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a b s t r a c t 

Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of 

choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to 

medical image analysis and summarizes over 300 contributions to the field, most of which appeared in 

the last year. We survey the use of deep learning for image classification, object detection, segmentation, 

registration, and other tasks. Concise overviews are provided of studies per application area: neuro, reti- 

nal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary 

of the current state-of-the-art, a critical discussion of open challenges and directions for future research. 
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1. Introduction 

As soon as it was possible to scan and load medical images into

a computer, researchers have built systems for automated analy-

sis. Initially, from the 1970s to the 1990s, medical image analysis

was done with sequential application of low-level pixel processing

(edge and line detector filters, region growing) and mathematical

modeling (fitting lines, circles and ellipses) to construct compound

rule-based systems that solved particular tasks. There is an analogy

with expert systems with many if-then-else statements that were

popular in artificial intelligence in the same period. These expert

systems have been described as GOFAI (good old-fashioned artifi-

cial intelligence) ( Haugeland, 1985 ) and were often brittle; similar

to rule-based image processing systems. 

At the end of the 1990s, supervised techniques, where train-

ing data is used to develop a system, were becoming increasingly

popular in medical image analysis. Examples include active shape

models (for segmentation), atlas methods (where the atlases that

are fit to new data form the training data), and the concept of

feature extraction and use of statistical classifiers (for computer-

aided detection and diagnosis). This pattern recognition or ma-

chine learning approach is still very popular and forms the ba-

sis of many successful commercially available medical image anal-

ysis systems. Thus, we have seen a shift from systems that are

completely designed by humans to systems that are trained by
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omputers using example data from which feature vectors are

xtracted. Computer algorithms determine the optimal decision

oundary in the high-dimensional feature space. A crucial step in

he design of such systems is the extraction of discriminant fea-

ures from the images. This process is still done by human re-

earchers and, as such, one speaks of systems with handcrafted fea-

ures. 

A logical next step is to let computers learn the features that

ptimally represent the data for the problem at hand. This concept

ies at the basis of many deep learning algorithms: models (net-

orks) composed of many layers that transform input data (e.g.

mages) to outputs (e.g. disease present/absent) while learning in-

reasingly higher level features. The most successful type of mod-

ls for image analysis to date are convolutional neural networks

CNNs). CNNs contain many layers that transform their input with

onvolution filters of a small extent. Work on CNNs has been done

ince the late seventies ( Fukushima, 1980 ) and they were already

pplied to medical image analysis in 1995 by Lo et al. (1995) . They

aw their first successful real-world application in LeNet ( LeCun

t al., 1998 ) for hand-written digit recognition. Despite these initial

uccesses, the use of CNNs did not gather momentum until various

ew techniques were developed for efficiently training deep net-

orks, and advances were made in core computing systems. The

atershed was the contribution of Krizhevsky et al. (2012) to the

mageNet challenge in December 2012. The proposed CNN, called

lexNet, won that competition by a large margin. In subsequent

ears, further progress has been made using related but deeper

rchitectures ( Russakovsky et al., 2014 ). In computer vision, deep

onvolutional networks have now become the technique of choice.

http://dx.doi.org/10.1016/j.media.2017.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2017.07.005&domain=pdf
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Fig. 1. Breakdown of the papers included in this survey in year of publication, task addressed ( Section 3 ), imaging modality, and application area ( Section 4 ). The number of 

papers for 2017 has been extrapolated from the papers published in January. 
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The medical image analysis community has taken notice of

hese pivotal developments. However, the transition from systems

hat use handcrafted features to systems that learn features from

he data has been gradual. Before the breakthrough of AlexNet,

any different techniques to learn features were popular. Bengio

t al. (2013) provide a thorough review of these techniques. They

nclude principal component analysis, clustering of image patches,

ictionary approaches, and many more. Bengio et al. (2013) intro-

uce CNNs that are trained end-to-end only at the end of their

eview in a section entitled Global training of deep models . In this

urvey, we focus particularly on such deep models, and do not in-

lude the more traditional feature learning approaches that have

een applied to medical images. For a broader review on the ap-

lication of deep learning in health informatics we refer to Ravi

t al. (2017) , where medical image analysis is briefly touched upon.

Applications of deep learning to medical image analysis first

tarted to appear at workshops and conferences, and then in jour-

als. The number of papers grew rapidly in 2015 and 2016. This

s illustrated in Fig. 1 . The topic is now dominant at major con-

erences and a first special issue appeared of IEEE Transaction on

edical Imaging in May 2016 ( Greenspan et al., 2016 ). 

One dedicated review on application of deep learning to med-

cal image analysis was published by Shen et al. (2017) . Although

hey cover a substantial amount of work, we feel that important

reas of the field were not represented. To give an example, no

ork on retinal image analysis was covered. The motivation for our

eview was to offer a comprehensive overview of (almost) all fields

n medical imaging, both from an application and a methodology

riven perspective. This also includes overview tables of all publi-

ations which readers can use to quickly assess the field. Last, we

everaged our own experience with the application of deep learn-

ng methods to medical image analysis to provide readers with

 dedicated discussion section covering the state-of-the-art, open

hallenges and overview of research directions and technologies

hat will become important in the future. 

This survey includes over 300 papers, most of them recent, on

 wide variety of applications of deep learning in medical image

nalysis. To identify relevant contributions PubMed was queried for

apers containing (“convolutional” OR “deep learning”) in title or

i

bstract. ArXiv was searched for papers mentioning one of a set

f terms related to medical imaging. Additionally, conference pro-

eedings for MICCAI (including workshops), SPIE, ISBI and EMBC

ere searched based on titles of papers. We checked references

n all selected papers and consulted colleagues. We excluded pa-

ers that did not report results on medical image data or only

sed standard feed-forward neural networks with handcrafted fea-

ures. When overlapping work had been reported in multiple pub-

ications, only the publication(s) deemed most important were in-

luded. We expect the search terms used to cover most, if not all,

f the work incorporating deep learning methods. The last update

o the included papers was on February 1, 2017. The appendix de-

cribes the search process in more detail. 

Summarizing, with this survey we aim to: 

• show that deep learning techniques have permeated the entire

field of medical image analysis; 
• identify the challenges for successful application of deep learn-

ing to medical imaging tasks; 
• highlight specific contributions which solve or circumvent these

challenges. 

The rest of this survey is structured as followed. In Section 2 ,

e introduce the main deep learning techniques that have been

sed for medical image analysis and that are referred to through-

ut the survey. Section 3 describes the contributions of deep learn-

ng to canonical tasks in medical image analysis: classification,

etection, segmentation, registration, retrieval, image generation

nd enhancement. Section 4 discusses obtained results and open

hallenges in different application areas: neuro, ophthalmic, pul-

onary, digital pathology and cell imaging, breast, cardiac, abdom-

nal, musculoskeletal, and remaining miscellaneous applications.

e end with a summary, a critical discussion and an outlook for

uture research. 

. Overview of deep learning methods 

The goal of this section is to provide a formal introduction and

efinition of the deep learning concepts, techniques and architec-

ures that we found in the medical image analysis papers surveyed

n this work. 
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2.1. Learning algorithms 

Machine learning methods are generally divided into supervised

and unsupervised learning algorithms, although there are many nu-

ances. In supervised learning, a model is presented with a dataset

D = { x , y } N 
n =1 

of input features x and label pairs y . This y can take

several forms, depending on the learning task; in a classification

setting y is generally a scalar representing a class label, whereas

it can be a vector of continuous variables in the case if regres-

sion. When one tries to learn a segmentation model y can even

be a multi-dimensional label image. Supervised training typically

amounts to finding model parameters � that best predict the data

based on a loss function L (y, ̂  y ) . Here, ˆ y denotes the output of the

model obtained by feeding a data point x to the function f ( x ; �)

that represents the model. 

Unsupervised learning algorithms process data without labels

and are trained to find patterns, such as latent subspaces. Exam-

ples of traditional unsupervised learning algorithms are principal

component analysis and clustering methods. Unsupervised training

can be performed under many different loss functions. One exam-

ple is reconstruction loss L (x , ̂  x ) where the model has to learn to

reconstruct its input, often through a lower-dimensional or noisy

representation. 

2.2. Neural networks 

Neural networks are a type of learning algorithm which forms

the basis of most deep learning methods. A neural network is com-

prised of neurons or units with some activation a and parameters

� = {W, B} , where W is a set of weights and B a set of biases.

The activation represents a linear combination of the input x to

the neuron and the parameters, followed by an element-wise non-

linearity σ ( · ), referred to as a transfer function: 

a = σ (w 

T x + b) . (1)

Typical transfer functions for traditional neural networks are the

sigmoid and hyperbolic tangent function. The multi-layered per-

ceptrons (MLP), the most well-known of the traditional neural net-

works, have several layers of these transformations: 

f (x ;�) = σ (W 

L σ (W 

L −1 . . . σ (W 

0 x + b 0 ) + b L −1 ) + b L ) (2)

Here, W 

n is a matrix comprising of rows w k , associated with acti-

vation k in the output. The symbol n indicates the number of the

current layer, where L is the final layer. Layers in between the input

and output are often referred to as ‘hidden’ layers. When a neural

network contains multiple hidden layers it is typically considered

a ‘deep’ neural network, hence the term ‘deep learning’. 

Often, the activations of the final layer of the network are

mapped to a distribution over classes P ( y | x ; �) through a softmax

function: 

P (y | x ;�) = softmax (x ;�) = 

e ( w 

L 
i ) 

T 
x + b L 

i 

∑ K 
k =1 e 

( w 

L 
k ) 

T 
x + b L 

k 

(3)

where w 

L 
i 

indicates the weight vector leading to the output node

associated with class i . A schematic representation of three-layer

MLP is shown in Fig. 2 . 

Maximum likelihood with stochastic gradient descent is cur-

rently the most popular method to fit parameters � to a dataset

D. In stochastic gradient descent a small subset of the data, a mini-

batch, is used for each gradient update instead of the full data set.

Optimizing maximum likelihood in practice amounts to minimiz-

ing the negative log-likelihood: 

arg min 

�
−

N ∑ 

n =1 

log 
[
P (y n | x n ;�) 

]
. (4)
his results in the binary cross-entropy loss for two-class problems

nd the categorical cross-entropy for multi-class tasks. A downside

f this approach is that it typically does not optimize the quan-

ity we are interested in directly, such as area under the receiver-

perating characteristic (ROC) curve or common evaluation mea-

ures for segmentation, such as the Dice coefficient. 

For a long time, deep neural networks (DNN) were consid-

red hard to train efficiently. They only gained popularity in 2006

 Bengio et al., 2007; Hinton and Salakhutdinov, 2006; Hinton et al.,

006 ) when it was shown that training DNNs layer-by-layer in an

nsupervised manner (pre-training), followed by supervised fine-

uning of the stacked network, could result in good performance.

wo popular architectures trained in such a way are stacked auto-

ncoders (SAEs) and deep belief networks (DBNs). However, these

echniques are rather complex and require a significant amount of

ngineering to generate satisfactory results. 

Currently, the most popular models are trained end-to-end

n a supervised fashion, greatly simplifying the training process.

he most popular architectures are convolutional neural networks

CNNs) and recurrent neural networks (RNNs). CNNs are currently

ost widely used in (medical) image analysis, although RNNs

re gaining popularity. The following sections will give a brief

verview of each of these methods, starting with the most pop-

lar ones, and discusses their differences and potential challenges

hen applied to medical problems. 

.3. Convolutional neural networks (CNNs) 

There are two key differences between MLPs and CNNs. First,

n CNNs weights in the network are shared in such a way that the

etwork performs convolution operations on images. This way, the

odel does not need to learn separate detectors for the same ob-

ect occurring at different positions in an image, making the net-

ork equivariant with respect to translations of the input. It also

rastically reduces the amount of parameters (i.e. the number of

eights no longer depends on the size of the input image) that

eed to be learned. An example of a 1D CNN is shown in Fig. 2 . 

At each layer, the input image is convolved with a set of K

ernels W = { W 1 , W 2 , . . . , W K } and added biases B = { b 1 , . . . , b K } ,
ach generating a new feature map X k . These features are sub-

ected to an element-wise non-linear transform σ ( · ) and the same

rocess is repeated for every convolutional layer l : 

 

l 
k = σ

(
W 

l−1 
k 

∗ X 

l−1 + b l−1 
k 

)
. (5)

The second key difference between CNNs and MLPs, is the typ-

cal incorporation of pooling layers in CNNs, where pixel values of

eighborhoods are aggregated using a permutation invariant func-

ion, typically the max or mean operation. This can induce a cer-

ain amount of translation invariance and increase the receptive

eld of subsequent convolutional layers. At the end of the convo-

utional stream of the network, fully connected layers (i.e. regular

eural network layers) are usually added, where weights are no

onger shared. Similar to MLPs, a distribution over classes is gener-

ted by feeding the activations in the final layer through a softmax

unction and the network is trained using maximum likelihood. 

.4. Deep CNN architectures 

Given the prevalence of CNNs in medical image analysis, we

laborate on the most common architectures and architectural dif-

erences among the widely used models. 

.4.1. General classification architectures 

LeNet ( LeCun et al., 1998 ) and AlexNet ( Krizhevsky et al., 2012 ),

ntroduced over a decade later, were in essence very similar mod-

ls. Both networks were relatively shallow, consisting of two and
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Fig. 2. Node graphs of 1D representations of architectures commonly used in medical imaging. (a) Auto-encoder, (b) restricted Boltzmann machine, (c) recurrent neural 

network, (d) convolutional neural network, (e) multi-stream convolutional neural network, (f) U-net (with a single downsampling stage). 
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ve convolutional layers, respectively, and employed kernels with

arge receptive fields in layers close to the input and smaller ker-

els closer to the output. AlexNet did incorporate rectified lin-

ar units instead of the hyperbolic tangent as activation function,

hich are now the most common choice in CNNs. 

After 2012 the exploration of novel architectures took off, and

n the last three years, there is a preference for far deeper mod-

ls. By stacking smaller kernels, instead of using a single layer of

ernels with a large receptive field, a similar function can be rep-

esented with less parameters. These deeper architectures gener-

lly have a lower memory footprint during inference, which en-

ble their deployment on mobile computing devices such as smart-

hones. Simonyan and Zisserman (2014) were among the first to

xplore much deeper networks, and employed small, fixed size ker-

els in each layer. A 19-layer model often referred to as VGG19 or

xfordNet won the ImageNet challenge of 2014. 

On top of the deeper networks, more complex building blocks

ave been introduced that improve the efficiency of the training

rocedure and again reduce the amount of parameters. Szegedy

t al. (2014) introduced a 22-layer network named GoogLeNet , also

eferred to as Inception, which made use of so-called inception

locks ( Lin et al., 2013 ), a module that replaces the mapping de-

ned in Eq. (5) with a set of convolutions of different sizes. Similar

o the stacking of small kernels, this allows a similar function to

e represented with less parameters. The ResNet architecture ( He

t al., 2015 ) won the ImageNet challenge in 2015 and consisted of

o-called ResNet-blocks. Rather than learning a function, the resid-

al block only learns the residual and is thereby pre-conditioned

t  
owards learning mappings in each layer that are close to the iden-

ity function. This way, even deeper models can be trained effec-

ively. 

Since 2014, the performance on the ImageNet benchmark has

aturated and it is difficult to assess whether the small increases in

erformance can really be attributed to ’better’ and more sophisti-

ated architectures. The advantage of the lower memory footprint

hese models provide is typically not as important for medical ap-

lications. Consequently, AlexNet or other simple models such as

GG are still popular for medical data, though recent landmark

tudies all use a version of GoogleNet called Inception v3 ( Gulshan

t al., 2016; Esteva et al., 2017; Liu et al., 2017 ). Whether this is

ue to a superior architecture or simply because the model is a

efault choice in popular software packages is again difficult to

ssess. 

.4.2. Multi-stream architectures 

The default CNN architecture can easily accommodate multiple

ources of information or representations of the input, in the form

f channels presented to the input layer. This idea can be taken

urther and channels can be merged at any point in the network.

nder the intuition that different tasks require different ways of

usion, multi-stream architectures are being explored. These mod-

ls, also referred to as dual pathway architectures ( Kamnitsas et al.,

017 ), have two main applications at the time of writing: (1)

ulti-scale image analysis and (2) 2.5D classification; both rele-

ant for medical image processing tasks. 

For the detection of abnormalities, context is often an impor-

ant cue. The most straightforward way to increase context is to
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feed larger patches to the network, but this can significantly in-

crease the amount of parameters and memory requirements of a

network. Consequently, architectures have been investigated where

context is added in a down-scaled representation in addition to

high-resolution local information. To the best of our knowledge,

the multi-stream multi-scale architecture was first explored by

Farabet et al. (2013) , who used it for segmentation in natural im-

ages. Several medical applications have also successfully used this

concept ( Kamnitsas et al., 2017; Moeskops et al., 2016a; Song et al.,

2015; Yang et al., 2016c ). 

As so much methodology is still developed on natural images,

one of the challenges of applying deep learning techniques to the

medical domain often lies in adapting existing architectures to, for

instance, different input formats such as three-dimensional data.

In early applications of CNNs to such volumetric data, full 3D con-

volutions and the resulting large amount of parameters were cir-

cumvented by dividing the Volume of Interest (VOI) into slices

which are fed as different streams to a network. Prasoon et al.

