
1Scientific Reports | 6:26286 | DOI: 10.1038/srep26286

www.nature.com/scientificreports

Deep learning as a tool for 
increased accuracy and efficiency  
of histopathological diagnosis
Geert Litjens1, Clara I. Sánchez2, Nadya Timofeeva1, Meyke Hermsen1, Iris Nagtegaal1, 
Iringo Kovacs3, Christina Hulsbergen - van de Kaa1, Peter Bult1, Bram van Ginneken2 & 
Jeroen van der Laak1

Pathologists face a substantial increase in workload and complexity of histopathologic cancer diagnosis 
due to the advent of personalized medicine. Therefore, diagnostic protocols have to focus equally 
on efficiency and accuracy. In this paper we introduce ‘deep learning’ as a technique to improve the 
objectivity and efficiency of histopathologic slide analysis. Through two examples, prostate cancer 
identification in biopsy specimens and breast cancer metastasis detection in sentinel lymph nodes, 
we show the potential of this new methodology to reduce the workload for pathologists, while at the 
same time increasing objectivity of diagnoses. We found that all slides containing prostate cancer 
and micro- and macro-metastases of breast cancer could be identified automatically while 30–40% of 
the slides containing benign and normal tissue could be excluded without the use of any additional 
immunohistochemical markers or human intervention. We conclude that ‘deep learning’ holds great 
promise to improve the efficacy of prostate cancer diagnosis and breast cancer staging.

Microscopic analysis of hematoxylin and eosin (H&E) stained sections has been the basis for cancer diagnosis 
and grading for the past century1. Protocols for the complete workup of biopsies or resected tissue specimens, 
including microscopic analysis, exist for many of the most common cancer types (e.g. lung, breast, prostate). 
Use of these protocols has led to strong prognostic and widely used grading strategies (e.g. the Gleason grading 
system)2.

Due to the rise in cancer incidence and patient-specific treatment options, diagnosis and grading of cancer 
has become increasingly complex. Pathologists nowadays have to go over a large number of slides, often including 
additional immunohistochemical stains, to come to a complete diagnosis. Moreover, there is an increase in the 
amount of quantitative parameters pathologists have to extract for commonly used grading systems (e.g. lengths, 
surface areas, mitotic counts)3. Due to these difficulties, analysis protocols have been adapted and fine-tuned to 
offer the best balance between prognostic power and feasibility in daily clinical routine4.

The recent introduction of whole-slide scanning systems offers an opportunity to quantify and improve histo-
pathologic procedures. These systems digitize glass slides with stained tissue sections at high resolution. Digital 
whole slide images (WSI) allow the application of image analysis techniques to aid pathologists in the exami-
nation and quantification of slides5. One such technique which has gained prominence in the last five years in 
other fields is ‘deep learning’6. While ‘deep learning’ cannot be considered a single technique, it can roughly be 
described as the application of multi-layered artificial neural networks to a wide range of problems, from speech 
recognition to image analysis. In recent years, ‘deep learning’ techniques have quickly become the state of the art 
in computer vision. A specific neural network subtype (convolutional neural networks; CNN7,8 has become the de 
facto standard in image recognition and is approaching human performance in a number of tasks6. These systems 
function by learning relevant features directly from huge image databases (typically millions of images). This is in 
contrast to more traditional pattern recognition techniques, which strongly rely on manually crafted quantitative 
feature extractors.

In spite of these huge successes, ‘deep learning’ techniques have not yet made a big impact on the field of med-
ical imaging. One of the main reasons is that for the traditional imaging based specialties (e.g. radiology) the large 
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numbers of images that are needed to train complex ‘deep learning’ systems are not readily available. In digital 
histopathology this is easier: one WSI typically contains trillions of pixels from which hundreds of examples of 
cancerous glands (in the case of prostate or breast cancer) can be extracted.

Some initial work has been published over the last five years discussing the application of ‘deep learning’ 
techniques to microscopic and histopathologic images. Ciresan et al. were the first to apply convolutional neural 
networks to the task of mitosis counting for primary breast cancer grading9. Furthermore, in a different publica-
tion, they showed the applicability of patch-driven convolutional neural networks to segmentation tasks10. Wang 
et al. later expanded the work on mitosis detection by combining hand-crafted features and convolutional neu-
ral networks11. Other applications of convolutional networks include primary breast cancer detection12, glioma 
grading13 and epithelium and stroma segmentation14. Last, Su et al. used another ‘deep learning’ technique, called 
stacked denoising auto-encoders to perform cell detection and segmentation in lung cancer and brain tumors15.

