance of lesions 
on these images seemed to provide 
discriminatory value. These most im-
portant features are qualitatively pre-
sented in Figure 2.

When distinguishing atrophy from 
cancer, features based on diffusion-
weighted and dynamic contrast-en-
hanced images have higher discrimi-
native power than do those that are 

feature for each benign class with 
MatLab R2013a (MathWorks, Natick, 
Mass). A tenfold patient-stratified 
cross-validation scheme was used to 
train a random forest classifier by us-
ing the top ranked features identified 
for each of the pair-wise classification 
tasks (BPH, PIN, inflammation, and 
atrophy vs cancer) (23). This exper-
iment was also specifically performed 
for the subsets of intermediate- and 
high-grade cancers to assess whether 
any differences in classification per-
formance could be observed. The per-
formance of the classifiers was evalu-
ated by using the AUC; bootstrapping 
was used to obtain 95% confidence 
intervals for AUCs. Classifier training 
and evaluation were performed with 
software developed in-house on the 
basis of OpenCV (24). Finally, we also 
performed classification experiments 
with the monolithic setting.

Results

Patient Data
After annotation and coregistration of 
the prostatectomy slides and multipa-
rametric MR images for all patients, 
ROIs with 92 PINs, 64 areas of atro-
phy, 120 areas of inflammation, and 
73 BPH were identified, as well as 128 

Table 3

Characteristics of Patients and 
Identified Lesions

Characteristic Datum 

PSA level (mg/mL)* 9.2 (1–76)
Age (y)* 62 (48–70)
Gleason score
 Normal/benign 349
 3 + 3 33
 3 + 4 55
 4 + 3 23
 4 + 4 8
 4 + 5 9

Note.—Unless otherwise indicated, date are numbers of 
lesions. n = 70 patients. PSA = prostate-specific 
antigen. PSA ranges were determined in 49 patients; for 
21 patients, PSA levels before MR imaging were 
unknown.

* Data are median, and data in parentheses are range.

Table 4

Characteristics of Identified Lesions

Disease Category
Both Zones  
(n = 477)

Peripheral 
Zone

Central Gland 
Zone Diameter (cm)*

Atrophy 64 35 29 0.82 (0.15–1.89)
Inflammation 120 29 91 0.42 (0.17–1.70)
BPH 73 0 73 0.82 (0.25–2.7)
PIN 92 67 25 0.43 (0.10–1.14)
Cancer 128 80 48 0.72 (0.13–1.88)

Note.—Unless otherwise indicated, data are numbers of lesions.

* Data are average diameter, and data in parentheses are the range.
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coils were used, the Hessian filter (fo-
cality) feature was selected over the 
original area of signal intensity for the 
b value of 800 sec/mm2 and maximum 
enhancement features.

Classification
The histogram analysis in Figure 3 il-
lustrates that there is less overlap in 
feature values all benign classes as not 
grouped as a single category. Figure 
3a shows the distribution of b of 800 
sec/mm2 lesion focality values for BPH, 
cancer, and noncancerous lesions. The 
graph shows that, if there is a highly 
focal lesion on the image obtained with 
b value of 800 sec/mm2, the chance of 
it being BPH is relatively low. Further-
more, Figure 3d shows that the mean 
ADC value of PIN lesions has less over-
lap with cancer than with other benign 
lesions, such as BPH. This characteris-
tic implies that ADC might be a useful 
feature because it appears to have very 
good discriminability between PIN and 
cancer; however, its performance in 
discriminating BPH from cancer is 
lower.

Table 7 shows the performance of 
the pair-wise classifiers (one benign 
class vs cancer) when using only the 
selected five features. The average AUC 
was 0.70 for the pair-wise classification 
(BPH, PIN, inflammation, and atro-
phy vs cancer had AUCs of 0.69, 0.73, 
0.63, and 0.75, respectively) and 0.62 
for the monolithic classifier (cancer vs 
all noncancerous classes). In particular, 
discrimination of PIN and atrophy from 
cancer appears to improve with the use 
of specific features, with AUCs of 0.73 
and 0.75, respectively, compared with 
0.62 for the monolithic case.

The results of separately discrim-
inating benign disease from high- and 
intermediate-grade cancer are also pre-
sented in Table 7. Comparing the AUCs 
of the pair-wise classifiers with the case 
in which all cancer grades were grouped 
together, we observed that, on average, 
the AUCs for discriminating high-grade 
cancer from the benign class were high-
er (average AUC = 0.74), whereas the 
AUCs for discriminating intermediate-
grade cancers were lower (average AUC 
= 0.64).
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when large BPH nodules are present, 
a finding that is consistent with previ-
ous reports in the literature (25,26). 
Second, looking at lesion focality (eg, 
roundness and well-defined edges) on 
both T2-weighted and dynamic con-
trast-enhanced images could help dis-
criminate inflammatory processes from 
prostate cancer, which may be useful in 
patients who underwent transrectal ul-
trasonography–guided biopsy near the 

the differential diagnosis of prostate 
cancer, such as high-b-value images for 
BPH and focal appearance on dynamic 
contrast-enhanced images for atrophy.