(2013) were the first to use this approach for knee cartilage seg-

mentation. Similarly, the network can be fed with multiple angled

patches from the 3D-space in a multi-stream fashion, which has

been applied by various authors in the context of medical imag-

ing ( Roth et al., 2016b; Setio et al., 2016 ). These approaches are also

referred to as 2.5D classification. 

2.4.3. Segmentation architectures 

Segmentation is a common task in both natural and medi-

cal image analysis and to tackle this, CNNs can simply be used

to classify each pixel in the image individually, by presenting it

with patches extracted around the particular pixel. A drawback of

this naive ‘sliding-window’ approach is that input patches from

neighboring pixels have huge overlap and the same convolutions

are computed many times. Fortunately, the convolution and dot

product are both linear operators and thus inner products can

be written as convolutions and vice versa. By rewriting the fully

connected layers as convolutions, the CNN can take input images

larger than it was trained on and produce a likelihood map, rather

than an output for a single pixel. The resulting ’fully convolutional

network’ (fCNN) can then be applied to an entire input image or

volume in an efficient fashion. 

However, because of pooling layers, this may result in output

with a far lower resolution than the input. ‘Shift-and-stitch’ ( Long

et al., 2015 ) is one of several methods proposed to prevent this de-

crease in resolution. The fCNN is applied to shifted versions of the

input image. By stitching the result together, one obtains a full res-

olution version of the final output, minus the pixels lost due to the

‘valid’ convolutions. 

Ronneberger et al. (2015) took the idea of the fCNN one step

further and proposed the U-net architecture, comprising a ‘regu-

lar’ fCNN followed by an upsampling part where ‘up’-convolutions

are used to increase the image size, coined contractive and expan-

sive paths. Although this is not the first paper to introduce learned

upsampling paths in convolutional neural networks (e.g. Long et al.,

2015 ), the authors combined it with so called skip-connections to

directly connect opposing contracting and expanding convolutional

layers. A similar approach was used by Çiçek et al. (2016) for 3D

data. Milletari et al. (2016b) proposed an extension to the U-Net

layout that incorporates ResNet-like residual blocks and a Dice loss

layer, rather than the conventional cross-entropy, that directly min-

imizes this commonly used segmentation error measure. 

2.5. Recurrent neural networks (RNNs) 

Traditionally, RNNs were developed for discrete sequence anal-

ysis. They can be seen as a generalization of MLPs because both
he input and output can be of varying length, making them suit-

ble for tasks such as machine translation where a sentence of

he source and target language are the input and output. In a

lassification setting, the model learns a distribution over classes

 (y | x 1 , x 2 , . . . , x T ;�) given a sequence x 1 , x 2 , . . . , x T , rather than a

ingle input vector x . 

The plain RNN maintains a latent or hidden state h at time t

hat is the output of a non-linear mapping from its input x t and

he previous state h t−1 : 

 t = σ (Wx t + Rh t−1 + b ) , (6)

here weight matrices W and R are shared over time. For clas-

ification, one or more fully-connected layers are typically added

ollowed by a softmax to map the sequence to a posterior over the

lasses. 

 (y | x 1 , x 2 , . . . , x T ;�) = softmax (h T ; W out , b out ) . (7)

ince the gradient needs to be backpropagated from the out-

ut through time, RNNs are inherently deep (in time) and con-

equently suffer from the same problems with training as regu-

ar deep neural networks ( Bengio et al., 1994 ). To this end, sev-

ral specialized memory units have been developed, the earliest

nd most popular being the Long Short Term Memory (LSTM)

ell ( Hochreiter and Schmidhuber, 1997 ). The Gated Recurrent Unit

 Cho et al., 2014 ) is a recent simplification of the LSTM and is also

ommonly used. 

Although initially proposed for one-dimensional input, RNNs

re increasingly applied to images. In natural images ‘pixelRNNs’

re used as autoregressive models, generative models that can

ventually produce new images similar to samples in the training

et. For medical applications, they have been used for segmenta-

ion problems, with promising results ( Stollenga et al., 2015 ) in the

RBrainS challenge. 

.6. Unsupervised models 

.6.1. Auto-encoders (AEs) and stacked auto-encoders (SAEs) 

AEs are simple networks that are trained to reconstruct the in-

ut x on the output layer x ′ through one hidden layer h . They are

overned by a weight matrix W x, h and bias b x, h from input to hid-

en state and W h,x ′ with corresponding bias b h,x ′ from the hidden

ayer to the reconstruction. A non-linear function is used to com-

ute the hidden activation: 

 = σ (W x,h x + b x,h ) . (8)

dditionally, the dimension of the hidden layer | h | is taken to be

maller than | x |. This way, the data is projected onto a lower di-

ensional subspace representing a dominant latent structure in

he input. Regularization or sparsity constraints can be employed

o enhance the discovery process. If the hidden layer had the same

ize as the input and no further non-linearities were added, the

odel would simply learn the identity function. 

The denoising auto-encoder ( Vincent et al., 2010 ) is another

olution to prevent the model from learning a trivial solution.

ere, the model is trained to reconstruct the input from a noise

orrupted version (typically salt-and-pepper-noise). SAEs (or deep

Es) are formed by placing auto-encoder layers on top of each

ther. In medical applications surveyed in this work, auto-encoder

ayers were often trained individually (‘greedily’) after which the

ull network was fine-tuned using supervised training to make a

rediction. 

.6.2. Restricted Boltzmann machines (RBMs) and deep belief 

etworks (DBNs) 

RBMs ( Hinton, 2010 ) are a type of Markov Random Field (MRF),

onstituting an input layer or visible layer x = (x , x , . . . , x ) and
1 2 N 
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 hidden layer h = (h 1 , h 2 , . . . , h M 

) that carries the latent fea-

ure representation. The connections between the nodes are bi-

irectional, so given an input vector x one can obtain the latent

eature representation h and also vice versa. As such, the RBM is

 generative model, and we can sample from it and generate new

ata points. In analogy to physical systems, an energy function is

efined for a particular state ( x, h ) of input and hidden units: 

(x , h ) = h 

T Wx − c T x − b 

T h , (9)

ith c and b bias terms. The probability of the ‘state’ of the system

s defined by passing the energy to an exponential and normaliz-

ng: 

p(x , h ) = 

1 

Z 
exp {−E(x , h ) } . (10)

omputing the partition function Z is generally intractable. How-

ver, conditional inference in the form of computing h conditioned

n x or vice versa is tractable and results in a simple formula: 

 (h j | x ) = 

1 

1 + exp {−b j − W j x } . (11)

ince the network is symmetric, a similar expression holds for

 ( x i | h ). 

DBNs ( Bengio et al., 2007; Hinton et al., 2006 ) are essentially

AEs where the AE layers are replaced by RBMs. Training of the

ndividual layers is, again, done in an unsupervised manner. Final

ne-tuning is performed by adding a linear classifier to the top

ayer of the DBN and performing a supervised optimization. 

.6.3. Variational auto-Encoders and generative adverserial networks 

Recently, two novel unsupervised architectures were intro-

uced: the variational auto-encoder (VAE) ( Kingma and Welling,

013 ) and the generative adversarial network (GAN) ( Goodfellow

t al., 2014 ). There are no peer-reviewed papers applying these

ethods to medical images yet, but applications in natural images

re promising. We will elaborate on their potential in the discus-

ion. 

.7. Hardware and software 

One of the main contributors to the steep rise of deep learn-

ng papers has been the widespread availability of GPU and GPU-

omputing libraries (CUDA, OpenCL). GPUs are highly parallel com-

uting engines, which have an order of magnitude more execution

hreads than central processing units (CPUs). With current hard-

are, deep learning on GPUs is typically 10–30 times faster than

n CPUs. 

Next to hardware, the other driving force behind the popularity

f deep learning methods is the wide availability of open-source

oftware packages. These libraries provide efficient GPU implemen-

ations of important operations in neural networks, such as con-

olutions; allowing the user to implement ideas at a high level

ather than worrying about efficient implementations. At the time

f writing, the most popular packages were (in alphabetical order):

• Caffe ( Jia et al., 2014 ). Provides C++ and Python interfaces, de-

veloped by graduate students at UC Berkeley. 
• Tensorflow ( Abadi et al., 2016 ). Provides C++ and Python and

interfaces, developed by Google and is used by Google research.
• Theano ( Bastien et al., 2012 ). Provides a Python interface, de-

veloped by MILA lab in Montreal. 
• Torch ( Collobert et al., 2011 ). Provides a Lua interface and is

used by, among others, Facebook AI research. 

There are third-party packages written on top of one or more

f these frameworks, such as Lasagne ( https://github.com/Lasagne/

asagne ) or Keras ( https://keras.io/ ). It goes beyond the scope of

his paper to discuss all these packages in detail. 
. Deep learning uses in medical imaging 

.1. Classification 

.1.1. Image/exam classification 

Image or exam classification was one of the first areas in which

eep learning made a major contribution to medical image analy-

is. In exam classification, one typically has one or multiple images

an exam) as input with a single diagnostic variable as output (e.g.,

isease present or not). In such a setting, every diagnostic exam is

 sample and dataset sizes are typically small compared to those

n computer vision (e.g., hundreds/thousands vs. millions of sam-

les). The popularity of transfer learning for such applications is

herefore not surprising. 

Transfer learning is essentially the use of pre-trained networks

typically on natural images) to try to work around the (perceived)

equirement of large data sets for deep network training. Two

ransfer learning strategies were identified: (1) using a pre-trained

etwork as a feature extractor and (2) fine-tuning a pre-trained

etwork on medical data. The former strategy has the extra ben-

fit of not requiring one to train a deep network at all, allow-

ng the extracted features to be easily plugged in to existing im-

ge analysis pipelines. Both strategies are popular and have been

idely applied. However, few authors perform a thorough investi-

ation in which strategy gives the best result. The two papers that

o, Antony et al. (2016) and Kim et al. (2016a) , offer conflicting re-

ults. In the case of Antony et al. (2016) , fine-tuning clearly outper-

ormed feature extraction, achieving 57.6% accuracy in multi-class

rade assessment of knee osteoarthritis versus 53.4%. Kim et al.

2016a) , however, showed that using CNN as a feature extractor

utperformed fine-tuning in cytopathology image classification ac-

uracy (70.5% versus 69.1%). If any guidance can be given to which

trategy might be most successful, we would refer the reader to

wo recent papers, published in high-ranking journals, which fine-

uned a pre-trained version of Google’s Inception v3 architecture

n medical data and achieved (near) human expert performance

 Esteva et al., 2017; Gulshan et al., 2016 ). As far as the authors are

ware, such results have not yet been achieved by simply using

re-trained networks as feature extractors. 

With respect to the type of deep networks that are commonly

sed in exam classification, a timeline similar to computer vision

s apparent. The medical imaging community initially focused on

nsupervised pre-training and network architectures like SAEs and

BMs. The first papers applying these techniques for exam clas-

ification appeared in 2013 and focused on neuroimaging. Brosch

nd Tam (2013) , Plis et al. (2014) , Suk and Shen (2013) , and Suk

t al. (2014) applied DBNs and SAEs to classify patients as having

lzheimer’s disease based on brain Magnetic Resonance Imaging

MRI). Recently, a clear shift towards CNNs can be observed. Out

f the 47 papers published on exam classification in 2015, 2016,

nd 2017, 36 are using CNNs, 5 are based on AEs and 6 on RBMs.

he application areas of these methods are very diverse, ranging

rom brain MRI to retinal imaging and digital pathology to lung

omputed tomography (CT). 

In the more recent papers using CNNs authors also often train

heir own network architectures from scratch instead of using

re-trained networks. Menegola et al. (2016) performed some ex-

eriments comparing training from scratch to fine-tuning of pre-

rained networks and showed that fine-tuning worked better given

 small data set of around a 10 0 0 images of skin lesions. However,

hese experiments are too small scale to be able to draw any gen-

ral conclusions from. 

Three papers used an architecture leveraging the unique at-

ributes of medical data: two use 3D convolutions ( Hosseini-Asl

t al., 2016; Payan and Montana, 2015 ) instead of 2D to classify pa-

ients as having Alzheimer; Kawahara et al. (2016b) applied a CNN-

https://github.com/Lasagne/Lasagne
https://keras.io/
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like architecture to a brain connectivity graph derived from MRI

diffusion-tensor imaging (DTI). In order to do this, they developed

several new layers which formed the basis of their network, so-

called edge-to-edge, edge-to-node, and node-to-graph layers. They

used their network to predict brain development and showed that

they outperformed existing methods in assessing cognitive and

motor scores. 

Summarizing, in exam classification CNNs are the current stan-

dard techniques. Especially CNNs pre-trained on natural images

have shown surprisingly strong results, challenging the accuracy of

human experts in some tasks. Last, authors have shown that CNNs

can be adapted to leverage intrinsic structure of medical images. 

3.1.2. Object or lesion classification 

Object classification usually focuses on the classification of a

small (previously identified) part of the medical image into two

or more classes (e.g. nodule classification in chest CT). For many

of these tasks both local information on lesion appearance and

global contextual information on lesion location are required for

accurate classification. This combination is typically not possible

in generic deep learning architectures. Several authors have used

multi-stream architectures to resolve this in a multi-scale fashion

( Section 2.4.2 ). Shen et al. (2015b) used three CNNs, each of which

takes a nodule patch at a different scale as input. The resulting

feature outputs of the three CNNs are then concatenated to form

the final feature vector. A somewhat similar approach was followed

by Kawahara and Hamarneh (2016) who used a multi-stream CNN

to classify skin lesions, where each stream works on a different

resolution of the image. Gao et al. (2015) proposed to use a com-

bination of CNNs and RNNs for grading nuclear cataracts in slit-

lamp images, where CNN filters were pre-trained. This combina-

tion allows the processing of all contextual information regardless

of image size. Incorporating 3D information is also often a neces-

sity for good performance in object classification tasks in medical

imaging. As images in computer vision tend to be 2D natural im-

ages, networks developed in those scenarios do not directly lever-

age 3D information. Authors have used different approaches to in-

tegrate 3D in an effective manner with custom architectures. Setio

et al. (2016) used a multi-stream CNN to classify points of interest

in chest CT as a nodule or non-nodule. Up to nine differently ori-

ented patches extracted from the candidate were used in separate

streams and merged in the fully connected layers to obtain the fi-

nal classification output. In contrast, Nie et al. (2016c) exploited the

3D nature of MRI by training a 3D CNN to assess survival in pa-

tients suffering from high-grade gliomas. 

Almost all recent papers prefer the use of end-to-end trained

CNNs. In some cases other architectures and approaches are used,

such as RBMs ( van Tulder and de Bruijne, 2016; Zhang et al., 2016c ),

SAEs ( Cheng et al., 2016a ) and convolutional sparse auto-encoders

(CSAE) ( Kallenberg et al., 2016 ). The major difference between CSAE

and a classic CNN is the usage of unsupervised pre-training with

sparse auto-encoders. 

An interesting approach, especially in cases where object an-

notation to generate training data is expensive, is the integra-

tion of multiple instance learning (MIL) and deep learning. Xu

et al. (2014) investigated the use of a MIL-framework with both

supervised and unsupervised feature learning approaches as well

as handcrafted features. The results demonstrated that the perfor-

mance of the MIL-framework was superior to handcrafted features,

which in turn closely approaches the performance of a fully super-

vised method. We expect such approaches to be popular in the fu-

ture as well, as obtaining high-quality annotated medical data is

challenging. 

Overall, object classification sees less use of pre-trained net-

works compared to exam classifications, mostly due to the need

for incorporation of contextual or three-dimensional information.
everal authors have found innovative solutions to add this infor-

ation to deep networks with good results, and as such we expect

eep learning to become even more prominent for this task in the

ear future. 

.2. Detection 

.2.1. Organ, region and landmark localization 

Anatomical object localization (in space or time), such as organs

r landmarks, has been an important pre-processing step in seg-

entation tasks or in the clinical workflow for therapy planning

nd intervention. Localization in medical imaging often requires

arsing of 3D volumes. To solve 3D data parsing with deep learn-

ng algorithms, several approaches have been proposed that treat

he 3D space as a composition of 2D orthogonal planes. Yang et al.

2015) identified landmarks on the distal femur surface by process-

ng three independent sets of 2D MRI slices (one for each plane)

ith regular CNNs. The 3D position of the landmark was defined

s the intersection of the three 2D slices with the highest classifi-

ation output. de Vos et al. (2016b) went one step further and lo-

alized regions of interest (ROIs) around anatomical regions (heart,

ortic arch, and descending aorta) by identifying a rectangular 3D

ounding box after 2D parsing the 3D CT volume. Pre-trained CNN

rchitectures, as well as RBM, have been used for the same pur-

ose ( Cai et al., 2016b; Chen et al., 2015b; Kumar et al., 2016 ), over-

oming the lack of data to learn better feature representations. All

hese studies cast the localization task as a classification task and

s such generic deep learning architectures and learning processes

an be leveraged. 

Other authors try to modify the network learning process to di-

ectly predict locations. For example, Payer et al. (2016) proposed

o directly regress landmark locations with CNNs. They used land-

ark maps, where each landmark is represented by a Gaussian,

s ground truth input data and the network is directly trained

o predict this landmark map. Another interesting approach was

ublished by Ghesu et al. (2016a) , in which reinforcement learning

s applied to the identification of landmarks. The authors showed

romising results in several tasks: 2D cardiac MRI and ultrasound

US) and 3D head/neck CT. 