This study investigates the general applicability of CNNs to improve the efficiency of cancer diagnosis in H&E 
images by applying it to two novel tasks: the detection of prostate cancer in biopsy specimens and the detection of 
breast cancer metastases in resected sentinel lymph nodes.

The number of prostate biopsy sections has strongly increased in the past decades due to the advent of prostate 
specific antigen (PSA) testing16. Because of the nature of the standard biopsy procedure (eight to twelve random 
biopsies under ultrasound-guidance), each procedure results in several slides. The majority of these slides typ-
ically do not contain cancer. The histopathological analysis could be streamlined significantly if these normal 
slides could automatically be excluded without expelling any slides containing cancer. We collected consecutive 
single-center biopsy specimens of 254 patients who underwent MR-guided biopsy procedures for prostate cancer 
at our institution. These specimens were prepared according to standard histopathologic protocol and subse-
quently digitized using an Olympus VS120-S5 system (Olympus, Tokyo, Japan).

The sentinel lymph node procedure is well known for its tedious inspection protocol4. Several sections of 
the lymph node have to be investigated for micro-metastases (0.2–2 mm) and macro-metastases (>​2 mm). 
Furthermore, around 60–70% of the sentinel lymph nodes do not contain any metastases17. In this paper we 
focus on the sentinel lymph node procedure for breast cancer with the aim of identifying slides which do not 
contain micro- or macro-metastases. Also, we tried to identify the correct location of the metastases within a 
specific slide. In total 271 patients were included from our institution. Specimens were prepared according to the 
standard histopathologic protocol and subsequently digitized using a 3DHistech Pannoramic 250 Flash II scanner 
(3DHistech, Budapest, Hungary).

After digitization of the H&E-stained slides cancer and metastases were manually delineated using a computer 
mouse by a resident of pathology (I.K., prostate cancer experiment) and a lab technician (M.H., sentinel lymph 
node experiment), under the supervision of experienced pathologists (C. A. H. K., P. B.). From these annotated 
areas small prototype image regions (‘patches’) were extracted to train CNNs to detect cancer areas in validation 
data sets (schematic overview in Fig. 1). These validation data sets were used to optimize the network parame-
ters. After training, the CNN was converted to a fully convolutional network which gave per-pixel predictions 
on the presence of cancer and metastases in separate, not previously used, test data sets. For prostate cancer 
detection the CNNs were evaluated on a per-slide level using receiver-operator curve (ROC)-analysis. We also 
investigated how well the system could exclude slides without cancer from further diagnostic processing. For the 
sentinel lymph node procedure, we assessed how well the system was capable of identifying individual micro- and 
macro-metastases using free-response ROC (FROC) analysis and if it is capable of excluding slides which do not 
contain any metastases using ROC analysis.

Results
Subjects.  Prostate cancer.  From the initial set of 254 patients, eleven were excluded because the glass slides 
were not available. Four were excluded because no biopsy was taken during the procedure and one was excluded 
as the tissue sample was too small for pathologic analysis. Out of the remaining 238, we randomly selected 225 
glass slides for digitization, of which 100 were assigned to the training set, 50 to the validation set and 75 to the 
test set. The training set sampling was stratified such that a near-50/50-distribution between slides containing 

Figure 1.  Processing pipeline of a convolutional neural network for the detection of prostate cancer in 
H&E-stained whole slide biopsy specimens. The four layers indicated with C, meaning a convolutional layer, 
can be considered a ‘feature extraction’-stage were consecutively higher level features are extracted from the 
image patch. The layers indicated by the letter M are max pooling layers which reduce image size and provide 
improved translational invariance to the network. The last three layers are the ‘classification’ layers (indicated 
with F) which, based on the given features, indicates whether the image patch contains cancer or not. Such a 
network can subsequently be applied to every pixel in a whole slide image in a ‘sliding window’-fashion27.
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cancer and slides not containing cancer was obtained. All slides were successfully digitized and annotated. 
Further details on the selected slides can be found in Table 1.