Several helpful guidelines can be 
extracted from our results to help ra-
diologists improve their performance in 
diagnosing prostate lesions. First, this 
study shows that the appearance of a 
lesion on a high-b-value image may have 
a higher discriminatory value than ADC 

Discussion

The presence of nonmalignant disease 
(eg, BPH, inflammation, PIN, and at-
rophy) is a common cause of false-
positive errors in diagnosing prostate 
cancer at multiparametric prostate 
MR imaging. For each class of benign 
disease, we identified a unique set of 
computer-extracted MR imaging–de-
rived features that could help improve 

Figure 2

Figure 2: Feature maps of the top three selected features for atrophy, BPH, PIN, and inflammation (cf Table 6) show 
cancer, with low, intermediate, and high grades grouped together (red line), and the specific benign class (yellow line). 
The axial T2-weighted image is provided as a reference (left-most column). The selected features provide a good 
contrast between cancer and the specific benign class.
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single prostatectomy slide because 
three-dimensional reconstruction of 
an entire prostatectomy specimen and 
subsequent mapping to MR images is 
difficult, and often impossible, in cur-
rent diagnostic practice. Trivedi et al 
(27) presented a method with a three-
dimensional printed mold that could be 
an avenue for future research.

In addition, to keep the data unbi-
ased, we did not edit or remove lesions 
on the basis of size or visibility at MR 
imaging. Some annotated lesions on 
the prostatectomy specimen were only 
a couple of voxels large at MR imaging 
and suffered from partial volume effect, 
making it difficult to correctly register 
and characterize them.

Another limitation of the study was 
the fact that some patients were imaged 
with an endorectal coil, whereas others 
were not. We investigated the effect of 
this difference on the selected features 
for the monolithic classification. Al-
though the selected features are mostly 
the same, when the protocol is more 
homogeneous (ie, only cases in which 
a nonendorectal coil was used), signal 
intensities were more often selected 
as a feature because they are directly 
comparable between studies. The ad-
vantage of the variability in protocol 
is that the selected features obtained 
when including all cases are more likely 
to be protocol-agnostic and, thus, more 
widely useable (ie, features that are ro-
bust to changes in imaging protocol are 
selected).

In addition, although pathologists 
were asked to annotate representa-
tive areas for each of the benign clas-
ses, interobserver variability was not 
specifically assessed. We do note that 
annotating the discussed noncancerous 
disease classes is not very difficult for 
pathologists. Because of limited data, 
we did not further subdivide the benign 
classes into subcategories (eg, acute vs 
chronic inflammation and stromal vs 
glandular BPH).

No test to determine statistical sig-
nificance of the difference between the 
monolithic and pairwise classification 
was performed. The monolithic 
classification contains all noncancer-
ous samples, whereas each pair-wise 

of the pair-wise classification tasks were 
higher than the AUC for the monolithic 
classification. As a whole, these results 
suggest that a more granular diagnos-
tic process, with an additional focus on 
specific features (eg, focality and spic-
ulation, similar to the Breast Imaging 
Reporting and Data System), may be 
useful compared with the clinically im-
portant cancer versus not the clinically 
important cancer guidelines, which are 
currently established within PIRADS 
(3).

Our results indicate that the most 
diagnostically relevant features depend 
on cancer grade. For high-grade can-
cer, a smaller subset of discriminatory 
features were identified in our experi-
ments compared with the experiments 
that included all grades of cancers, in-
dicating that fewer features are impor-
tant; the single most important feature 
to discriminate high-grade cancer from 
benign lesions is ADC. This is accom-
panied by an increased AUC for diag-
nosing high-grade cancer relative to all 
cancer grades grouped together. Both 
of these results indicate that high-grade 
cancer has its own distinct imaging 
characteristics (eg, low ADC and a dis-
tinctly different texture) compared with 
all lower cancer grades (even low and 
intermediate) and is easier to discrim-
inate from noncancerous disease than 
intermediate-grade cancer, which, on 
average, has a lower AUC.

Diffusion-weighted imaging seems 
to be the most important modality to 
determine cancer aggressiveness, as 
features derived from ADC and images 
obtained with b value of 800 sec/mm2 
appear to have increased discrimina-
bility as the cancer grade increases. 
Results reported in the literature on 
ADC and high-b-value images have also 
shown that the difference between be-
nign prostate lesions and high-grade 
cancer is relatively large (8,13). The 
overlap in ADC between intermediate-
grade cancer and noncancerous disease 
is much larger and definitely requires 
more and more specific features to al-
low discrimination.