Due to its increased complexity, only a few methods addressed

he direct localization of landmarks and regions in the 3D image

pace. Zheng et al. (2015) reduced this complexity by decomposing

D convolution as three one-dimensional convolutions for carotid

rtery bifurcation detection in CT data. Ghesu et al. (2016b) pro-

osed a sparse adaptive deep neural network powered by marginal

pace learning in order to deal with data complexity in the detec-

ion of the aortic valve in 3D transesophageal echocardiogram. 

CNNs have also been used for the localization of scan planes

r key frames in temporal data. Baumgartner et al. (2016) trained

NNs on video frame data to detect up to 12 standardized scan

lanes in mid-pregnancy fetal US. Furthermore, they used saliency

aps to obtain a rough localization of the object of interest in the

can plan (e.g. brain, spine). RNNs, particularly LSTM-RNNs, have

lso been used to exploit the temporal information contained in

edical videos, another type of high dimensional data. Chen et al.

2015a) , for example, employed LSTM models to incorporate tem-

oral information of consecutive sequence in US videos for fetal

tandard plane detection. Kong et al. (2016) combined an LSTM-

NN with a CNN to detect the end-diastole and end-systole frames

n cine-MRI of the heart. 

Concluding, localization through 2D image classification with

NNs seems to be the most popular strategy overall to identify or-

ans, regions and landmarks, with good results. However, several

ecent papers expand on this concept by modifying the learning

rocess such that accurate localization is directly emphasized, with

romising results. We expect such strategies to be explored fur-
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her as they show that deep learning techniques can be adapted to

 wide range of localization tasks (e.g. multiple landmarks). RNNs

ave shown promise in localization in the temporal domain, and

ulti-dimensional RNNs could play a role in spatial localization as

ell. 

.2.2. Object or lesion detection 

The detection of objects of interest or lesions in images is a key

art of diagnosis and is one of the most labor-intensive for clin-

cians. Typically, the tasks consist of the localization and identifi-

ation of small lesions in the full image space. There has been a

ong research tradition in computer-aided detection systems that

re designed to automatically detect lesions, improving the detec-

ion accuracy or decreasing the reading time of human experts. In-

erestingly, the first object detection system using CNNs was al-

eady proposed in 1995, using a CNN with four layers to detect

odules in x-ray images ( Lo et al., 1995 ). 

Most of the published deep learning object detection systems

till uses CNNs to perform pixel (or voxel) classification, after

hich some form of post processing is applied to obtain ob-

ect candidates. As the classification task performed at each pixel

s essentially object classification, CNN architecture and method-

logy are very similar to those in Section 3.1.2 . The incorpora-

ion of contextual or 3D information is also handled using multi-

tream CNNs ( Section 2.4.2 , for example by Barbu et al., 2016 and

oth et al., 2016b ). Teramoto et al. (2016) used a multi-stream CNN

o integrate CT and Positron Emission Tomography (PET) data.

ou et al. (2016b) used a 3D CNN to find micro-bleeds in brain

RI. Last, as the annotation burden to generate training data can

e similarly significant compared to object classification, weakly-

upervised deep learning has been explored by Hwang and Kim

2016) , who adopted such a strategy for the detection of nodules

n chest radiographs and lesions in mammography. 

There are some aspects which are significantly different be-

ween object detection and object classification. One key point is

hat because every pixel is classified, typically the class balance is

kewed severely towards the non-object class in a training setting.

o add insult to injury, usually the majority of the non-object sam-

les are easy to discriminate, preventing the deep learning method

o focus on the challenging samples. van Grinsven et al. (2016) pro-

osed a selective data sampling in which wrongly classified sam-

les were fed back to the network more often to focus on chal-

enging areas in retinal images. Last, as classifying each pixel in a

liding window fashion results in orders of magnitude of redun-

ant calculation, fCNNs, as used in Wolterink et al. (2016) , are im-

ortant aspect of an object detection pipeline as well. 

Challenges in meaningful application of deep learning algo-

ithms in object detection are thus mostly similar to those in

bject classification. Only few papers directly address issues spe-

ific to object detection like class imbalance/hard-negative mining

r efficient pixel/voxel-wise processing of images. We expect that

ore emphasis will be given to those areas in the near future, for

xample in the application of multi-stream networks in a fully con-

olutional fashion. 

.3. Segmentation 

.3.1. Organ and substructure segmentation 

The segmentation of organs and other substructures in medical

mages allows quantitative analysis of clinical parameters related

o volume and shape, as, for example, in cardiac or brain analysis.

urthermore, it is often an important first step in computer-aided

etection pipelines. The task of segmentation is typically defined

s identifying the set of voxels which make up either the con-

our or the interior of the object(s) of interest. Segmentation is the

ost common subject of papers applying deep learning to medi-
al imaging ( Fig. 1 ), and as such has also seen the widest variety

n methodology, including the development of unique CNN-based

egmentation architectures and the wider application of RNNs. 

The most well-known, in medical image analysis, of these

ovel CNN architectures is U-net, published by Ronneberger et al.

2015) ( Section 2.4.3 ). The two main architectural novelties in U- 

et are the combination of an equal amount of upsampling and

ownsampling layers. Although learned upsampling layers have

een proposed before, U-net combines them with so-called skip

onnections between opposing convolution and deconvolution lay-

rs. This which concatenate features from the contracting and ex-

anding paths. From a training perspective this means that entire

mages/scans can be processed by U-net in one forward pass, re-

ulting in a segmentation map directly. This allows U-net to take

nto account the full context of the image, which can be an advan-

age in contrast to patch-based CNNs. Furthermore, in an extended

aper by Çiçek et al. (2016) , it is shown that a full 3D segmenta-

ion can be achieved by feeding U-net with a few 2D annotated

lices from the same volume. Other authors have also built deriva-

ives of the U-net architecture; Milletari et al. (2016b) , for example,

roposed a 3D-variant of U-net architecture, called V-net, perform-

ng 3D image segmentation using 3D convolutional layers with an

bjective function directly based on the Dice coefficient. Drozdzal

t al. (2016) investigated the use of short ResNet-like skip connec-

ions in addition to the long skip-connections in a regular U-net. 

RNNs have recently become more popular for segmentation

asks. For example, Xie et al. (2016b) used a spatial clockwork RNN

o segment the perimysium in H&E-histopathology images. This

etwork takes into account prior information from both the row

nd column predecessors of the current patch. To incorporate bidi-

ectional information from both left/top and right/bottom neigh-

ors, the RNN is applied four times in different orientations and

he end-result is concatenated and fed to a fully-connected layer.

his produces the final output for a single patch. Stollenga et al.

2015) where the first to use a 3D LSTM-RNN with convolutional

ayers in six directions. Andermatt et al. (2016) used a 3D RNN

ith gated recurrent units to segment gray and white matter in

 brain MRI data set. Chen et al. (2016d) combined bi-directional

STM-RNNs with 2D U-net-like-architectures to segment structures

n anisotropic 3D electron microscopy images. Last, Poudel et al.

2016) combined a 2D U-net architecture with a gated recurrent

nit to perform 3D segmentation. 

Although these specific segmentation architectures offered

ompelling advantages, many authors have also obtained excel-

ent segmentation results with patch-trained neural networks. One

f the earliest papers covering medical image segmentation with

eep learning algorithms used such a strategy and was published

y Ciresan et al. (2012) . They applied pixel-wise segmentation of

embranes in electron microscopy imagery in a sliding window

ashion. Most recent papers now use fCNNs ( Section 2.4.3 ) in pref-

rence over sliding-window-based classification to reduce redun-

ant computation. 

fCNNs have also been extended to 3D and have been ap-

lied to multiple targets at once: Korez et al. (2016) , used 3D fC-

Ns to generate vertebral body likelihood maps which drove de-

ormable models for vertebral body segmentation in MR images,

hou et al. (2016) segmented nineteen targets in the human torso,

nd Moeskops et al. (2016b) trained a single fCNN to segment brain

RI, the pectoral muscle in breast MRI, and the coronary arteries

n cardiac CT angiography (CTA). 

One challenge with voxel classification approaches is that they

ometimes lead to spurious responses. To combat this, groups have

ried to combine fCNNs with graphical models like MRFs ( Shakeri

t al., 2016; Song et al., 2015 ) and Conditional Random Fields (CRFs)

 Alansary et al., 2016; Cai et al., 2016a; Christ et al., 2016; Dou et al.,

016b; Fu et al., 2016a; Gao et al., 2016c ) to refine the segmentation



68 G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H  

m  

a  

b  

e  

T  

t

 

g  

g  

3  

t  

m  

g  

o  

C  

a  

i  

p  

t  

h  

t  

(  

M  

f  

a  

f  

n  

t  

t  

m  

i

s

 

c  

d  

p  

a  

w  

e  

i

3

3

 

e  

i  

t  

o  

t  

m  

f  

t

 

t  

e  

B  

c  

t  

f  

o  

d  

t  

a  

o  
output. In most of the cases, graphical models are applied on top

of the likelihood map produced by CNNs or fCNNs and act as label

regularizers. 

Summarizing, segmentation in medical imaging has seen a huge

influx of deep learning related methods. Custom architectures have

been created to directly target the segmentation task. These have

obtained promising results, rivaling and often improving over re-

sults obtained with fCNNs. 

3.3.2. Lesion segmentation 

Segmentation of lesions combines the challenges of object de-

tection and organ and substructure segmentation in the applica-

tion of deep learning algorithms. Global and local context are typ-

ically needed to perform accurate segmentation, such that multi-

stream networks with different scales or non-uniformly sampled

patches are used as in for example Kamnitsas et al. (2017) and

Ghafoorian et al. (2016b) . In lesion segmentation, we have also seen

the application of U-net and similar architectures to leverage both

this global and local context. The architecture used by Wang et al.

(2015) , similar to the U-net, consists of the same downsampling

and upsampling paths, but does not use skip connections. Another

U-net-like architecture was used by Brosch et al. (2016) to segment

white matter lesions in brain MRI. However, they used 3D convolu-

tions and a single skip connection between the first convolutional

and last deconvolutional layers. 

One other challenge that lesion segmentation shares with ob-

ject detection is class imbalance, as most voxels/pixels in an im-

age are from the non-diseased class. Some papers combat this by

adapting the loss function: Brosch et al. (2016) defined it to be a

weighted combination of the sensitivity and the specificity, with

a larger weight for the specificity to make it less sensitive to the

data imbalance. Others balance the data set by performing data

augmentation on positive samples ( Kamnitsas et al., 2017; Litjens

et al., 2016; Pereira et al., 2016 ). 

Thus lesion segmentation sees a mixture of approaches used in

object detection and organ segmentation. Developments in these

two areas will most likely naturally propagate to lesion segmenta-

tion as the existing challenges are also mostly similar. 

3.4. Registration 

Registration (i.e. spatial alignment) of medical images is a com-

mon image analysis task in which a coordinate transform is cal-

culated from one medical image to another. Often this is per-

formed in an iterative framework where a specific type of (non-

)parametric transformation is assumed and a pre-determined met-

ric (e.g. L2-norm) is optimized. Although segmentation and le-

sion detection are more popular topics for deep learning, re-

searchers have found that deep networks can be beneficial in get-

ting the best possible registration performance. Broadly speaking,

two strategies are prevalent in current literature: (1) using deep-

learning networks to estimate a similarity measure for two images

to drive an iterative optimization strategy, and (2) to directly pre-

dict transformation parameters using deep regression networks. 

Wu et al. (2013) , Simonovsky et al. (2016) , and Cheng et al.

(2015) used the first strategy to try to optimize registration algo-

rithms. Cheng et al. (2015) used two types of stacked auto-encoders

to assess the local similarity between CT and MRI images of the

head. Both auto-encoders take vectorized image patches of CT and

MRI and reconstruct them through four layers. After the networks

are pre-trained using unsupervised patch reconstruction they are

fine-tuned using two prediction layers stacked on top of the third

layer of the SAE. These prediction layers determine whether two

patches are similar (class 1) or dissimilar (class 2). Simonovsky

et al. (2016) used a similar strategy, albeit with CNNs, to estimate

a similarity cost between two patches from differing modalities.
owever, they also presented a way to use the derivative of this

etric to directly optimize the transformation parameters, which

re decoupled from the network itself. Last, Wu et al. (2013) com-

ined independent subspace analysis and convolutional layers to

xtract features from input patches in an unsupervised manner.

he resultant feature vectors are used to drive the HAMMER regis-

ration algorithm instead of handcrafted features. 

Miao et al. (2016) and Yang et al. (2016d) used deep learning al-

orithms to directly predict the registration transform parameters

iven input images. Miao et al. (2016) leveraged CNNs to perform

D model to 2D x-ray registration to assess the pose and loca-

ion of an implanted object during surgery. In total the transfor-

ation has 6 parameters, two translational, 1 scaling and 3 an-

ular parameters. They parameterize the feature space in steps

f 20 degrees for two angular parameters and train a separate

NN to predict the update to the transformation parameters given

n digitally reconstructed x-ray of the 3D model and the actual

nter-operative x-ray. The CNNs are trained with artificial exam-

les generated by manually adapting the transformation parame-

ers for the input training data. They showed that their approach

as significantly higher registration success rates than using tradi-

ional – purely intensity based – registration methods. Yang et al.

2016d) tackled the problem of prior/current registration in brain

RI using the OASIS data set. They used the large deformation dif-

eomorphic metric mapping (LDDMM) registration methodology as

 basis. This method takes as input an initial momentum value

or each pixel which is then evolved over time to obtain the fi-

al transformation. However, the calculation of the initial momen-

um map is often an expensive procure. The authors circumvent

his by training a U-net like architecture to predict the x - and y -

omentum map given the input images. They obtain visually sim-

lar results but with significantly improved execution time: 1500 ×
peed-up for 2D and 66 × speed-up for 3D. 

In contrast to classification and segmentation, the research

ommunity seems not have yet settled on the best way to integrate

eep learning techniques in registration methods. Not many pa-

ers have yet appeared on the subject and existing ones each have

 distinctly different approach. Thus, giving recommendations on

hat method is most promising seems inappropriate. However, we

xpect to see many more contributions of deep learning to medical

mage registration in the near future. 

.5. Other tasks in medical imaging 

.5.1. Content-based image retrieval 

Content-based image retrieval (CBIR) is a technique for knowl-

dge discovery in massive databases and offers the possibility to

dentify similar case histories, understand rare disorders, and, ul-

imately, improve patient care. The major challenge in the devel-

pment of CBIR methods is extracting effective feature representa-

ions from the pixel-level information and associating them with

eaningful concepts. The ability of deep CNN models to learn rich

eatures at multiple levels of abstraction has elicited interest from

he CBIR community. 

All current approaches use (pre-trained) CNNs to extract fea-

ure descriptors from medical images. Anavi et al. (2016) and Liu

t al. (2016b) applied their methods to databases of X-ray images.

oth used a five-layer CNN and extracted features from the fully

onnected layers. Anavi et al. (2016) used the last layer and a pre-

rained network. Their best results were obtained by feeding these

eatures to a one-vs-all support vector machine (SVM) classifier to

btain the distance metric. They showed that incorporating gen-

er information resulted in better performance than just CNN fea-

ures. Liu et al. (2016b) used the penultimate fully-connected layer

nd a custom CNN trained to classify X-rays in 193 classes to

btain the descriptive feature vector. After descriptor binarization
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Fig. 3. Collage of some medical imaging applications in which deep learning has 

achieved state-of-the-art results. From top-left to bottom-right: mammographic 

mass classification ( Kooi et al., 2016 ), segmentation of lesions in the brain (top 

ranking in BRATS, ISLES and MRBrains challenges, image from Ghafoorian et al. 

(2016b) , leak detection in airway tree segmentation ( Charbonnier et al., 2017 ), di- 

abetic retinopathy classification (Kaggle Diabetic Retinopathy challenge 2015, im- 

age from van Grinsven et al. (2016) , prostate segmentation (top rank in PROMISE12 

challenge), nodule classification (top ranking in LUNA16 challenge), breast cancer 

metastases detection in lymph nodes (top ranking and human expert performance 

in CAMELYON16), human expert performance in skin lesion classification ( Esteva 

et al., 2017 ), and state-of-the-art bone suppression in x-rays, image from Yang et al. 

(2016c) . 

 

t  

s  

l  

d  

u  

g  

g  

w  

w  

a  

t  

p  

l  

a  

e

 

t  

a  

p  

a

4

 

t  

l  

o  

t

nd data retrieval using Hamming separation values, the perfor-

ance was inferior to the state of the art, which the authors at-

ributed to small patch sizes of 96 pixels. The method proposed by

hah et al. (2016) combines CNN feature descriptors with hashing-

orests. 10 0 0 features were extracted for overlapping patches in

rostate MRI volumes, after which a large feature matrix was con-

tructed over all volumes. Hashing forests were then used to com-

ress this into descriptors for each volume. 

Content-based image retrieval as a whole has thus not seen

any successful applications of deep learning methods yet, but

iven the results in other areas it seems only a matter of time. An

nteresting avenue of research could be the direct training of deep

etworks for the retrieval task itself. 

.5.2. Image generation and enhancement 

A variety of image generation and enhancement methods us-

ng deep architectures have been proposed, ranging from remov-

ng obstructing elements in images, normalizing images, improving

mage quality, data completion, and pattern discovery. 