Breast cancer sentinel lymph nodes.  Data collection for the sentinel lymph node experiments was performed 
in two batches. The first batch was obtained by including 173 slides from the case files of an experienced breast 
pathologist (P.B). These initial slides were split into a training (98), validation (33) and test (42) set. These slides 
were subsequently digitized and every metastasis was annotated. To make sure our results were not biased to a 
single pathologist’s case selection, we acquired a second set of data by including all the consecutive sentinel lymph 
node cases for breast cancer from October 2014 to April 2015, resulting in an additional 98 whole-slide images. 
For the second batch no on-slide annotations were available, only the per-case outcome (presence of macro- 
and/or micro-metastases and isolated tumor cells (ITC)). Further details on the included cases can be found in 
Table 2. Of cases with only ITC, 22 out of 24 had additional immunohistochemistry ordered by the pathologist.

Prostate cancer detection.  A cancer likelihood map (CLM), the output of the CNN indicating cancer 
likelihood per pixel, for a representative WSI from the test set with cancer covering 30% of the tissue area is shown 
in Fig. 2. The cancerous glands indicated by the pathologist’s outline (in magenta) are correctly identified with 
high likelihood. The stroma within the annotation areas is correctly identified as a low cancer likelihood region 
(in green, most easily identifiable in the high-resolution sub-images).

Several other examples are presented in Fig. 3. In Fig. 3b, we show a high-resolution sub-image of a false 
positive region. Due to cutting and histopathologic processing, tissue at the edges of the biopsy specimens often 
deforms and tears, resulting in abnormal appearance. If we examine this area closely, we can see that the false 
positive glands indeed show some features which are comparable to those of cancer (e.g. fusing glands, irregular 
shape). In general, we can clearly see a distinct separation between malignant (Figs 2 and 3a) and benign biopsy 
specimens (Fig. 3b,c) based on the CLMs.

Quantitatively, the result of performing histogram analysis on the CLMs can be best represented using ROC 
analysis. In Fig. 4 we present the ROC curves for both median and 90th-percentile analysis of the cumulative 
histogram of the CLM over the independent test set. Indicated with the dashed lines are the raw ROC curves, the 

Nr. of slides 
per category Training Validation Test Total

Cancer 48 (62.94 ±​ 29.23) 31 (62.32 ±​ 27.88) 45 (64.90 ±​ 25.22) 124 (64.02 ±​ 26.78)

2 +​ 3 0 1 0 1

3 +​ 2 0 2 0 2

3 +​ 3 11 9 14 34

3 +​ 4 23 9 12 44

3 +​ 5 0 0 1 1

4 +​ 3 7 6 10 23

4 +​ 4 5 1 3 9

4 +​ 5 2 2 3 7

5 +​ 3 0 1 0 1

5 +​ 4 0 0 2 2

Normal 52 19 30 101

Total 100 50 75 225

Table 1.   Data details for the whole slide biopsy specimens used for the prostate cancer experiments. The 
first column indicates the categories and the first row indicates the different data sets. For the cancer category, 
slide distribution is also indicated according to Gleason Score. The numbers between brackets for the ‘Cancer’-
row indicate the average volume percentage of cancer within the slides and the corresponding standard 
deviation.

Nr. of slides per category Training Validation Test Consecutive Total

At least one macro-metastasis 18 5 7 16 46

No macro-metastasis, at least 
one micro-metastasis 29 8 8 4 49

No macro- or micro-metastases, 
at least one instance of ITC 1 0 1 22 24

No macro- or micro- metastases 
and no instances of ITC 50 20 26 56 152

Total 98 33 42 98 271

Table 2.   Data details for the whole slide sentinel lymph node specimens used for the breast cancer 
metastasis experiments. The first column indicates the categories and the first row indicates the different data 
sets. (ITC =​ isolated tumor cells).
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solid line and the shaded areas represent the mean bootstrapped ROC curve and the 95th-percentiles. Bootstrap 
is a statistical technique which enables estimation of confidence intervals by repeated resampling of a represent-
ative population18. The average bootstrapped area under the ROC curve (AUC) for the median analysis was 0.99 
(0.95–1.0) and 0.98 (0.94–0.99) for the 90th-percentile analysis. However, the 90th-percentile analysis has higher 
specificity at a sensitivity level of 0.999 (0.32, 95%-CI: 0.29–0.97) compared to median analysis (0.17, 95%-CI: 
0.15–1.0).