We acknowledge that our study 
had a number of limitations. For ex-
ample, we limited our analysis to a 

time that MR imaging was performed 
because of the high risk for acute 
inflammation.

Furthermore, ADC is typically con-
sidered the most useful feature for dis-
criminating prostate cancer from non-
cancerous lesions, although it is known 
that ADC values observed in cancer 
overlap with those of stromal BPH. This 
characteristic appears to be reflected 
in the results of the feature selection 
with the monolithic classifier setting; 
however, it is only the most important 
feature for one specific two-class prob-
lem, namely, cancer versus PIN. In the 
cases of BPH and atrophy, it is only the 
third and fifth most important feature, 
respectively. This finding appears to 
support our initial hypothesis that each 
of the nonmalignant lesions appears to 
have a distinct set of imaging descrip-
tors that can be used to help charac-
terize them. This finding is further con-
firmed by the classification results, in 
which the average and individual AUCs 

Table 6

Selected Features for the Monolithic 
Classifier Including All Cases 
and Excluding Cases in Which an 
Endorectal Coil Was Used

Monilithic Feature No.

All cases
 ADC 179
 Hess (b = 800 sec/mm2) 101
 Gabor (b = 1, l = 2, u = 0.4) 79
 Hess (T2 map) 77
 Hess (max) 75
With nonendorectal coil
 ADC 125
 Hess (b = 800 sec/mm2) 99
 Gabor (b = 1, l = 2, u = 0.4) 84
 Gauss (XY, s = 6) 83
 Max 64

Note.—Data are the number of times a feature was 
selected during the feature selection phase. Features 
remained relatively similar; however, because of 
increased homogeneity of signal intensity when cases in 
which an endorectal coil was used were removed, more 
raw signal intensity features were selected over those 
that were processed (eg, b = 800 sec/mm2 was picked 
over b = 800 sec/mm2 with a Hessian filter). There were 
in total 34 cases in which an endorectal coil was used. 
Gabor = Gabor filter, Gauss = Gaussian derivative, Hess 
= Hessian filter, max = maximum enhancement. 
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noncancerous disease. For each pair of 
PIN, atrophy, BPH, and inflammation 
versus cancer, we identified a unique 
set of features that could help improve 
the diagnosis of prostate cancer. Our 
results could be used in two ways: first, 
they could form the basis for more 
granular guidelines for prostate MR 

could be confirmed and significance es-
tablished. This is an important avenue 
for future work.

We explored and showed the util-
ity of computerized image and fea-
ture analysis in conjunction with 
multiparametric MR imaging to dis-
tinguish between prostate cancer and 

classification only contains the specific 
noncancerous class, making it impossi-
ble to perform a paired t test. Because 
the samples are not independent, a reg-
ular t test is also not applicable.

Further validation of the results ob-
tained in this study is needed. By us-
ing an independent cohort, our results 

Figure 3

Figure 3: Fitted histograms of the feature value distribution of the top selected feature for each of the classification tasks show cancer, with low, intermediate, and 
high grades grouped together (red line), all benign classes (blue line), and atrophy (green line in a) (green line in b), inflammation (green line in c), and PIN (green line 
in d). Each specific benign class histogram has less overlap with that of cancer relative to the histogram of all benign disease grouped together, which indicates that 
this feature allows higher discriminability between cancer and the specific benign class.

Table 7

Classification Performance of a Random Forest Classifier for Each Pair-Wise Classification Task

Cancer Grade PIN Atrophy Inflammation BPH Benign*

All grades 0.73 (0.67, 0.80) 0.75 (0.69, 0.82) 0.63 (0.54, 0.70) 0.69 (0.61, 0.0.76) 0.62 (0.53, 0.70)
High grade 0.73 (0.63, 0.81) 0.77 (0.66, 0.86) 0.77 (0.67, 0.84) 0.69 (0.55, 0.82) 0.64 (0.55, 0.74)
Intermediate grade 0.65 (0.57, 0.72) 0.70 (0.61, 0.79) 0.57 (0.47, 0.66) 0.63 (0.54, 0.73) 0.62 (0.56, 0.69)

Note.—Data are AUCs, and data in parentheses are 95% confidence intervals, which were obtained with bootstrapping.

* Monolithic classification, in which all benign classes are grouped together as a single benign class.
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imaging interpretation, and second, the 
results could allow for development of 
improved computerized decision sup-
port systems for diagnosis and charac-
terization of prostate cancer.
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