In image generation, 2D or 3D CNNs are used to convert one

nput image into another. Typically, these architectures lack the

ooling layers present in classification networks. These systems are

hen trained with a data set in which both the input and the de-

ired output are present, defining the differences between the gen-

rated and desired output as the loss function. Examples are reg-

lar and bone-suppressed X-ray in Yang et al. (2016c) , 3T and 7T

rain MRI in Bahrami et al. (2016) , PET from MRI in Li et al. (2014) ,

nd CT from MRI in Nie et al. (2016a) . Li et al. (2014) even showed

hat one can use these generated images in computer-aided di-

gnosis systems for Alzheimer’s disease when the original data is

issing or not acquired. 

With multi-stream CNNs super-resolution images can be gener-

ted from multiple low-resolution inputs ( Section 2.4.2 ). In Oktay

t al. (2016) , multi-stream networks reconstructed high-resolution

ardiac MRI from one or more low-resolution input MRI volumes.

ot only can this strategy be used to infer missing spatial infor-

ation, but can also be leveraged in other domains; for exam-

le, inferring advanced MRI diffusion parameters from limited data

 Golkov et al., 2016 ). Other image enhancement applications like

ntensity normalization and denoising have seen only limited ap-

lication of deep learning algorithms. Janowczyk et al. (2017) used

AEs to normalize H&E-stained histopathology images whereas

enou et al. (2016) used CNNs to perform denoising in DCE-MRI

ime-series. 

Image generation has seen impressive results with very creative

pplications of deep networks in significantly differing tasks. One

an only expect the number of tasks to increase further in the fu-

ure. 

.5.3. Combining image data with reports 

The combination of text reports and medical image data has

ed to two avenues of research: (1) leveraging reports to improve

mage classification accuracy ( Schlegl et al., 2015 ), and (2) gen-

rating text reports from images ( Kisilev et al., 2016; Shin et al.,

015; 2016a; Wang et al., 2016e ); the latter inspired by recent cap-

ion generation papers from natural images ( Karpathy and Fei-Fei,

015 ). To the best of our knowledge, the first step towards lever-

ging reports was taken by Schlegl et al. (2015) , who argued that

arge amounts of annotated data may be difficult to acquire and

roposed to add semantic descriptions from reports as labels. The

ystem was trained on sets of images along with their textual de-

criptions and was taught to predict semantic class labels during

est time. They showed that semantic information increases classi-

cation accuracy for a variety of pathologies in Optical Coherence

omography (OCT) images. 
Shin et al. (2015) and Wang et al. (2016e) mined semantic in-

eractions between radiology reports and images from a large data

et extracted from a PACS system. They employed latent Dirich-

et allocation (LDA), a type of stochastic model that generates a

istribution over a vocabulary of topics based on words in a doc-

ment. In a later work, Shin et al. (2016a) proposed a system to

enerate descriptions from chest X-rays. A CNN was employed to

enerate a representation of an image one label at a time, which

as then used to train an RNN to generate sequence of MeSH key-

ords. Kisilev et al. (2016) used a completely different approach

nd predicted categorical BI-RADS descriptors for breast lesions. In

heir work they focused on three descriptors used in mammogra-

hy: shape, margin, and density, where each have their own class

abel. The system was fed with the image data and region propos-

ls and predicts the correct label for each descriptor (e.g. for shape

ither oval, round, or irregular). 

Given the wealth of data that is available in PACS systems in

erms of images and corresponding diagnostic reports, it seems like

n ideal avenue for future deep learning research. One could ex-

ect that advances in captioning natural images will in time be

pplied to these data sets as well. 

. Anatomical application areas 

This section presents an overview of deep learning contribu-

ions to the various application areas in medical imaging. We high-

ight some key contributions and discuss performance of systems

n large data sets and on public challenge data sets ( Fig. 3 ). All

hese challenges are listed on http://www.grand-challenge.org . 

http://www.grand-challenge.org


70 G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

s  

a  

t

 

a  

i  

O  

c  

d  

u  

w  

l  

t  

a

4

 

a  

c  

n  

o  

f  

a  

T

 

t  

r  

(  

(  

s  

t  

c

 

f  

n  

f  

l  

d  

s  

c

 

t  

b  

e  

m  

m  

a  

p

 

i  

h  

e  

C  

e  

m  

t

 

w  

a  

l  

(  

2  

f  
4.1. Brain 

DNNs have been extensively used for brain image analysis in

several different application domains ( Table 1 ). A large number of

studies address classification of Alzheimer’s disease and segmenta-

tion of brain tissue and anatomical structures (e.g. the hippocam-

pus). Other important areas are detection and segmentation of le-

sions (e.g. tumors, white matter lesions, lacunes, micro-bleeds). 

Apart from the methods that aim for a scan-level classification

(e.g. Alzheimer diagnosis), most methods learn mappings from lo-

cal patches to representations and subsequently from representa-

tions to labels. However, the local patches might lack the contex-

tual information required for tasks where anatomical information

is paramount (e.g. white matter lesion segmentation). To tackle

this, Ghafoorian et al. (2016b) used non-uniformly sampled patches

by gradually lowering sampling rate in patch sides to span a larger

context. An alternative strategy used by many groups is multi-scale

analysis and a fusion of representations in a fully-connected layer. 

Even though brain images are 3D volumes in all surveyed stud-

ies, most methods work in 2D, analyzing the 3D volumes slice-by-

slice. This is often motivated by either the reduced computational

requirements or the thick slices relative to in-plane resolution in

some data sets. More recent publications had also employed 3D

networks. 

DNNs have completely taken over many brain image analysis

challenges. In the 2014 and 2015 brain tumor segmentation chal-

lenges (BRATS), the 2015 longitudinal multiple sclerosis lesion seg-

mentation challenge, the 2015 ischemic stroke lesion segmenta-

tion challenge (ISLES), and the 2013 MR brain image segmentation

challenge (MRBrains), the top ranking teams to date have all used

CNNs. Almost all of the aforementioned methods are concentrating

on brain MR images. We expect that other brain imaging modali-

ties such as CT and US can also benefit from deep learning based

analysis. 

4.2. Eye 

Ophthalmic imaging has developed rapidly over the past years,

but only recently are deep learning algorithms being applied to eye

image understanding. As summarized in Table 2 , most works em-

ploy simple CNNs for the analysis of color fundus imaging (CFI).

A wide variety of applications are addressed: segmentation of

anatomical structures, segmentation and detection of retinal abnor-

malities, diagnosis of eye diseases, and image quality assessment. 

In 2015, Kaggle organized a diabetic retinopathy detection com-

petition: over 35,0 0 0 color fundus images were provided to train

algorithms to predict the severity of disease in 53,0 0 0 test images.

The majority of the 661 teams that entered the competition ap-

plied deep learning and four teams achieved performance above

that of humans, all using end-to-end CNNs. Recently, Gulshan et al.

(2016) performed a thorough analysis of the performance of a

Google Inception v3 network for diabetic retinopathy detection,

showing performance comparable to a panel of seven certified

ophthalmologists. 

4.3. Chest 

In thoracic image analysis of both radiography and computed

tomography, the detection, characterization, and classification of

nodules is the most commonly addressed application ( Tables 3 and

4 ). Many works add features derived from deep networks to ex-

isting feature sets or compare CNNs with classical machine learn-

ing approaches using handcrafted features. In chest X-ray, several

groups detect multiple diseases with a single system. In CT the de-

tection of textural patterns indicative of interstitial lung diseases is

also a popular research topic. 
Chest radiography is the most common radiological exam; sev-

ral works use a large set of images with text reports to train

ystems that combine CNNs for image analysis and RNNs for text

nalysis. This is a branch of research we expect to see more of in

he near future. 

In a recent challenge for nodule detection in CT, LUNA16, CNN

rchitectures were used by all top performing systems. This is

n contrast with a previous lung nodule detection challenge, AN-

DE09, where handcrafted features were used to classify nodule

andidates. The best systems in LUNA16 still rely on nodule candi-

ates computed by rule-based image processing, but systems that

se deep networks for candidate detection also performed very

ell (e.g. U-net). Estimating the probability that an individual has

ung cancer from a CT scan is an important topic: It is the objec-

ive of the Kaggle Data Science Bowl 2017, with $1 million in prizes

nd more than one thousand participating teams. 

.4. Digital pathology and microscopy 

The growing availability of large scale gigapixel whole-slide im-

ges (WSI) of tissue specimen has made digital pathology and mi-

roscopy a very popular application area for deep learning tech-

iques. The developed techniques applied to this domain focus

n three broad challenges: (1) Detecting, segmenting, or classi-

ying nuclei, (2) segmentation of large organs, and (3) detecting

nd classifying the disease of interest at the lesion- or WSI-level.

able 5 presents an overview for each of these categories. 

Deep learning techniques have also been applied for normaliza-

ion of histopathology images. Color normalization is an important

esearch area in histopathology image analysis. In Janowczyk et al.

2017) , a method for stain normalization of hematoxylin and eosin

H&E) stained histopathology images was presented based on deep

parse auto-encoders. Recently, the importance of color normaliza-

ion was demonstrated by Sethi et al. (2016) for CNN based tissue

lassification in H&E stained images. 

The introduction of grand challenges in digital pathology has

ostered the development of computerized digital pathology tech-

iques. The challenges that evaluated existing and new approaches

or analysis of digital pathology images are: EM segmentation chal-

enge 2012 for the 2D segmentation of neuronal processes, mitosis

etection challenges in ICPR 2012 and AMIDA 2013, GLAS for gland

egmentation and, CAMELYON16 and TUPAC for processing breast

ancer tissue samples. 

In both ICPR 2012 and the AMIDA13 challenges on mitosis de-

ection the IDSIA team outperformed other algorithms with a CNN

ased approach ( Cire ̧s an et al., 2013 ). The same team had the high-

st performing system in EM 2012 ( Ciresan et al., 2012 ) for 2D seg-

entation of neuronal processes. In their approach, the task of seg-

enting membranes of neurons was performed by mild smoothing

nd thresholding of the output of a CNN, which computes pixel

robabilities. 

GLAS addressed the problem of gland instance segmentation

n colorectal cancer tissue samples. Xu et al. (2016d) achieved the

ighest rank using three CNN models. The first CNN classifies pix-

ls as gland versus non-gland. From each feature map of the first

NN, edge information is extracted using the holistically nested

dge technique, which uses side convolutions to produce an edge

ap. Finally, a third CNN merges gland and edge maps to produce

he final segmentation. 

CAMELYON16 was the first challenge to provide participants

ith WSIs. Contrary to other medical imaging applications, the

vailability of large amount of annotated data in this challenge al-

owed for training very deep models such as 22-layer GoogLeNet

 Szegedy et al., 2014 ), 16-layer VGG-Net ( Simonyan and Zisserman,

014 ), and 101-layer ResNet ( He et al., 2015 ). The top-five per-

orming systems used one of these architectures. The best per-
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Table 1 

Overview of papers using deep learning techniques for brain image analysis. All works use MRI unless otherwise mentioned. 

Reference Method Application; remarks 

Disorder classification (AD, MCI, Schizophrenia) 

Brosch and Tam (2013) DBN AD/HC classification; deep belief networks with convolutional RBMs for manifold learning 

Plis et al. (2014) DBN Deep belief networks evaluated on brain network estimation, Schizophrenia and Huntington’s disease classification 

Suk and Shen (2013) SAE AD/MCI classification; stacked auto encoders with supervised fine tuning 

Suk et al. (2014) RBM AD/MCI/HC classification; Deep Boltzmann Machines on MRI and PET modalities 

Payan and Montana (2015) CNN AD/MCI/HC classification; 3D CNN pre-trained with sparse auto-encoders 

Suk et al. (2015) SAE AD/MCI/HC classification; SAE for latent feature extraction on a large set of hand-crafted features from MRI and PET 

Hosseini-Asl et al. (2016) CNN AD/MCI/HC classification; 3D CNN pre-trained with a 3D convolutional auto-encoder on fMRI data 

Kim et al. (2016b) ANN Schizophrenia/NH classification on fMRI; neural network showing advantage of pre-training with SAEs, and L1 

sparsification 

Ortiz et al. (2016) DBN AD/MCI/HC classification; an ensemble of Deep belief networks, with their votes fused using an SVM classifier 

Pinaya et al. (2016) DBN Schizophrenia/NH classification; DBN pre-training followed by supervised fine-tuning 

Sarraf and Tofighi (2016) CNN AD/HC classification; adapted Lenet-5 architecture on fMRI data 

Suk et al. (2016) SAE MCI/HC classification of fMRI data; stacked auto-encoders for feature extraction, HMM as a generative model on top 

Suk and Shen (2016) CNN AD/MCI/HC classification; CNN on sparse representations created by regression models 

Shi et al. (2017) ANN AD/MCI/HC classification; multi-modal stacked deep polynomial networks with an SVM classifier on top using MRI 

and PET 

Tissue/anatomy/lesion/tumor segmentation 

Guo et al. (2014) SAE Hippocampus segmentation; SAE for representation learning used for target/atlas patch similarity measurement 

de Brebisson and Montana (2015) CNN Anatomical segmentation; fusing multi-scale 2D patches with a 3D patch using a CNN 

Choi and Jin (2016) CNN Striatum segmentation; two-stage (global/local) approximations with 3D CNNs 

Stollenga et al. (2015) RNN Tissue segmentation; PyraMiD-LSTM, best brain segmentation results on MRBrainS13 (and competitive results on 

EM-ISBI12) 

Zhang et al. (2015) CNN Tissue segmentation; multi-modal 2D CNN 

Andermatt et al. (2016) RNN Tissue segmentation; two convolutional gated recurrent units in different directions for each dimension 

Bao and Chung (2016) CNN Anatomical segmentation; multi-scale late fusion CNN with random walker as a novel label consistency method 

Birenbaum and Greenspan (2016) CNN Lesion segmentation; multi-view (2.5D) CNN concatenating features from previous time step for a longitudinal analysis 

Brosch et al. (2016) CNN Lesion segmentation; convolutional encoder-decoder network with shortcut connections and convolutional RBM 

pretraining 

Chen et al. (2016a) CNN Tissue segmentation; 3D res-net combining features from different layers 

Ghafoorian et al. (2016b) CNN Lesion segmentation; CNN trained on non-uniformly sampled patch to integrate a larger context with a foviation effect 

Ghafoorian et al. (2016a) CNN Lesion segmentation; multi-scale CNN with late fusion that integrates anatomical location information into network 

Havaei et al. (2016b) CNN Tumor segmentation; CNN handling missing modalities with abstraction layer that transforms feature maps to their 

statistics 

Havaei et al. (2016a) CNN Tumor segmentation; two-path way CNN with different receptive fields 

Kamnitsas et al. (2017) CNN Tumor segmentation; 3D multi-scale fully convolutional network with CRF for label consistency 

Kleesiek et al. (2016) CNN Brain extraction; 3D fully convolutional CNN on multi-modal input 

Mansoor et al. (2016) SAE Visual pathway segmentation; learning appearance features from SAE for steering the shape model for segmentation 

Milletari et al. (2016a) CNN Anatomical segmentation on MRI and US; Hough-voting to acquire mapping from CNN features to full patch 

segmentations 

Moeskops et al. (2016a) CNN Tissue segmentation; CNN trained on multiple patch sizes 

Nie et al. (2016b) CNN Infant tissue segmentation; FCN with a late fusion method on different modalities 

Pereira et al. (2016) CNN Tumor segmentation; CNN on multiple modality input 

Shakeri et al. (2016) CNN Anatomical segmentation; FCN followed by Markov random fields 

Zhao and Jia (2016) CNN Tumor segmentation; multi-scale CNN with a late fusion architecture 

Lesion/tumor detection and classification 

Pan et al. (2015) CNN Tumor grading; 2D tumor patch classification using a CNN 

Dou et al. (2015) ISA Microbleed detection; 3D stacked Independent Subspace Analysis for candidate feature extraction, SVM classification 

Dou et al. (2016b) CNN Microbleed detection; 3D FCN for candidate segmentation followed by a 3D CNN as false positive reduction 

Ghafoorian et al. (2017) CNN Lacune detection; FCN for candidate segmentation then a multi-scale 3D CNN with anatomical features as false 

positive reduction 

Survival/disease activity/development prediction 

Kawahara et al. (2016b) CNN Neurodevelopment prediction; CNN with specially-designed edge-to-edge, edge-to-node and node-to-graph conv. 

layers for brain nets 

Nie et al. (2016c) CNN Survival prediction; features from a Multi-modal 3D CNN is fused with hand-crafted features to train an SVM 

Yoo et al. (2016) CNN Disease activity prediction; Training a CNN on the Euclidean distance transform of the lesion masks as the input 

van der Burgh et al. (2017) CNN Survival prediction; DBN on MRI and fusing it with clinical characteristics and structural connectivity data 

Image construction/enhancement 

Li et al. (2014) CNN Image construction; 3D CNN for constructing PET from MR images 

Bahrami et al. (2016) CNN Image construction; 3D CNN for constructing 7T-like images from 3T MRI 

Benou et al. (2016) SAE Denoising DCE-MRI; using an ensemble of denoising SAE (pretrained with RBMs) 

Golkov et al. (2016) CNN Image construction; Per-pixel neural network to predict complex diffusion parameters based on fewer measurements 

Hoffmann et al. (2016) ANN Image construction; Deep neural nets with SRelu nonlinearity for thermal image construction 

Nie et al. (2016a) CNN Image construction; 3D fully convolutional network for constructing CT from MR images 

Sevetlidis et al. (2016) ANN Image construction; Encoder-decoder network for synthesizing one MR modality from another 

Other 

Brosch et al. (2014) DBN Manifold Learning; DBN with conv. RBM layers for modeling the variability in brain morphology and lesion 

distribution in MS 

Cheng et al. (2015) ANN Similarity measurement; neural network fusing the moving and reference image patches, pretrained with SAE 

Huang et al. (2016) RBM fMRI blind source separation; RBM for both internal and functional interaction-induced latent sources detection 

Simonovsky et al. (2016) CNN Similarity measurement; 3D CNN estimating similarity between reference and moving images stacked in the input 

Wu et al. (2013) ISA Correspondence detection in deformable registration; stacked convolutional ISA for unsupervised feature learning 

Yang et al. (2016d) CNN Image registration; Conv. encoder-decoder net. predicting momentum in x and y directions, given the moving and 

fixed image patches 
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Table 2 

Overview of papers using deep learning techniques for retinal image analysis. All works use CNNs. 