Identification of breast cancer metastases in sentinel lymph nodes.  Representative examples of 
sentinel lymph node specimens are presented in Fig. 5 (without metastases) and Fig. 6 (with metastases). The 
metastases are correctly detected with very high likelihood (red color). Areas containing only lymphocytes are 
mostly transparent (likelihood close to zero), whereas areas containing histiocytes or mixtures of histiocytes and 
lymphocytes are transparent – green (low likelihoods). Distinction between histiocyte–rich regions and metasta-
ses is also a well-known difficulty for residents in pathology.

Quantitatively, results were analyzed in two ways. FROC analysis was used to assess localization accuracy, 
whereas ROC analysis was used to assess performance at the slide level. FROC analysis was only performed on 
the test set, as annotations are required to assess localization accuracy. The FROC and ROC curves are shown in 
Fig. 7. Results of the FROC and ROC analyses are also summarized in Table 3. At the expense of one or two false 
positive detections per tumor-negative image 90% or 93% of all individual micro- and macro-metastases could be 
identified, respectively. If we also include all isolated tumor cell (ITC) instances, 71% was found at the expensive 
of one false positive detection per tumor-negative image and 74% was found at the expense of two false positive 
detections per image.

The ROC analysis shows that in both the test and consecutive data sets, an area under the ROC curve of 
close to 0.90 can be obtained on the slide level when discriminating slides without from slides with micro- and 
macro-metastases. Furthermore, at 0.999 sensitivity up to 0.44 specificity could be obtained in the consecutive 
set. When also including slides only containing ITC, performance drops to an area under the ROC curve of 0.74 
and 0.02 specificity at 0.999 sensitivity.

Discussion
Although deep learning is an active research field, the application of deep learning to histopathology is relatively 
new. Most already published work has focused on the detection of mitotic figures9,11 or identification and seg-
mentation of individual cells15,19. One paper used a convolutional auto-encoder to segment basal-cell carcinoma 
in H&E-images of breast cancer20.However, this model is only evaluated on images from pre-selected regions of 
interest and not on whole slides, making it difficult to assess its practical value.

The two papers most closely related to our work have focused on different entities. Cruz-Roa et al. used a 
CNN to detect and segment primary breast cancer12 and Ertosun et al. investigated the grading of gliomas13. We 

Figure 2.  Representative example of a whole slide prostate biopsy specimens with 30% cancer. The top row 
shows the complete field of view, the bottom row a close up (close-up area indicated by the square rectangle). 
The second column shows the cancer likelihood map as an overlay on the original image. Red indicates a high 
likelihood of cancer, whereas transparent/green indicates a low likelihood.
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explored the applicability of CNNs to digitized histopathology through two different experiments: prostate cancer 
detection in H&E-stained biopsy specimens and identification of metastases in sentinel lymph nodes obtained 
from breast cancer patients. In contrast to these two papers, which perform patch-by-patch classification, we 
use fully convolutional networks to obtain per-pixel cancer likelihood maps and segmentations in whole-slide 
images. Furthermore, we are the first to report slide-level accuracies for cancer detection.

In both experiments we were able to successfully train convolutional neural networks, although the amount 
of case data was less than what is generally typical in ‘deep learning’ experiments. The fact that we performed 
extensive data augmentation and boosting in combination with the relatively limited domain (i.e. H&E-stained 
histopathologic images compared to natural images) made this possible.

In both applications we investigated whether it was possible to identify slides not containing disease without 
overlooking any slides containing disease. In the prostate cancer slides, up to 32% of the slides not containing 
disease could be excluded. For the sentinel lymph nodes, specificity was even higher at 44%, without missing any 
slide containing micro- or macro-metastases. This indicates that substantial gains in efficiency are possible by 
using CNNs to exclude tumor-negative slides from further human analysis.

Next to the performance of the CNN at high sensitivity, area under the ROC curve was also high in both cases, 
with an AUC of 0.99 for the prostate cancer experiment (median analysis) and 0.88 for the sentinel lymph node 
experiment (consecutive set). Furthermore, localization accuracy was high for micro- and macro-metastases in 
the sentinel lymph node experiment (90% sensitivity at 1 false positive per normal image).

There are some limitations to the application of the CNNs, especially for the sentinel lymph nodes. Although 
the accuracy of detecting micro- and macro-metastases is high, adding the requirement of having to identify all 
clusters of isolated tumor cells lowers performance significantly (0.74 AUC for the consecutive set). However, the 
importance of ITCs is debated. Some have found no prognostic implication of ITCs4,21 at all or when the ITCs are 
visible through immunohistochemistry only15,16. Others did find ITCs having a negative prognostic impact, albeit 
effect sizes differ22–24. However, for the clinical application of CNNs this is of limited importance. If the applica-
tion of the CNNs can detect the micro- and macro-metastases with high accuracy, and we have shown this, the 
ITCs can be detected by immunohistochemistry, without having a pathologist looking at the H&E stained slides. 
In The Netherlands, according to the national guideline for breast cancer, immunohistochemistry is mandatory 
when no tumor is found in the H&E-stained slides.

Figure 3.  Three representative examples of a whole slide prostate biopsy specimen. Each example (a–c) 
shows the complete field of view with the cancer likelihood map as an overlay. Red indicates a high likelihood 
of cancer, whereas transparent/green indicates a low likelihood. Example (a) contains around 40% cancer 
(indicated by the magenta outline), examples (b,c) do not contain cancer. Close-up sub-images are shown for 
the areas indicated by black square. For example (b) we choose to highlight a small false positive area caused by 
tissue deformation at the edges of the biopsy.
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In the prostate cancer experiment, some detection errors (i.e. false positive detections) still occur at the 
boundaries of the tissue, mostly due to tearing and tissue deformation. These are expected artifacts that occur 
during histopathologic processing, and ideally our CNN would be robust to this. However, due to the fact that 
these artifacts can have a wide range of appearances and only occur sporadically, this is not yet the case with the 
size of the training set used in this study. For the slide level analysis, these spurious detections are not problematic; 
they occur equally in slides containing and not containing cancer, making their separation still possible.

One further limitation is the fact that we only investigated data from a single center. Although we included 
data from distinctly different tissue types and used digitization equipment from two different vendors, it is impor-
tant that these results are confirmed in future, multi-center studies.

As far as the authors are aware, this is the first paper describing the general applicability of a ‘deep learning’ 
technique to the diagnostic analysis of whole slide images of sentinel lymph nodes and prostate biopsies. We have 
shown that this technique is potentially highly suitable to improve the efficiency of the diagnostic process in his-
topathology. This could in turn lead to adapted protocols, where pathologists perform a more detailed analysis on 
the difficult samples, as the easy samples are already handled by a computer system.

Although we specifically looked at clinical diagnosis in this study, the potential of these ‘deep learning’ tech-
niques reaches further. They could also be used to quickly analyze huge clinical trial databases to extract relevant 
cases, or automatically annotate areas of disease to allow fast quantification (e.g. area, diameter). Furthermore, 
the technique is not limited to H&E-stained images and could readily be applied to immunohistochemistry, 
which might be of interest when researching the efficacy of drugs or the expression of genes. Both are worthwhile 
avenues for future research.

Methods
Materials.  For all patients in this study the institutional review board waived the need for informed consent.

Prostate cancer.  A search was performed on our institution’s PACS system to identify all patients who under-
went MR-guided biopsy of the prostate after an initial multi-parametric MRI suspicious for cancer in 2012. This 
resulted in a total of 254 patients who were initially included in this study. After assessing suitability for inclusion, 
patients were randomly assigned to one of three sets: training, validation and test.

The biopsy specimens were previously stained using standard protocols for H&E-staining used in routine 
clinical care, after which the specimens were analyzed and reported on by an experienced pathologist as part 
of routine diagnostics. For this study these glass slides were obtained from the archive of the Department of 
Pathology for subsequent digitization.