Color fundus images: segmentation of anatomical structures and quality assessment 

Fu et al. (2016b) Blood vessel segmentation; CNN combined with CRF to model long-range pixel interactions 

Fu et al. (2016a) Blood vessel segmentation; extending the approach by Fu et al. (2016b) by reformulating CRF as RNN 

Mahapatra et al. (2016) Image quality assessment; classification output using CNN-based features combined with the output using saliency maps 

Maninis et al. (2016) Segmentation of blood vessels and optic disk; VGG-19 network extended with specialized layers for each segmentation task 

Wu et al. (2016) Blood vessel segmentation; patch-based CNN followed by mapping PCA solution of last layer feature maps to full segmentation 

Zilly et al. (2017) Segmentation of the optic disk and the optic cup; simple CNN with filters sequentially learned using boosting 

Color fundus images: detection of abnormalities and diseases 

Chen et al. (2015d) Glaucoma detection; end-to-end CNN, the input is a patch centered at the optic disk 

Abràmoff et al. (2016) Diabetic retinopathy detection; end-to-end CNN, outperforms traditional method, evaluated on a public dataset 

Burlina et al. (2016) Age-related macular degeneration detection; uses overfeat pretrained network for feature extraction 

van Grinsven et al. (2016) Hemorrhage detection; CNN dynamically trained using selective data sampling to perform hard negative mining 

Gulshan et al. (2016) Diabetic retinopathy detection; Inception network, performance comparable to a panel of seven certified ophthalmologists 

Prentasic and Loncaric (2016) Hard exudate detection; end-to-end CNN combined with the outputs of traditional classifiers for detection of landmarks 

Worrall et al. (2016) Retinopathy of prematurity detection; fine-tuned ImageNet trained GoogLeNet, feature map visualization to highlight disease 

Work in other imaging modalities 

Gao et al. (2015) Cataract classification in slit lamp images; CNN followed by a set of recursive neural networks to extract higher order features 

Schlegl et al. (2015) Fluid segmentation in OCT; weakly supervised CNN improved with semantic descriptors from clinical reports 

Prentasic et al. (2016) Blood vessel segmentation in OCT angiography; simple CNN, segmentation of several capillary networks 

Table 3 

Overview of papers using deep learning techniques for chest x-ray image analysis. 

Reference Application Remarks 

Lo et al. (1995) Nodule detection Classifies candidates from small patches with two-layer CNN, each with 12 5 × 5 filters 

Anavi et al. (2015) Image retrieval Combines classical features with those from pre-trained CNN for image retrieval using SVM 

Bar et al. (2015) Pathology detection Features from a pre-trained CNN and low level features are used to detect various diseases 

Anavi et al. (2016) Image retrieval Continuation of Anavi et al. (2015) , adding age and gender as features 

Bar et al. (2016) Pathology detection Continuation of Bar et al. (2015) , more experiments and adding feature selection 

Cicero et al. (2017) Pathology detection GoogLeNet CNN detects five common abnormalities, trained and validated on a large data set 

Hwang et al. (2016) Tuberculosis detection Processes entire radiographs with a pre-trained fine-tuned network with 6 convolution layers 

Kim and Hwang (2016) Tuberculosis detection MIL framework produces heat map of suspicious regions via deconvolution 

Shin et al. (2016a) Pathology detection CNN detects 17 diseases, large data set (7k images), recurrent networks produce short captions 

Rajkomar et al. (2017) Frontal/lateral classification Pre-trained CNN performs frontal/lateral classification task 

Yang et al. (2016c) Bone suppression Cascade of CNNs at increasing resolution learns bone images from gradients of radiographs 

Wang et al. (2016a) Nodule classification Combines classical features with CNN features from pre-trained ImageNet CNN 

Table 4 

Overview of papers using deep learning techniques for chest CT image analysis. 

Reference Application; remarks 

Segmentation 

Charbonnier et al. (2017) Airway segmentation where multi-view CNN classifies candidate branches as true airways or leaks 

Nodule detection and analysis 

Ciompi et al. (2015) Used a standard feature extractor and a pre-trained CNN to classify detected lesions as benign peri-fissural nodules 

van Ginneken et al. (2015) Detects nodules with pre-trained CNN features from orthogonal patches around candidate, classified with SVM 

Shen et al. (2015b) Three CNNs at different scales estimate nodule malignancy scores of radiologists (LIDC-IDRI data set) 

Chen et al. (2017) Combines features from CNN, SDAE and classical features to characterize nodules from LIDC-IDRI data set 

Ciompi et al. (2016) Multi-stream CNN to classify nodules into subtypes: solid, part-solid, non-solid, calcified, spiculated, perifissural 

Dou et al. (2017) Uses 3D CNN around nodule candidates; ranks #1 in LUNA16 nodule detection challenge 

Li et al. (2016a) Detects nodules with 2D CNN that processes small patches around a nodule 

Setio et al. (2016) Detects nodules with end-to-end trained multi-stream CNN with 9 patches per candidate 

Shen et al. (2016) 3D CNN classifies volume centered on nodule as benign/malignant, results are combined to patient level prediction 

Sun et al. (2016b) Same dataset as Shen et al. (2015b) , compares CNN, DBN, SDAE and classical computer-aided diagnosis schemes 

Teramoto et al. (2016) Combines features extracted from 2 orthogonal CT patches and a PET patch 

Interstitial lung disease 

Anthimopoulos et al. (2016) Classification of 2D patches into interstitial lung texture classes using a standard CNN 

Christodoulidis et al. (2017) 2D interstitial pattern classification with CNNs pre-trained with a variety of texture data sets 

Gao et al. (2016c) Propagates manually drawn segmentations using CNN and CRF for more accurate interstitial lung disease reference 

Gao et al. (2016a) AlexNet applied to large parts of 2D CT slices to detect presence of interstitial patterns 

Gao et al. (2016b) Uses regression to predict area covered in 2D slice with a particular interstitial pattern 

Tarando et al. (2016) Combines existing computer-aided diagnosis system and CNN to classify lung texture patterns. 

van Tulder and de Bruijne (2016) Classification of lung texture and airways using an optimal set of filters derived from DBNs and RBMs 

Other applications 

Tajbakhsh et al. (2015a) Multi-stream CNN to detect pulmonary embolism from candidates obtained from a tobogganing algorithm 

Carneiro et al. (2016) Predicts 5-year mortality from thick slice CT scans and segmentation masks 

de Vos et al. (2016a) Identifies the slice of interest and determine the distance between CT slices 
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Table 5 

Overview of papers using deep learning for digital pathology images. The staining and imaging modality abbreviations used in the table are as follows: H&E: hematoxylin 

and eosin staining, TIL: tumor-infiltrating lymphocytes, BCC: basal cell carcinoma, IHC: immunohistochemistry, RM: Romanowsky, EM: electron microscopy, PC: phase 

contrast, FL: fluorescent, IFL: immunofluorescent, TPM: two-photon microscopy, CM: confocal microscopy, Pap: papanicolaou. 

Reference Topic Staining \ modality Method 

Nucleus detection, segmentation, and classification 

Cire ̧s an et al. (2013) Mitosis detection H&E CNN-based pixel classifier 

Cruz-Roa et al. (2013) Detection of basal cell carcinoma H&E Convolutional auto-encoder neural network 

Malon and Cosatto (2013) Mitosis detection H&E Combines shapebased features with CNN 

Wang et al. (2014) Mitosis detection H&E Cascaded ensemble of CNN and handcrafted features 

Ferrari et al. (2015) Bacterial colony counting Culture plate CNN-based patch classifier 

Ronneberger et al. (2015) Cell segmentation EM U-Net with deformation augmentation 

Shkolyar et al. (2015) Mitosis detection Live-imaging CNN-based patch classifier 

Song et al. (2015) Segmentation of cytoplasm and nuclei H&E Multi-scale CNN and graph-partitioning-based method 

Xie et al. (2015a) Nucleus detection Ki-67 CNN model that learns the voting offset vectors and voting 

confidence 

Xie et al. (2015b) Nucleus detection H&E, Ki-67 CNN-based structured regression model for cell detection 

Akram et al. (2016) Cell segmentation FL, PC, H&E fCNN for cell bounding box proposal and CNN for segmentation 

Albarqouni et al. (2016) Mitosis detection H&E Incorporated ‘crowd sourcing’ layer into the CNN framework 

Bauer et al. (2016) Nucleus classification IHC CNN-based patch classifier 

Chen et al. (2016b) Mitosis detection H&E Deep regression network (DRN) 

Gao et al. (2016e) Nucleus classification IFL Classification of Hep2-cells with CNN 

Han et al. (2016) Nucleus classification IFL Classification of Hep2-cells with CNN 

Janowczyk et al. (2016) Nucleus segmentation H&E Resolution adaptive deep hierarchical learning scheme 

Kashif et al. (2016) Nucleus detection H&E Combination of CNN and hand-crafted features 

Mao and Yin (2016) Mitosis detection PC Hierarchical CNNs for patch sequence classification 

Mishra et al. (2016) Classification of mitochondria EM CNN-based patch classifier 

Phan et al. (2016) Nucleus classification FL Classification of Hep2-cells using transfer learning (pre-trained 

CNN) 

Romo-Bucheli et al. (2016) Tubule nuclei detection H&E CNN-based classification of pre-selected candidate nuclei 

Sirinukunwattana et al. (2016) Nucleus detection and classification H&E CNN with spatially constrained regression 

Song et al. (2017) Cell segmentation H&E Multi-scale CNN 

Turkki et al. (2016) TIL detection H&E CNN-based classification of superpixels 

Veta et al. (2016) Nuclear area measurement H&E A CNN directly measures nucleus area without requiring 

segmentation 

Wang et al. (2016d) Subtype cell detection H&E Combination of two CNNs for joint cell detection and 

classification 

Xie et al. (2016a) Nucleus detection and cell counting FL and H&E Microscopy cell counting with fully convolutional regression 

networks 

Xing et al. (2016) Nucleus segmentation H&E, IHC CNN and selection-based sparse shape model 

Xu et al. (2016b) Nucleus detection H&E Stacked sparse auto-encoders (SSAE) 

Xu and Huang (2016) Nucleus detection Various General deep learning framework to detect cells in whole-slide 

images 

Yang et al. (2016b) Glial cell segmentation TPM fCNN with an iterative k-terminal cut algorithm 

Yao et al. (2016) Nucleus classification H&E Classifies cellular tissue into tumor, lymphocyte, and stromal 

Zhao et al. (2016) Classification of leukocytes RM CNN-based patch classifier 

Large organ segmentation 

Ciresan et al. (2012) Segmentation of neuronal membranes EM Ensemble of several CNNs with different architectures 

Kainz et al. (2015) Segmentation of colon glands H&E Used two CNNs to segment glands and their separating 

structures 

Apou et al. (2016) Detection of lobular structures in 

breast 

IHC Combined the outputs of a CNN and a texture classification 

system 

BenTaieb and Hamarneh (2016) Segmentation of colon glands H&E fCNN with a loss accounting for smoothness and object 

interactions 

BenTaieb et al. (2016) Segmentation of colon glands H&E A multi-loss fCNN to perform both segmentation and 

classification 

Chen et al. (2016d) Neuronal membrane and fungus 

segmentation 

EM Combination of bi-directional LSTM-RNNs and kU-Nets 

Chen et al. (2017) Segmentation of colon glands H&E Deep contour-aware CNN 

Çiçek et al. (2016) Segmentation of xenopus kidney CM 3D U-Net 

Drozdzal et al. (2016) Segmentation of neuronal structures EM fCNN with skip connections 

Li et al. (2016b) Segmentation of colon glands H&E Compares CNN with an SVM using hand-crafted features 

Teikari et al. (2016) Volumetric vascular segmentation FL Hybrid 2D-3D CNN architecture 

Wang et al. (2016c) Segmentation of messy and muscle 

regions 

H&E Conditional random field jointly trained with an fCNN 

Xie et al. (2016b) Perimysium segmentation H&E 2D spatial clockwork RNN 

Xu et al. (2016d) Segmentation of colon glands H&E Used three CNNs to predict gland and contour pixels 

Xu et al. (2016a) Segmenting epithelium & stroma H&E, IHC CNNs applied to over-segmented image regions (superpixels) 

Detection and classification of disease 

Cruz-Roa et al. (2014) Detection of invasive ductal carcinoma H&E CNN-based patch classifier 

Xu et al. (2014) Patch-level classification of colon 

cancer 

H&E Multiple instance learning framework with CNN features 

Bychkov et al. (2016) Outcome prediction of colorectal 

cancer 

H&E Extracted CNN features from epithelial tissue for prediction 

Chang et al. (2017) Multiple cancer tissue classification Various Transfer learning using multi-Scale convolutional sparse coding 

Günhan Ertosun and Rubin (2015) Grading glioma H&E Ensemble of CNNs 

Källén et al. (2016) Predicting Gleason score H&E OverFeat pre-trained network as feature extractor 

Kim et al. (2016a) Thyroid cytopathology classification H&E, RM & Pap Fine-tuning pre-trained AlexNet 

( continued on next page ) 
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Table 5 ( continued ) 

Reference Topic Staining \ modality Method 

Litjens et al. (2016) Detection of prostate and breast cancer H&E fCNN-based pixel classifier 

Quinn et al. (2016) Malaria, tuberculosis and parasites 

detection 

Light microscopy CNN-based patch classifier 

Rezaeilouyeh et al. (2016) Gleason grading and breast cancer 

detection 

H&E The system incorporates shearlet features inside a CNN 

Schaumberg et al. (2016) SPOP mutation prediction of prostate 

cancer 

H&E Ensemble of ResNets 

Wang et al. (2016b) Metastases detection in lymph node H&E Ensemble of CNNs with hard negative mining 

Other pathology applications 

Janowczyk et al. (2017) Stain normalization H&E Used SAE for classifying tissue and subsequent histogram 

matching 

Janowczyk and Madabhushi (2016) Deep learning tutorial Various Covers different detecting, segmentation, and classification 

tasks 

Sethi et al. (2016) Comparison of normalization 

algorithms 

H&E Presents effectiveness of stain normalization for application of 

CNNs 

Table 6 

Overview of papers using deep learning techniques for breast image analysis. MG = mammography; TS = tomosynthesis; US = ultrasound; ADN = adaptive 

deconvolution network. 

Reference Modality Method Application; remarks 

Sahiner et al. (1996) MG CNN First application of a CNN to mammography 

Jamieson et al. (2012) MG, US ADN Four layer ADN, an early form of CNN for mass classification 

Fonseca et al. (2015) MG CNN Pre-trained network extracted features classified with SVM for breast density estimation 

Akselrod-Ballin et al. (2016) MG CNN Use a modified region proposal CNN (R-CNN) for the localization and classification of masses 

Arevalo et al. (2016) MG CNN Lesion classification, combination with hand-crafted features gave the best performance 

Dalmis et al. (2017) MRI CNN Breast and fibroglandular tissue segmentation 

Dubrovina et al. (2016) MG CNN Tissue classification using regular CNNs 

Dhungel et al. (2016) MG CNN Combination of different CNNs combined with hand-crafted features 

Fotin et al. (2016) TS CNN Improved state-of-the art for mass detection in tomosynthesis 

Hwang and Kim (2016) MG CNN Weakly supervised CNN for localization of masses 

Huynh et al. (2016) MG CNN Pre-trained CNN on natural image patches applied to mass classification 

Kallenberg et al. (2016) MG SAE Unsupervised CNN feature learning with SAE for breast density classification 

Kisilev et al. (2016) MG CNN R-CNN combined with multi-class loss trained on semantic descriptions of potential masses 

Kooi et al. (2016) MG CNN Improved the state-of-the art for mass detection and show human performance on a patch level 

Qiu et al. (2016) MG CNN CNN for direct classification of future risk of developing cancer based on negative mammograms 

Samala et al. (2016a) TS CNN Microcalcification detection 

Samala et al. (2016b) TS CNN Pre-trained CNN on mammographic masses transfered to tomosynthesis 

Sun et al. (2016a) MG CNN Semi-supervised CNN for classification of masses 

Zhang et al. (2016c) US RBM Classification benign vs. malignant with shear wave elastography 

Kooi et al. (2017) MG CNN Pre-trained CNN on mass/normal patches to discriminate malignant masses from (benign) cysts 

Wang et al. (2017) MG CNN Detection of cardiovascular disease based on vessel calcification 
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forming solution in the Camelyon16 challenge was presented in

Wang et al. (2016b) . This method is based on an ensemble of two

GoogLeNet architectures, one trained with and one without hard-

negative mining to tackle the challenge. The latest submission of

this team using the WSI standardization algorithm by Ehteshami

Bejnordi et al. (2016) achieved an AUC of 0.9935, for task 2, which

outperformed the AUC of a pathologist (AUC = 0.966) who inde-

pendently scored the complete test set. 