Sentinel lymph node.  The sentinel lymph node case files of an experienced pathologist (P.B.) were used to iden-
tify subjects to include in the initial training set. The sentinel node specimens were previously stained using 

Figure 4.  Receiver operating characteristic (ROC) curves for the cumulative histogram analysis in the 
whole-slide prostate biopsy experiment. Two cumulative histogram parameters were used to obtain ROC 
curves, the median and 90th-percentile of the cumulative histogram of the whole slide images. The median ROC 
curve has a higher area under the curve (AUC), however, the 90th-percentile ROC curve shows higher specificity 
at high sensitivity. Solid lines indicate the mean bootstrapped ROC curve, the shaded areas indicate the 95th-
percentile confidence intervals and the dashed line indicates the raw ROC curve.
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standard protocols for H&E-staining used in routine clinical care, after which the specimens were analyzed and 
reported by the experienced pathologist as part of routine diagnostics.

To make sure our results were not biased incidentally by only evaluating on the cases obtained from one 
pathologist’s case file, we included all sentinel lymph node subjects from October 2014–April 2015 as an extra 
testing set.

One H&E-stained slide per subject was subsequently obtained from the archive at the Department of 
Pathology for digitization. Slides were selected such that they contained the largest area of metastases, if metas-
tases were present.

Digitization and annotation.  Prostate cancer.  Prostate cancer slides were digitized using an Olympus 
VS120-S5 slide scanning system. Slides were digitized using a 40×​ objective (resultant pixel resolution of 0.16 
microns). After digitization the digital slides were annotated for cancer using an in-house developed freehand 
drawing tool. Annotation was performed by a resident of pathology (I.K.) under the supervision of an experi-
enced pathologist (C.H.-v.d.K.). Sometimes two consecutive sections were included on one glass slide. In those 
cases, only one of the two sections was annotated and the other excluded from further analysis.

Sentinel lymph node.  Sentinel lymph node slides were digitized using a 3DHistech Pannoramic 250 Flash II slide 
scanner. Slides were digitized using a 20×​ objective (resultant pixel resolution of 0.24 microns). After digitization 
the slides were annotated using the Aperio ImageScope software using a freehand drawing tool. Annotation was 
performed by a lab technician (M.H.). Annotations were subsequently checked by an experienced pathologist for 
correctness and completeness (P.B.).

The extra testing set was not annotated, only the pathologist’s report was available for this set.

Figure 5.  Representative examples of normal lymph nodes from the consecutive set. Metastases likelihood 
maps are overlaid on the original H&E image. Transparent/green means a low likelihood, whereas red indicates 
a high likelihood of metastasis. On the right side of the whole slide images the areas indicated by the yellow 
squares are shown at full-resolution.
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Pre-processing steps.  The annotations were used to generate binary mask images at the same resolution as 
the original slides. Any pixel inside an annotated region was labeled as cancer (label 1), whereas all other regions 
were left blank (label 0).

In addition to the binary annotation mask, we also generated binary tissue masks to separate background from 
tissue. To this end we performed a simple thresholding procedure on the optical density of the RGB channels. 
Optical density of a channel is obtained through:

=OD I
I

log
(1)c

max
10

Here ODc is the optical density of the channel c (Red, Green or Blue), I is the intensity of the channel and Imax 
is the maximum intensity, which is 255 due to 8-bit quantization. By thresholding the optical densities at 0.2, all 
background could be removed resulting in a binary mask where tissue is labeled 1 and background is labeled 0.

Convolutional neural network training and application.  To train the convolutional neural network 
we made use of the open-source ‘deep learning’ libraries Theano 0.7 and pylearn2 0.125,26.

As it is impossible to feed entire whole-slide images to the network at once, we randomly extracted small 
patches from the whole-slide image for training. Whole-slide results can then be obtained by applying the net-
work to every pixel in the image.

Patch size in pixels was determined empirically during initial experiments. We tried 64 ×​ 64, 128 ×​ 128 and 
256 ×​ 256 pixel patches. The 64 ×​ 64 sized patches performed substantially worse on patch-based accuracy and 
256 ×​ 256 sized patches limited convolutional networks depth due to memory limitations of the GPU. As such, 
we settled on a patch size of 128 ×​ 128.