The recently held TUPAC challenge addressed detection of mi-

tosis in breast cancer tissue, and prediction of tumor grading

at the WSI level. The top performing system by Paeng et al.

(2016) achieved the highest performance in all tasks. The method

has three main components: (1) Finding high cell density regions,

(2) using a CNN to detect mitoses in the regions of interest, (3)

converting the results of mitosis detection to a feature vector for

each WSI and using an SVM classifier to compute the tumor pro-

liferation and molecular data scores. 

4.5. Breast 

One of the earliest DNN applications from Sahiner et al.

(1996) was on breast imaging. Recently, interest has returned

which resulted in significant advances over the state of the art,

achieving the performance of human readers on ROIs ( Kooi et al.,

2016 ). Since most breast imaging techniques are two dimensional,

methods successful in natural images can easily be transferred.
ith one exception, the only task addressed is the detection of

reast cancer; this consisted of three subtasks: (1) detection and

lassification of mass-like lesions, (2) detection and classification

f micro-calcifications, and (3) breast cancer risk scoring of images.

ammography is by far the most common modality and has con-

equently enjoyed the most attention. Work on tomosynthesis, US,

nd shear wave elastography is still scarce, and we have only one

aper that analyzed breast MRI with deep learning; these other

odalities will likely receive more attention in the next few years.

able 6 summarizes the literature and main messages. 

Since many countries have screening initiatives for breast can-

er, there should be massive amounts of data available, especially

or mammography, and therefore enough opportunities for deep

odels to flourish. Unfortunately, large public digital databases are

navailable and consequently older scanned screen-film data sets

re still in use. Challenges such as the recently launched DREAM

hallenge have not yet had the desired success. 

As a result, many papers used small data sets resulting in mixed

erformance. Several projects have addressed this issue by explor-

ng semi-supervised learning ( Sun et al., 2016a ), weakly supervised

earning ( Hwang and Kim, 2016 ), and transfer learning ( Kooi et al.,

017; Samala et al., 2016b )). Another method combines deep mod-

ls with handcrafted features ( Dhungel et al., 2016 ), which have

een shown to be complementary still, even for very big data sets

 Kooi et al., 2016 ). State of the art techniques for mass-like lesion

etection and classification tend to follow a two-stage pipeline
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Table 7 

Overview of papers using deep learning techniques for cardiac image analysis. 

Reference Modality Method Application; remarks 

Emad et al. (2015) MRI CNN Left ventricle slice detection; simple CNN indicates if structure is present 

Avendi et al. (2016) MRI CNN Left ventricle segmentation; AE used to initialize filters because training data set was small 

Kong et al. (2016) MRI RNN Identification of end-diastole and end-systole frames from cardiac sequences 

Oktay et al. (2016) MRI CNN Super-resolution; U-net/ResNet hybrid, compares favorably with standard superresolution methods 

Poudel et al. (2016) MRI RNN Left ventricle segmentation; RNN processes stack of slices, evaluated on several public datasets 

Rupprecht et al. (2016) MRI CNN Cardiac structure segmentation; patch-based CNNs integrated in active contour framework 

Tran (2016) MRI CNN Left and right ventricle segmentation; 2D fCNN architecture, evaluated on several public data sets 

Yang et al. (2016a) MRI CNN Left ventricle segmentation; CNN combined with multi-atlas segmentation 

Zhang et al. (2016b) MRI CNN Identifying presence of apex and base slices in cardiac exam for quality assessment 

Ngo et al. (2017) MRI DBN Left ventricle segmentation; DBN is used to initialize a level set framework 

Carneiro et al. (2012) US DBN Left ventricle segmentation; DBN embedded in system using landmarks and non-rigid registration 

Carneiro and Nascimento (2013) US DBN Left ventricle tracking; extension of Carneiro et al. (2012) for tracking 

Chen et al. (2016c) US CNN Structure segmentation in 5 different 2D views; uses transfer learning 

Ghesu et al. (2016b) US CNN 3D aortic valve detection and segmentation; uses shallow and deeper sparse networks 

Nascimento and Carneiro (2016) US DBN Left ventricle segmentation; DBN applied to patches steers multi-atlas segmentation process 

Moradi et al. (2016a) US CNN Automatic generation of text descriptions for Doppler US images of cardiac valves using doc2vec 

Gülsün et al. (2016) CT CNN Coronary centerline extraction; CNN classifies paths as correct or leakages 

Lessmann et al. (2016) CT CNN Coronary calcium detection in low dose ungated CT using multi-stream CNN (3 views) 

Moradi et al. (2016b) CT CNN Labeling of 2D slices from cardiac CT exams; comparison with handcrafted features 

de Vos et al. (2016b) CT CNN Detect bounding boxes by slice classification and combining 3 orthogonal 2D CNNs 

Wolterink et al. (2016) CT CNN Coronary calcium detection in gated CTA; compares 3D CNN with multi-stream 2D CNNs 

Zreik et al. (2016) CT CNN Left ventricle segmentation; multi-stream CNN (3 views) voxel classification 
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o  
ith a candidate detector; this design reduces the image to a set of

otentially malignant lesions, which are fed to a deep CNN ( Fotin

t al., 2016; Kooi et al., 2016 ). Alternatives use a region proposal

etwork (R-CNN) that bypasses the cascaded approach ( Akselrod-

allin et al., 2016; Kisilev et al., 2016 ). 

When large data sets are available, good results can be ob-

ained. At the SPIE Medical Imaging conference of 2016, a re-

earcher from a leading company in the mammography CAD field

old a packed conference room how a few weeks of experiments

ith a standard architecture (AlexNet) – trained on the company’s

roprietary database – yielded a performance that was superior

o what years of engineering handcrafted feature systems had

chieved ( Fotin et al., 2016 ). 

.6. Cardiac 

Deep learning has been applied to many aspects of cardiac im-

ge analysis; the literature is summarized in Table 7 . MRI is the

ost researched modality and left ventricle segmentation the most

ommon task, but the number of applications is highly diverse:

egmentation, tracking, slice classification, image quality assess-

ent, automated calcium scoring and coronary centerline tracking,

nd super-resolution. 

Most papers used simple 2D CNNs and analyzed the 3D and

ften 4D data slice by slice; the exception is Wolterink et al.

2016) where 3D CNNs were used. DBNs are used in four papers,

ut these all originated from the same author group. The DBNs

re only used for feature extraction and are integrated in com-

ound segmentation frameworks. Two papers are exceptional be-

ause they combined CNNs with RNNs: Poudel et al. (2016) intro-

uced a recurrent connection within the U-net architecture to seg-

ent the left ventricle slice by slice and learn what information to

emember from the previous slices when segmenting the next one.

ong et al. (2016) used an architecture with a standard 2D CNN

nd an LSTM to perform temporal regression to identify specific

rames and a cardiac sequence. Many papers use publicly avail-

ble data. The largest challenge in this field was the 2015 Kaggle

ata Science Bowl where the goal was to automatically measure

nd-systolic and end-diastolic volumes in cardiac MRI. 192 teams

ompeted for $20 0,0 0 0 in prize money and the top ranking teams

ll used deep learning, in particular fCNN or U-net segmentation

chemes. 
.7. Abdomen 

Most papers on the abdomen aimed to localize and segment

rgans, mainly the liver, kidneys, bladder, and pancreas ( Table 8 ).

wo papers address liver tumor segmentation. The main modality

s MRI for prostate analysis and CT for all other organs. The colon

s the only area where various applications were addressed, but

lways in a straightforward manner: a CNN was used as a feature

xtractor and these features were used for classification. 

It is interesting to note that in two segmentation challenges

SLIVER07 for liver and PROMISE12 for prostate – more tradi-

ional image analysis methods were dominant up until 2016. In

ROMISE12, the current second and third in rank among the auto-

atic methods used active appearance models. The algorithm from

Morphics was ranked first for almost five years (now ranked sec-

nd). However, a 3D fCNN similar to U-net ( Yu et al., 2017c ) has

ecently taken the top position. This paper has an interesting ap-

roach where a sum-operation was used instead of the concatena-

ion operation used in U-net, making it a hybrid between a ResNet

nd U-net architecture. Also in SLIVER07 – a 10-year-old liver seg-

entation challenge – CNNs have started to appear in 2016 at the

op of the leaderboard, replacing previously dominant methods fo-

used on shape and appearance modeling. 

.8. Musculoskeletal 

Musculoskeletal images have also been analyzed by deep learn-

ng algorithms for segmentation and identification of bone, joint,

nd associated soft tissue abnormalities in diverse imaging modal-

ties. The works are summarized in Table 9 . 

A surprising number of complete applications with promis-

ng results are available; one that stands out is Jamaludin et al.

2016) who trained their system with 12K discs and claimed

ear-human performances across four different radiological scoring

asks. 

.9. Other 

This final section lists papers that address multiple applications

 Table 10 ) and a variety of other applications ( Table 11 ). 

It is remarkable that one single architecture or approach based

n deep learning can be applied without modifications to differ-
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Table 8 

Overview of papers using deep learning for abdominal image analysis. 

Reference Topic Modality Method Remarks 

Multiple 

Hu et al. (2016a) Segmentation CT CNN 3D CNN with time-implicit level sets for segmentation of liver, spleen and kidneys 

Segmentation tasks in liver imaging 

Li et al. (2015) Lesion CT CNN 2D 17 × 17 patch-based classification, Ben-Cohen et al. (2016) repeats this approach 

Vivanti et al. (2015) Lesion CT CNN 2D CNN for liver tumor segmentation in follow-up CT taking baseline CT as input 

Ben-Cohen et al. (2016) Liver CT CNN 2D CNN similar to U-net, but without cross-connections; good results on SLIVER07 

Christ et al. (2016) Liver & tumor CT CNN U-net, cascaded fCNN and dense 3D CRF 

Dou et al. (2016a) Liver CT CNN 3D CNN with conditional random field; good results on SLIVER07 

Hoogi et al. (2016) Lesion CT/MRI CNN 2D CNN obtained probabilities are used to drive active contour model 

Hu et al. (2016b) Liver CT CNN 3D CNN with surface evolution of a shape prior; good results on SLIVER07 

Lu et al. (2017) Liver CT CNN 3D CNN, competitive results on SLIVER07 

Kidneys 

Lu et al. (2016) Localization CT CNN Combines local patch and slice based CNN 

Ravishankar et al. (2016b) Localization US CNN Combines CNN with classical features to detect regions around kidneys 

Thong et al. (2016) Segmentation CT CNN 2D CCN with 43 × 43 patches, tested on 20 scans 

Pancreas segmentation in CT 

Farag et al. (2015) Segmentation CT CNN Approach with elements similar to Roth et al. (2015b) 

Roth et al. (2015b) Segmentation CT CNN Orthogonal patches from superpixel regions are fed into CNNs in three different ways 

Cai et al. (2016a) Segmentation CT CNN 2 CNNs detect inside and boundary of organ, initializes conditional random field 

Roth et al. (2016a) Segmentation CT CNN 2 CNNs detect inside and boundary of pancreas, combined with random forests 

Colon 

Tajbakhsh et al. (2015b) Polyp detection Colonoscopy CNN CNN computes additional features, improving existing scheme 

Liu et al. (2016a) Colitis detection CT CNN Pre-trained ImageNet CNN generates features for linear SVM 

Nappi et al. (2016) Polyp detection CT CNN Substantial reduction of false positives using pre-trained and fine-tuned CNN 

Tachibana et al. (2016) Electronic cleansing CT CNN Voxel classification in dual energy CT, material other than soft tissue is removed 

Zhang et al. (2017) Polyp detection Colonoscopy CNN Pre-trained ImageNet CNN for feature extraction, two SVMs for cascaded classification 

Prostate segmentation in MRI 

Liao et al. (2013) Application of stacked independent subspace analysis networks 

Cheng et al. (2016b) CNN produces energy map for 2D slice based active appearance segmentation 

Guo et al. (2016) Stacked sparse auto-encoders extract features from patches, input to atlas matching and a deformable model 

Milletari et al. (2016b) 3D U-net based CNN architecture with objective function that directly optimizes Dice coefficient, ranks #5 in PROMISE12 

Yu et al. (2017c) 3D fully convolutional network, hybrid between a ResNet and U-net architecture, ranks #1 on PROMISE12 

Prostate 

Azizi et al. (2016) ) Lesion classification US DBN DBN learns features from temporal US to classify prostate lesions benign/malignant 

Shah et al. (2016) CBIR MRI CNN Features from pre-trained CNN combined with features from hashing forest 

Zhu et al. (2017) Lesion classification MRI SAE Learns features from multiple modalities, hierarchical random forest for classification 

Bladder 

Cha et al. (2016) Segmentation CT CNN CNN patch classification used as initialization for level set 

Table 9 

Overview of papers using deep learning for musculoskeletal image analysis. 

Reference Modality Application; remarks 

Prasoon et al. (2013) MRI Knee cartilage segmentation using multi-stream CNNs 

Chen et al. (2015c) CT Vertebrae localization; joint learning of vertebrae appearance and dependency on neighbors using CNN 

Roth et al. (2015c) CT Sclerotic metastases detection; random 2D views are analyzed by CNN and aggregated 

Shen et al. (2015a) CT Vertebrae localization and segmentation; CNN for segmenting vertebrae and for center detection 

Suzani et al. (2015) MRI Vertebrae localization, identification and segmentation of vertebrae; CNN used for initial localization 

Yang et al. (2015) MRI Anatomical landmark detection; uses CNN for slice classification for presence of landmark 

Antony et al. (2016) X-ray Osteoarthritis grading; pre-trained ImageNet CNN fine-tuned on knee X-rays 

Cai et al. (2016b) CT, MRI Vertebrae localization; RBM determines position, orientation and label of vertebrae 

Golan et al. (2016) US Hip dysplasia detection; CNN with adversarial component detects structures and performs measurements 

Korez et al. (2016) MRI Vertebral bodies segmentation; voxel probabilities obtained with a 3D CNN are input to deformable model 

Jamaludin et al. (2016) MRI Automatic spine scoring; VGG-19 CNN analyzes vertebral discs and finds lesion hotspots 

Miao et al. (2016) X-ray Total Knee Arthroplasty kinematics by real-time 2D/3D registration using CNN 

Roth et al. (2016c) CT Posterior-element fractures detection; CNN for 2.5D patch-based analysis 

Štern et al. (2016) MRI Hand age estimation; 2D regression CNN analyzes 13 bones 

Forsberg et al. (2017) MRI Vertebrae detection and labeling; outputs of two CNNs are input to graphical model 

Spampinato et al. (2017) X-ray Skeletal bone age assessment; comparison among several deep learning approaches for the task at hand 

 

 

 

 

 

 

 

 

s  

w  

s

 

o  

n  

a  

a  

o  
ent tasks; this illustrates the versatility of deep learning and its

general applicability. In some works, pre-trained architectures are

used, sometimes trained with images from a completely different

domain. Several authors analyze the effect of fine-tuning a network

by training it with a small data set of images from the intended

application domain. Combining features extracted by a CNN with

‘traditional’ features is also commonly seen. 

From Table 11 , the large number of papers that address obstet-

ric applications stand out. Most papers address the groundwork,
uch as selecting an appropriate frame from an US stream. More

ork on automated measurements with deep learning in these US

equences is likely to follow. 

The second area where CNNs are rapidly improving the state

f the art is dermoscopic image analysis. For a long time, diag-

osing skin cancer from photographs was considered very difficult

nd out of reach for computers. Many studies focused only on im-

ges obtained with specialized cameras, and recent systems based

n deep networks produced promising results. A recent work by



G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 77 

Table 10 

Overview of papers using a single deep learning approach for different tasks. DQN = Deep Q-Network. 

Reference Task Modality Method Remarks 

Shin et al. (2013) Heart, kidney, liver segmentation MRI SAE SAE to learn temporal/spatial features on 2D + time DCE-MRI 

Roth et al. (2015a) 2D slice classification CT CNN Automatically classifying slices in 5 anatomical regions 

Shin et al. (2015) 2D key image labeling CT, MRI CNN Text and 2D image analysis on a diverse set of 780 thousand images 

Cheng et al. (2016a) Various detection tasks US, CT AE, CNN Detection of breast lesions in US and pulmonary nodules in CT 

Ghesu et al. (2016a) Landmark detection US, CT, MRI CNN, DQN Reinforcement learning with CNN features, cardiac MR/US, head&neck CT 

Liu et al. (2016b) Image retrieval X-ray CNN Combines CNN feature with Radon transform, evaluated on IRMA database 

Merkow et al. (2016) Vascular network segmentation CT, MRI CNN Framework to find various vascular networks 

Moeskops et al. (2016b) Various segmentation tasks MRI, CT CNN Single architecture to segment 6 brain tissues, pectoral muscle & coronaries 

Roth et al. (2016b) Various detection tasks CT CNN Multi-stream CNN to detect sclerotic lesions, lymph nodes and polyps 

Shin et al. (2016b) Abnormality detection CT CNN Compares architectures for detecting interstitial disease and lymph nodes 

Tajbakhsh et al. (2016) Abnormality detection CT, US CNN Compares pre-trained with fully trained networks for three detection tasks 

Wang et al. (2016e) 2D key image labeling CT, MRI CNN Text concept clustering, related to Shin et al. (2015) 

Yan et al. (2016) 2D slice classification CT CNN Automatically classifying CT slices in 12 anatomical regions 

Zhou et al. (2016) Thorax-abdomen segmentation CT CNN 21 structures are segmented with 3 orthogonal 2D fCNNs and majority voting 
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steva et al. (2017) demonstrated excellent results with training a

ecent standard architecture (Google’s Inception v3) on a data set

f both dermoscopic and standard photographic images. This data

et was two orders of magnitude larger than what was used in lit-

rature before. In a thorough evaluation, the proposed system per-

ormed on par with 30 board certified dermatologists. 