Figure 6.  Representative examples of lymph nodes with macro-metastases (top image) and a single 
micro-metastasis (bottom image) from the test set. Metastases likelihood maps are overlaid on the original 
H&E image. Transparent/green means a low likelihood, whereas red indicates a high likelihood of metastasis. 
Magenta contours indicate the ground truth annotation. On the right side of the whole slide images the areas 
indicated by the yellow squares are shown at full-resolution.
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To allow the network to learn the appearance of cancer (prostate or metastasized breast cancer in this paper), it 
is important that the small patches contain enough information to allow discrimination between patches with and 
without cancer. In contrast, when one selects patches which are too large, it is harder for the network to identify 
the relevant discriminatory features. As such, the correct resolution at which to extract the information had to 
be determined.

For the prostate cancer experiment, guidelines suggest that initial inspection of biopsy specimens should 
be performed using a microscope with a 5×​ objective, already indicating that this is a suitable resolution. 
Subsequently, we confirmed this in a small observer experiment where an untrained researcher was able to 
separate cancer and non-cancer patches at 5×​ (equivalent resolution 0.60 microns per pixel). As such, for this 

Figure 7.  Bootstrapped FROC and ROC curves for the lymph node experiments. Subfigure (a) contains 
the FROC curve on the test set, (b) contains the ROC curve on the test set and (c) contains the ROC curve on 
the consecutive data. Curves for both including (red) and excluding isolated tumor cells (ITCS (blue) from the 
analysis are shown. Solid lines indicate the mean bootstrapped ROC curve, the shaded areas indicate the 95th-
percentile confidence intervals and the dashed line indicates the raw ROC curve.

FROC analysis 1 FP 2 FP

Sensitivity (incl. ITC) 0.71 (0.39–0.93) 0.74 (0.59–0.94)

Sensitivity (excl. ITC) 0.90 (0.63–0.99) 0.93 (0.78–1.0)

ROC analysis Area under the curve Specificity at 99.9% sensitivity

Test (incl. ITC) 0.88 (0.77–0.97) 0.39 (0.33–0.90)

Test (excl. ITC) 0.90 (0.79–0.98) 0.39 (0.32–0.94)

consecutive (incl. ITC) 0.74 (0.65–0.82) 0.02 (0.01–0.30)

consecutive (excl. ITC) 0.88 (0.81–0.93) 0.44 (0.43–0.69)

Table 3.   Free-response receiver operating characteristic (FROC) and receiver operating characteristic 
(ROC) analysis in the sentinel lymph node experiment. Mean bootstrap values are given for sensitivity 
(FROC analysis), area under the curve (ROC analysis) and specificity at 99.9% sensitivity (ROC analysis). 
95th-percentile confidence intervals obtained through bootstrapping are shown between brackets. (FP =​ False 
positive detections per tumor-negative image).
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experiment patches were extracted at 5×​ objective magnification. For the sentinel lymph node slides a similar 
strategy was used, and here a 10×​ objective magnification was selected (0.48 microns per pixel).

Patches of 128 ×​ 128 pixels were extracted at the determined resolution level from both cancerous regions 
and non-cancerous tissue regions using the masks obtained in the pre-processing stage. Extraction was per-
formed such that an equal number of patches for both classes was obtained. During patch extraction, patches 
were rotated (0, 90, 180 and 270 degrees) and subsequently flipped to make sure the network would not learn 
rotation-dependent features. This resulted in eight variations of each single patch and was performed for both 
positive and negative samples. In total this resulted in a total of 920,000 patches for the prostate cancer experi-
ment and 2.6 million patches for the lymph node experiment. Patch-extraction was performed for both the train-
ing and the validation sets in both experiments. Test sets in both experiments were only used for final evaluation 
and were untouched during the training procedure.

After patch extraction, a convolutional neural network was trained where the performance of the network 
was monitored by assessing the miss-classification rate on the validation set patches. Training was stopped when 
validation set error did not improve for five epochs. Network structure (e.g. number of layers, filters per layer, 
number of nodes in fully connected layers) and parameters (e.g. learning rate, momentum) were continuously 
tweaked to obtain maximum performance on the validation set. In the end, very similar network structures and 
parameter settings were obtained for both experiments. Training time per epoch was around 80 and 200 min-
utes per epoch for the prostate cancer and lymph node experiments respectively (GeForce GTX970). Optimal 
performance was reached after 5 and 12 epochs respectively. The full network specifications can be found in the 
supplementary files.