. Discussion 

.1. Overview 

From the 308 papers reviewed in this survey, it is evident that

eep learning has pervaded every aspect of medical image analysis.

his has happened extremely quickly: the vast majority of contri-

utions, 242 papers, were published in 2016 or the first month of

017. A large diversity of deep architectures are covered. The ear-

iest studies used pre-trained CNNs as feature extractors. The fact

hat these pre-trained networks could simply be downloaded and

irectly applied to any medical image facilitated their use. More-

ver, in this approach already existing systems based on hand-

rafted features could simply be extended. In the last two years,

owever, we have seen that end-to-end trained CNNs have become

he preferred approach for medical imaging interpretation (see

ig. 1 ). Such CNNs are often integrated into existing image analy-

is pipelines and replace traditional handcrafted machine learning

ethods. This is the approach followed by the largest group of pa-

ers in this survey and we can confidently state that this is the

urrent standard practice. 

.2. Key aspects of successful deep learning methods 

After reviewing so many papers one would expect to be able to

istill the perfect deep learning method and architecture for each

ndividual task and application area. Although convolutional neural

etworks (and derivatives) are now clearly the top performers in

ost medical image analysis competitions, one striking conclusion

e can draw is that the exact architecture is not the most impor-

ant determinant in getting a good solution. We have seen, for ex-

mple in challenges like the Kaggle Diabetic Retinopathy Challenge,

hat many researchers use the exact same architectures, the same

ype of networks, but have widely varying results. A key aspect

hat is often overlooked is that expert knowledge about the task

o be solved can provide advantages that go beyond adding more

ayers to a CNN. Groups and researchers that obtain good perfor-

ance when applying deep learning algorithms often differentiate

hemselves in aspects outside of the deep network, like novel data

reprocessing or augmentation techniques. An example is that the

est performing method in the CAMELYON16-challenge improved
ignificantly (AUC from 0.92 to 0.99) by adding a stain normaliza-

ion pre-processing step to improve generalization without chang-

ng the CNN. Other papers focus on data augmentation strategies

o make networks more robust, and they report that these strate-

ies are essential to obtain good performance. An example is the

lastic deformations that were applied in the original U-Net paper

 Ronneberger et al., 2015 ). 

Augmentation and pre-processing are, of course, not the only

ey contributors to good solutions. Several researchers have shown

hat designing architectures incorporating unique task-specific 

roperties can obtain better results than straightforward CNNs.

wo examples which we encountered several times are multi-

iew and multi-scale networks. Other, often underestimated, parts

f network design are the network input size and receptive field

i.e. the area in input space that contributes to a single output

nit). Input sizes should be selected considering for example the

equired resolution and context to solve a problem. One might in-

rease the size of the patch to obtain more context, but without

hanging the receptive field of the network this might not be ben-

ficial. As a standard sanity check researchers could perform the

ame task themselves via visual assessment of the network input.

f they, or domain experts, cannot achieve good performance, the

hance that you need to modify your network input or architecture

s high. 

The last aspect we want to touch on is model hyper-parameter

ptimization (e.g. learning rate, dropout rate), which can help

queeze out extra performance from a network. We believe this

s of secondary importance with respect to performance to the

reviously discussed topics and training data quality. Disappoint-

ngly, no clear recipe can be given to obtain the best set of hyper-

arameters as it is a highly empirical exercise. Most researchers

all back to an intuition-based random search ( Bergstra and Ben-

io, 2012 ), which often seems to work well enough. Some basic

ips have been covered before by Bengio (2012) . Researchers have

lso looked at Bayesian methods for hyper-parameter optimization

 Snoek et al., 2012 ), but this has not been applied in medical image

nalysis as far as we are aware of. 

.3. Unique challenges in medical image analysis 

It is clear that applying deep learning algorithms to medical im-

ge analysis presents several unique challenges. The lack of large

raining data sets is often mentioned as an obstacle. However, this

otion is only partially correct. The use of PACS systems in radi-

logy has been routine in most western hospitals for at least a

ecade and these are filled with millions of images. There are few

ther domains where this magnitude of imaging data, acquired for

pecific purposes, are digitally available in well-structured archives.

ACS-like systems are not as broadly used for other specialties in
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Table 11 

Overview of papers using deep learning for various image analysis tasks. 

Reference Task Modality Method Remarks 

Fetal imaging 

Chen et al. (2015b) Frame labeling US CNN Locates abdominal plane from fetal ultrasound 

videos 

Chen et al. (2015a) Frame labeling US RNN Same task as Chen et al. (2015b) , now using RNNs 

Baumgartner et al. (2016) Frame labeling US CNN Labeling 12 standard frames in 1003 mid 

pregnancy fetal US videos 

Gao et al. (2016d) Frame labeling US CNN 4 class frame classification using transfer learning 

with pre-trained networks 

Kumar et al. (2016) Frame labeling US CNN 12 standard anatomical planes, CNN extracts 

features for support vector machine 

Rajchl et al. (2016) Segmentation with non expert labels MRI CNN Crowd-sourcing annotation efforts to segment 

brain structures 

Rajchl et al. (2017) Segmentation given bounding box MRI CNN CNN and CRF for segmentation of structures 

Ravishankar et al. (2016a) Quantification US CNN Hybrid system using CNN and texture features to 

find abdominal circumference 

Yu et al. (2017b) Left ventricle segmentation US CNN Frame-by-frame segmentation by dynamically 

fine-tuning CNN to the latest frame 

Dermatology 

Codella et al. (2015) Melanoma detection in dermoscopic images CNN Features from pre-trained CNN combined with 

other features 

Demyanov et al. (2016) Pattern identification in dermoscopic images CNN Comparison to simpler networks and simple 

machine learning 

Kawahara et al. (2016a) 5 and 10-class classification photographic images CNN Pre-trained CNN for feature extraction at two 

image resolutions 

Kawahara and Hamarneh 

(2016) 

10-class classification photographic images CNN Extending Kawahara et al. (2016a) now training 

multi-resolution CNN end-to-end 

Yu et al. (2017a) Melanoma detection in dermoscopic images CNN Deep residual networks for lesion segmentation 

and classification, winner ISIC16 

Menegola et al. (2016) Classification of dermoscopic images CNN Various pre-training and fine-tuning strategies are 

compared 

Esteva et al. (2017) Classification of photographic and dermoscopic images CNN Inception CNN trained on 129k images; compares 

favorably to 29 dermatologists 

Lymph nodes 

Roth et al. (2014) Lymph node detection CT CNN Introduces multi-stream framework of 2D CNNs 

with orthogonal patches 

Barbu et al. (2016) Lymph node detection CT CNN Compares effect of different loss functions 

Nogues et al. (2016) Lymph node detection CT CNN 2 fCNNs, for inside and for contour of lymph 

nodes, are combined in a CRF 

Other 

Wang et al. (2015) Wound segmentation photographs CNN Additional detection of infection risk and healing 

progress 

Ypsilantis et al. (2015) Chemotherapy response prediction PET CNN CNN outperforms classical radiomics features in 

patients with esophageal cancer 

Zheng et al. (2015) Carotid artery bifurcation detection CT CNN Two stage detection process, CNNs combined with 

Haar features 

Alansary et al. (2016) Placenta segmentation MRI CNN 3D multi-stream CNN with extension for motion 

correction 

Fritscher et al. (2016) Head&Neck tumor segmentation CT CNN 3 orthogonal patches in 2D CNNs, combined with 

other features 

Jaumard-Hakoun et al. (2016) Tongue contour extraction US RBM Analysis of tongue motion during speech, combines 

auto-encoders with RBMs 

Payer et al. (2016) Hand landmark detection X-ray CNN Various architectures are compared 

Quinn et al. (2016) Disease detection microscopy CNN Smartphone mounted on microscope detects 

malaria, tuberculosis & parasite eggs 

Smistad and Løvstakken (2016) Vessel detection and segmentation US CNN Femoral and carotid vessels analyzed with standard 

fCNN 

Twinanda et al. (2017) Task recognition in laparoscopy Videos CNN Fine-tuned AlexNet applied to video frames 

Xu et al. (2016c) Cervical dysplasia cervigrams CNN Fine-tuned pre-trained network with added 

non-imaging features 

Xue et al. (2016) Esophageal microvessel classification Microscopy CNN Simple CNN used for feature extraction 

Zhang et al. (2016a) Image reconstruction CT CNN Reconstructing from limited angle measurements, 

reducing reconstruction artefacts 

Lekadir et al. (2017) Carotid plaque classification US CNN Simple CNN for characterization of carotid plaque 

composition in ultrasound 

Ma et al. (2017) Thyroid nodule detection US CNN CNN and standard features combines for 2D US 

analysis 
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medicine, like ophthalmology and pathology, but this is changing

as imaging becomes more prevalent across disciplines. We are also

seeing that increasingly large public data sets are made available:

Esteva et al. (2017) used 18 public data sets and more than 10 5 

training images; in the Kaggle diabetic retinopathy competition a
imilar number of retinal images were released; and several chest

-ray studies used more than 10 4 images. 

The main challenge is thus not the availability of image data it-

elf, but the acquisition of relevant annotations/labeling for these

mages. Traditionally PACS systems store free-text reports by radi-
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logists describing their findings. Turning these reports into accu-

ate annotations or structured labels in an automated manner re-

uires sophisticated text-mining methods, which is an important

eld of study in itself where deep learning is also widely used

owadays. With the introduction of structured reporting into sev-

ral areas of medicine, distilling labels from these reports is ex-

ected to become easier in the future. For example, there are al-

eady papers appearing which directly leverage BI-RADS catego-

izations by radiologist to train deep networks ( Kisilev et al., 2016 )

r semantic descriptions in analyzing optical coherence tomogra-

hy images ( Schlegl et al., 2015 ). We expect the amount of research

n optimally leveraging free-text and structured reports for net-

ork training to increase in the near future. 

Given the complexity of leveraging free-text reports from PACS

r similar systems to train algorithms, generally researchers re-

uest domain experts (e.g. radiologist, pathologists) to make task-

pecific annotations given the image data. Labeling a sufficiently

arge dataset can take a significant amount of time, and this is

roblematic. For example, to train deep learning systems for seg-

entation in radiology often 3D, slice-by-slice annotations need to

e made and this is very time consuming. Thus, learning efficiently

rom limited data is an important area of research in medical im-

ge analysis. A recent paper focused on training a deep learn-

ng segmentation system for 3D segmentation using only sparse

D segmentations ( Çiçek et al., 2016 ). Multiple-instance or active

earning approaches might also offer benefit in some cases, and

ave recently been pursued in the context of deep learning ( Yan

t al., 2016 ). One can also consider leveraging non-expert labels via

rowd-sourcing ( Rajchl et al., 2016 ). Other potential solutions can

e found within the medical field itself; in histopathology one can

ometimes use specific immunohistochemical stains to highlight

egions of interest, reducing the need for expert experience ( Turkki

t al., 2016 ). 

Even when data is annotated by domain expert, label noise can

e a significant limiting factor in developing algorithms, whereas

n computer vision the noise in the labeling of images is typically

elatively low. To give an example, a widely used dataset for evalu-

ting image analysis algorithms to detect nodules in lung CT is the

IDC-IDRI dataset ( Armato et al., 2011 ). In this dataset pulmonary

odules were annotated by four radiologists independently. Subse-

uently, the readers reviewed each others annotations but no con-

ensus was forced. It turned out that the number of nodules they

id not unanimously agreed on to be a nodule, was three times

arger than the number they did fully agree on. Training a deep

earning system on such data requires careful consideration of how

o deal with noise and uncertainty in the reference standard. One

ould think of solutions like incorporating labeling uncertainty di-

ectly in the loss function, but this is still an open challenge. 

In medical imaging often classification or segmentation is pre-

ented as a binary task: normal versus abnormal, object versus

ackground. However, this is often a gross simplification as both

lasses can be highly heterogeneous. For example, the normal cat-

gory often consists of completely normal tissue but also several

ategories of benign findings, which can be rare, and may occa-

ionally include a wide variety of imaging artifacts. This often leads

o systems that are extremely good at excluding the most com-

on normal subclasses, but fail miserably on several rare ones. A

traightforward solution would be to turn the deep learning sys-

em in a multi-class system by providing it with detailed anno-

ations of all possible subclasses. Obviously this again compounds

he issue of limited availability of expert time for annotating

nd is therefore often simply not feasible. Some researchers have

pecifically looked into tackling this imbalance by incorporating

ntelligence in the training process itself, by applying selective

ampling ( van Grinsven et al., 2016 ) or hard negative mining ( Wang

t al., 2016b ). However, such strategies typically fail when there is
ubstantial noise in the reference standard. Additional methods for

ealing with within-class heterogeneity would be highly welcome. 

Another data-related challenge is class imbalance. In medical

maging, images for the abnormal class might be challenging to

nd, depending on the task at hand. As an example, the imple-

entation of breast cancer screening programs has resulted in vast

atabases of mammograms that have been established at many lo-

ations world-wide. However, the majority of these images are nor-

al and do not contain any suspicious lesions. When a mammo-

ram does contain a suspicious lesion this is often not cancerous,

nd even most cancerous lesions will not lead to the death of a pa-

ient. Designing deep learning systems that are adept at handling

his class imbalance is another important area of research. A typi-

al strategy we encountered in current literature is the application

f specific data augmentation algorithms to just the underrepre-

ented class, for example scaling and rotation transforms to gener-

te new lesions. Pereira et al. (2016) performed a thorough evalua-

ion of data augmentation strategies for brain lesion segmentation

o combat class imbalance. 

In medical image analysis useful information is not just con-

ained within the images themselves. Physicians often leverage a

ealth of data on patient history, age, demographics and others

o arrive at better decisions. Some authors have already inves-

igated combining this information into deep learning networks

n a straightforward manner ( Kooi et al., 2017 ). However, as these

uthors note, the improvements that were obtained were not as

arge as expected. One of the challenges is to balance the num-

er of imaging features in the deep learning network (typically

housands) with the number of clinical features (typically only a

andful) to prevent the clinical features from being drowned out.

hysicians often also need to use anatomical information to come

o an accurate diagnosis. However, many deep learning systems in

edical imaging are still based on patch classification, where the

natomical location of the patch is often unknown to network. One

olution would be to feed the entire image to the deep network

nd use a different type of evaluation to drive learning, as was

one by, for example, Milletari et al. (2016b) , who designed a loss

unction based on the Dice coefficient. This also takes advantage of

he fact that medical images are often acquired using a relatively

tatic protocol, where the anatomy is always roughly in the same

osition and at the same scale. However, as mentioned above, if

he receptive field of the network is small feeding in the entire

mage offers no benefit. Furthermore, feeding full images to the

etwork is not always feasible due to, for example, memory con-

traints. In some cases this might be solved in the near future due

o advances in GPU technology, but in others, for example digital

athology with its gigapixel-sized images, other strategies have to

e invented. 

.4. Outlook 

Although most of the challenges mentioned above have not

een adequately tackled yet, several high-profile successes of deep

earning in medical imaging have been reported, such as the work

y Esteva et al. (2017) and Gulshan et al. (2016) in the fields of der-

atology and ophthalmology. Both papers show that it is possible

o outperform medical experts in certain tasks using deep learn-

ng for image classification. However, we feel it is important to

ut these papers into context relative to medical image analysis

n general, as most tasks can by no means be considered ’solved’.

ne aspect to consider is that both Esteva et al. (2017) and Gulshan

t al. (2016) focus on small 2D color image classification, which is

elatively similar to the tasks that have been tackled in computer

ision (e.g. ImageNet). This allows them to take advantage of well-

xplored network architectures like ResNet and VGG-Net which

ave shown to have excellent results in these tasks. However, there
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is no guarantee that these architectures are optimal in for exam-

ple regressions/detection tasks. It also allowed the authors to use

networks that were pre-trained on a well-labeled dataset of mil-

lions of natural images, which helps combat the lack of similarly

large, labeled medical datasets. In contrast, in most medical imag-

ing tasks 3D gray-scale or multi-channel images are used for which

pre-trained networks or architectures dont exist. In addition this

data typically has very specific challenges, like anisotropic voxel

sizes, small registration errors between varying channels (e.g. in

multi-parametric MRI) or varying intensity ranges. Although many

tasks in medical image analysis can be postulated as a classifi-

cation problem, this might not always be the optimal strategy

as it typically requires some form of post-processing with non-

deep learning methods (e.g. counting, segmentation or regression

tasks). An interesting example is the paper by Sirinukunwattana

et al. (2016) , which details a method directly predicting the center

locations of nuclei and shows that this outperforms classification-

based center localization. Nonetheless, the papers by Esteva et al.

(2017) and Gulshan et al. (2016) do show what ideally is possible

with deep learning methods that are well-engineered for specific

medical image analysis tasks. 