After network training, the CNN was converted to a fully convolutional network to allow fast application to 
the whole slide image27. Applying this fully convolutional network to the whole slide image resulted in a likeli-
hood map where each pixel has a continuous likelihood between 0 and 1 of containing cancer. The likelihood 
map generation time of a prostate biopsy slide is between 5–10 minutes and that of a lymph node slide between 
30–40 minutes. However, the average time to analyze a slide is highly dependent on the amount of tissue on 
the slide. Due to the nature of the procedures, prostate biopsies often contained much less tissue and thus were 
quicker to process.

Due to the nature of the sentinel lymph node slides, where often only a tiny fraction of the slide contains can-
cer and most of the slide is covered by lymphocytes, certain normal regions which look more similar to cancer are 
typically underrepresented in the training data. In other words, the network is not capable of correctly identifying 
these areas as normal. To tackle this problem, we choose to use a boosting approach similar to the one used by 
Ciresan et al.9 We used the initial likelihood maps obtained for the training data set to sample new patches for 
both the cancerous and non-cancerous class. However, this time we increased the likelihood of adding a patch to 
the training data if the center pixel of the patch was initially classified wrongly by the network. This process results 
in additional training data which contains more difficult samples. Subsequently, we re-trained the network on the 
old and enriched patches and obtained the final likelihood maps for the sentinel lymph node slides.

This boosting procedure was not applied to the prostate cancer detection experiment, as in biopsy slides the 
area covered by cancer and the area covered by normal tissue is more balanced.

Evaluation.  Prostate cancer.  A normalized cumulative histogram is calculated on the final whole-slide like-
lihood image. The histogram was constructed with 100 bins, equally spaced between 0 and 1. In cases where there 
is no cancer in the slide, the histogram will rise quickly, whereas in cancer cases, the histogram will rise more 
slowly. To move from this histogram to a slide level label, we used percentile analysis. A percentile is selected 
and then we inspect at which likelihood we reach this percentile. By doing this for all cases and the perform-
ing receiver-operating characteristic (ROC) analysis given this likelihood, we can assess CNN performance at 
the slide level. We used the validation data set to obtain the optimal percentiles with a step size of 10 for both 
overall area under the ROC curve and highest specificity at 0.999 sensitivity, which were the median and the 
90th-percentile respectively.

To assess the confidence interval of the area under the ROC curve, we used bootstrapping using 10,000 boot-
strap samples18.

Sentinel lymph node.  The final likelihood map for the sentinel lymph node slides is first thresholded at a likeli-
hood of 0.3 to get rid of all the low likelihood false positives. Subsequently, we performed connected component 
analysis to obtain all the detected lesions. All components with a diameter smaller than 0.02 mm (10% of the 
minimum diameter for micro-metastases) are subsequently removed to get rid of spurious detection caused by 
artifacts (e.g. dust, tissue deformation). To obtain a likelihood per component, the median likelihood across all 
pixels within each component is calculated.

Given the component segmentations and likelihoods, we perform free-receiver operating characteristic 
(FROC) at the metastasis level and ROC analysis at the slide level on the test set. On the consecutive set we only 
performed ROC analysis as we did not have annotations for this set. In FROC analysis we assess for each individ-
ual metastasis, being macro-metastases, micro-metastases or ITC, whether it is detected. A metastasis is counted 
as detected when a component segmentation has a Dice coefficient of at least 0.5 with the annotation. All compo-
nents which do not coincide with a metastasis are considered false positive detections. The component likelihood 
is subsequently used to generate the FROC curve. The sensitivity in the FROC curve is expressed with respect to 
false positive detections in metastasis-free slides.

For ROC analysis, the component with the highest likelihood is used as the slide level score, as this is the 
component that is actionable. These slide likelihoods were subsequently used to construct the ROC curves at the 
slide level.
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All analysis for the sentinel lymph node cases were performed twice: once assuming ITCs are not considered 
metastases (i.e. they are ignored) and once assuming ITCs are metastases and as such have to be detected.
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