Looking at current trends in the machine learning community

with respect to deep learning, we identify a key area which can be

highly relevant for medical imaging and is receiving (renewed) in-

terest: unsupervised learning. The renaissance of neural networks

started around 2006 with the popularization of greedy layer-wise

pre-training of neural networks in an unsupervised manner. This

was quickly superseded by fully supervised methods which be-

came the standard after the success of AlexNet during the Ima-

geNet competition of 2012, and most papers in this survey follow

a supervised approach. However, interest in unsupervised training

strategies has remained and recently has regained traction. 

Unsupervised methods are attractive as they allow (initial) net-

work training with the wealth of unlabeled data available in the

world. Another reason to assume that unsupervised methods will

still have a significant role to play is the analogue to human learn-

ing, which seems to be much more data efficient and also hap-

pens to some extent in an unsupervised manner; we can learn

to recognize objects and structures without knowing the specific

label. We only need very limited supervision to categorize these

recognized objects into classes. Two novel unsupervised strategies

which we expect to have an impact in medical imaging are vari-

ational auto-encoders (VAEs), introduced by Kingma and Welling

(2013) and generative adversarial networks (GANs), introduced by

Goodfellow et al. (2014) . The former merges variational Bayesian

graphical models with neural networks as encoders/decoders. The

latter uses two competing convolutional neural networks where

one is generating artificial data samples and the other is discrim-

inating artificial from real samples. Both have stochastic compo-

nents and are generative networks. Most importantly, they can be

trained end-to-end and learn representative features in a com-

pletely unsupervised manner. As we discussed in previous para-

graphs, obtaining large amounts of unlabeled medical data is gen-

erally much easier than labeled data and unsupervised methods

like VAEs and GANs could optimally leverage this wealth of infor-

mation. 

Finally, deep learning methods have often been described as

‘black boxes’. Especially in medicine, where accountability is im-

portant and can have serious legal consequences, it is often not

enough to have a good prediction system. This system also has

to be able to articulate itself in a certain way. Several strate-

gies have been developed to understand what intermediate lay-

ers of convolutional networks are responding to, for example

deconvolution networks ( Zeiler and Fergus, 2014 ), guided back-

propagation ( Springenberg et al., 2014 ) or deep Taylor composition

( Montavon et al., 2017 ). Other researchers have tied prediction to
extual representations of the image (i.e. captioning) ( Karpathy and

ei-Fei, 2015 ), which is another useful avenue to understand what

 network is perceiving. Last, some groups have tried to combine

ayesian statistics with deep networks to obtain true network un-

ertainty estimates Kendall and Gal (2017) . This would allow physi-

ians to assess when the network is giving unreliable predictions.

everaging these techniques in the application of deep learning

ethods to medical image analysis could accelerate acceptance of

eep learning applications among clinicians, and among patients.

e also foresee deep learning approaches will be used for related

asks in medical imaging, mostly unexplored, such as image recon-

truction ( Wang, 2016 ). Deep learning will thus not only have a

reat impact in medical image analysis, but in medical imaging as

 whole. 
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ppendix A. Literature selection 

PubMed was searched for papers containing “convolutional”

R “deep learning” in any field. We specifically did not include

he term neural network here as this would result in an enor-

ous amount of ‘false positive’ papers covering brain research.

his search initially gave over 700 hits. ArXiv was searched for pa-

ers mentioning one of a set of terms related to medical imaging.

he exact search string was: ‘abs:((medical OR mri OR “magnetic

esonance” OR CT OR “computed tomography” OR ultrasound OR

athology OR xray OR x-ray OR radiograph OR mammography OR

undus OR OCT) AND (“deep learning” OR convolutional OR cnn OR

neural network”‘))’. Conference proceedings for MICCAI (including

orkshops), SPIE, ISBI and EMBC were searched based on titles of

apers. Again we looked for mentions of ‘deep learning’ or ‘con-

olutional’ or ‘neural network’. We went over all these papers and

xcluded the ones that did not discuss medical imaging (e.g. appli-

ations to genetics, chemistry), only used handcrafted features in

ombination with neural networks, or only referenced deep learn-

ng as future work. When in doubt whether a paper should be in-

luded we read the abstract and when the exact methodology was

till unclear we read the paper itself. We checked references in all

elected papers iteratively and consulted colleagues to identify any

apers which were missed by our initial search. When largely over-

apping work had been reported in multiple publications, only the

ublication deemed most important was included. A typical exam-

le here was arXiv preprints that were subsequently published or

onference contributions which were expanded and published in

ournals. 

eferences 

badi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,

B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. Ten-

sorflow: large-scale machine learning on heterogeneous distributed systems .
arxiv: 1603.04467 . 

bràmoff, M.D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J.C., Niemeijer, M.,
2016. Improved automated detection of diabetic retinopathy on a publicly avail-

able dataset through integration of deep learning. Invest. Ophthalmol. Vis. Sci.

57 (13), 5200–5206. doi: 10.1167/iovs.16-19964 . 
kram, S.U., Kannala, J., Eklund, L., Heikkilä, J., 2016. Cell segmentation proposal

network for microscopy image analysis. In: Proceedings of the Deep Learning in
Medical Image Analysis (DLMIA). In: Lecture Notes in Computer Science, 10 0 08,

pp. 21–29. doi: 10.1007/978- 3- 319- 46976- 8 _ 3 . 

http://dx.doi.org/10.13039/501100004622
http://arxiv.org/abs/1603.04467
http://dx.doi.org/10.1167/iovs.16-19964
http://dx.doi.org/10.1007/978-3-319-46976-8_3


G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 81 

A  

 

 

 

A  

 

 

 

 

A  

 

A  

 

 

A  

 

 

A  

 

 

A  

 

 

A  

 

A  

 

A  

 

 

A  

 

 

 

 

 

 

 

 

 

 

A  

 

A  

 

 

 

B  

 

 

 

B  

 

B  

 

B  

 

 

B  

 

B  

 

 

B  

B  

 

 

 

B  

 

 

 

B  

 

B  

 

B  

 

B  

B  

 

 

B  

 

 

B  

 

 

B  

B  

 

 

B  

 

 

B  

 

 

B  

 

 

B  

 

 

B  

 

C  

 

 

 

C  

 

C  

 

 

C  

 

 

C  

 

C  

 

 

C  

 

kselrod-Ballin, A., Karlinsky, L., Alpert, S., Hasoul, S., Ben-Ari, R., Barkan, E., 2016.
A region based convolutional network for tumor detection and classification in

breast mammography. In: Proceedings of the Deep Learning in Medical Image
Analysis (DLMIA). In: Lecture Notes in Computer Science, 10 0 08, pp. 197–205.

doi: 10.1007/978- 3- 319- 46976- 8 _ 21 . 
lansary, A., Kamnitsas, K., Davidson, A., Khlebnikov, R., Rajchl, M., Malamate-

niou, C., Rutherford, M., Hajnal, J.V., Glocker, B., Rueckert, D., Kainz, B., 2016.
Fast fully automatic segmentation of the human placenta from motion cor-

rupted MRI. In: Proceedings of the Medical Image Computing and Computer-

Assisted Intervention. In: Lecture Notes in Computer Science, 9901, pp. 589–597.
doi: 10.1007/978- 3- 319- 46723- 8 _ 68 . 

lbarqouni, S. , Baur, C. , Achilles, F. , Belagiannis, V. , Demirci, S. , Navab, N. , 2016. Ag-
gnet: deep learning from crowds for mitosis detection in breast cancer histology

images. IEEE Trans. Med. Imaging 35, 1313–1321 . 
navi, Y., Kogan, I., Gelbart, E., Geva, O., Greenspan, H., 2015. A comparative study

for chest radiograph image retrieval using binary texture and deep learning

classification.. In: Proceedings of the IEEE Engineering in Medicine and Biology
Society, pp. 2940–2943. doi: 10.1109/EMBC.2015.7319008 . 

navi, Y. , Kogan, I. , Gelbart, E. , Geva, O. , Greenspan, H. , 2016. Visualizing and en-
hancing a deep learning framework using patients age and gender for chest

X-ray image retrieval. In: Proceedings of the SPIE on Medical Imaging, 9785,
p. 978510 . 

ndermatt, S. , Pezold, S. , Cattin, P. , 2016. Multi-dimensional gated recurrent units

for the segmentation of biomedical 3D-data. In: Proceedings of the Deep Learn-
ing in Medical Image Analysis (DLMIA). In: Lecture Notes in Computer Science,

10 0 08, pp. 142–151 . 
nthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S., 2016.

Lung pattern classification for interstitial lung diseases using a deep convolu-
tional neural network. IEEE Trans. Med. Imaging 35 (5), 1207–1216. doi: 10.1109/

TMI.2016.2535865 . 

ntony, J., McGuinness, K., Connor, N.E.O., Moran, K., 2016. Quantifying radio-
graphic knee osteoarthritis severity using deep convolutional neural networks.

arxiv: 1609.02469 . 
pou, G., Schaadt, N.S., Naegel, B., Forestier, G., Schönmeyer, R., Feuerhake, F., Wem-

mert, C., Grote, A., 2016. Detection of lobular structures in normal breast tissue..
Comput. Biol. Med. 74, 91–102. doi: 10.1016/j.compbiomed.2016.05.004 . 

revalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Guevara Lopez, M.A., 2016.

Representation learning for mammography mass lesion classification with con-
volutional neural networks.. Comput. Methods Program. Biomed. 127, 248–257.

doi: 10.1016/j.cmpb.2015.12.014 . 
rmato, S.G. , McLennan, G. , Bidaut, L. , McNitt-Gray, M.F. , Meyer, C.R. , Reeves, A.P. ,

Zhao, B. , Aberle, D.R. , Henschke, C.I. , Hoffman, E.A. , Kazerooni, E.A. , MacMa-
hon, H. , Beek, E.J.R.V. , Yankelevitz, D. , Biancardi, A.M. , Bland, P.H. , Brown, M.S. ,

Engelmann, R.M. , Laderach, G.E. , Max, D. , Pais, R.C. , Qing, D.P.Y. , Roberts, R.Y. ,

Smith, A.R. , Starkey, A. , Batrah, P. , Caligiuri, P. , Farooqi, A. , Gladish, G.W. ,
Jude, C.M. , Munden, R.F. , Petkovska, I. , Quint, L.E. , Schwartz, L.H. , Sundaram, B. ,

Dodd, L.E. , Fenimore, C. , Gur, D. , Petrick, N. , Freymann, J. , Kirby, J. , Hughes, B. ,
Casteele, A.V. , Gupte, S. , Sallamm, M. , Heath, M.D. , Kuhn, M.H. , Dharaiya, E. ,

Burns, R. , Fryd, D.S. , Salganicoff, M. , Anand, V. , Shreter, U. , Vastagh, S. , Croft, B.Y. ,
2011. The lung image database consortium (LIDC) and image database resource

initiative (IDRI): a completed reference database of lung nodules on CT scans.
Med. Phys. 38, 915–931 . 

vendi, M. , Kheradvar, A. , Jafarkhani, H. , 2016. A combined deep-learning and de-

formable-model approach to fully automatic segmentation of the left ventricle
in cardiac MRI. Med. Image Anal. 30, 108–119 . 

zizi, S., Imani, F., Ghavidel, S., Tahmasebi, A., Kwak, J.T., Xu, S., Turkbey, B.,
Choyke, P., Pinto, P., Wood, B., Mousavi, P., Abolmaesumi, P., 2016. Detection

of prostate cancer using temporal sequences of ultrasound data: a large clini-
cal feasibility study. Int. J. Comput. Assist. Radiol. Surg. 11 (6), 947–956. doi: 10.

1007/s11548- 016- 1395- 2 . 

ahrami, K., Shi, F., Rekik, I., Shen, D., 2016. Convolutional neural network for re-
construction of 7T-like images from 3T MRI using appearance and anatomi-

cal features. In: Proceedings of the Deep Learning in Medical Image Analysis
(DLMIA). In: Lecture Notes in Computer Science, 10 0 08, pp. 39–47. doi: 10.1007/

978- 3- 319- 46976- 8 _ 5 . 
ao, S. , Chung, A.C. , 2016. Multi-scale structured CNN with label consistency for

brain MR image segmentation. Comput. Methods Biomech. Biomed. Eng. Imag.

Visual. 1–5 . 
ar, Y. , Diamant, I. , Wolf, L. , Greenspan, H. , 2015. Deep learning with non-medical

training used for chest pathology identification. In: Proceedings of the SPIE on
Medical Imaging, 9414, p. 94140V . 

ar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H., 2016. Chest
pathology identification using deep feature selection with non-medical train-

ing. Comput. Methods Biomech. Biomed. Eng. Imag. Visual. 1–5. doi: 10.1080/

21681163.2016.1138324 . 
arbu, A. , Lu, L. , Roth, H. , Seff, A. , Summers, R.M. , 2016. An analysis of robust

cost functions for CNN in computer-aided diagnosis. Comput. Methods Biomech.
Biomed. Eng. Imag. Visual. 2016, 1–6 . 

astien, F. , Lamblin, P. , Pascanu, R. , Bergstra, J. , Goodfellow, I. , Bergeron, A. ,
Bouchard, N. , Warde-Farley, D. , Bengio, Y. , 2012. Theano: new features and

speed improvements. In: Proceedings of the Deep Learning and Unsupervised

Feature Learning NIPS 2012 Workshop . 
auer, S., Carion, N., Schäffler, P., Fuchs, T., Wild, P., Buhmann, J. M., 2016. Multi-

organ cancer classification and survival analysis. arxiv: 1606.00897 . 
aumgartner, C.F., Kamnitsas, K., Matthew, J., Smith, S., Kainz, B., Rueckert, D., 2016.
Real-time standard scan plane detection and localisation in fetal ultrasound us-

ing fully convolutional neural networks. In: Proceedings of the Medical Image
Computing and Computer-Assisted Intervention. In: Lecture Notes in Computer

Science, 9901, pp. 203–211. doi: 10.1007/978- 3- 319- 46723- 8 _ 24 . 
en-Cohen, A., Diamant, I., Klang, E., Amitai, M., Greenspan, H., 2016. Deep learn-

ing and data labeling for medical applications. In: Proceedings of the Inter-
national Workshop on Large-Scale Annotation of Biomedical Data and Expert

Label Synthesis. In: Lecture Notes in Computer Science, 10 0 08, pp. 77–85.

doi: 10.1007/978- 3- 319- 46976- 8 _ 9 . 
engio, Y. , 2012. Practical recommendations for gradient-based training of deep ar-

chitectures. In: Neural Networks: Tricks of the Trade. Springer„ Berlin Heidel-
berg, pp. 437–478 . 

engio, Y., Courville, A., Vincent, P., 2013. Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35 (8), 1798–1828. doi: 10.

1109/TPAMI.2013.50 . 

engio, Y. , Lamblin, P. , Popovici, D. , Larochelle, H. , 2007. Greedy layer-wise training
of deep networks. In: Proceedings of the Advances in Neural Information Pro-

cessing Systems, pp. 153–160 . 
engio, Y. , Simard, P. , Frasconi, P. , 1994. Learning long-term dependencies with gra-

dient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 . 
enou, A. , Veksler, R. , Friedman, A. , Raviv, T.R. , 2016. De-noising of contrast-en-

hanced MRI sequences by an ensemble of expert deep neural networks. In: Pro-

ceedings of the Deep Learning in Medical Image Analysis (DLMIA). In: Lecture
Notes in Computer Science, 10 0 08, pp. 95–110 . 

enTaieb, A., Hamarneh, G., 2016. Topology aware fully convolutional networks for
histology gland segmentation. In: Proceedings of the Medical Image Comput-

ing and Computer-Assisted Intervention. In: Lecture Notes in Computer Science,
9901, pp. 460–468. doi: 10.1007/978- 3- 319- 46723- 8 _ 53 . 

enTaieb, A., Kawahara, J., Hamarneh, G., 2016. Multi-loss convolutional net-

works for gland analysis in microscopy. In: Proceedingds of the IEEE Interna-
tional Symposium on Biomedical Imaging, pp. 642–645. doi: 10.1109/ISBI.2016.

74 9334 9 . 
ergstra, J. , Bengio, Y. , 2012. Random search for hyper-parameter optimization. J.

Mach. Learn. Res. 13 (1), 281–305 . 
irenbaum, A., Greenspan, H., 2016. Longitudinal multiple sclerosis lesion segmen-

tation using multi-view convolutional neural networks. In: Proceedings of the

Deep Learning in Medical Image Analysis (DLMIA). In: Lecture Notes in Com-
puter Science, 10 0 08, pp. 58–67. doi: 10.1007/978- 3- 319- 46976- 8 _ 7 . 

rosch, T., Tam, R., 2013. Manifold learning of brain MRIs by deep learning. In:
Proceedings of the Medical Image Computing and Computer-Assisted Interven-

tion. In: Lecture Notes in Computer Science, 8150, pp. 633–640. doi: 10.1007/
978- 3- 642- 40763- 5 _ 78 . 

rosch, T., Tang, L.Y., Yoo, Y., Li, D.K., Traboulsee, A., Tam, R., 2016. Deep 3D con-

volutional encoder networks with shortcuts for multiscale feature integration
applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35

(5), 1229–1239. doi: 10.1109/TMI.2016.2528821 . 
rosch, T., Yoo, Y., Li, D.K.B., Traboulsee, A., Tam, R., 2014. Modeling the vari-

ability in brain morphology and lesion distribution in multiple sclerosis by
deep learning. In: Proceedings of the Medical Image Computing and Computer-

Assisted Intervention. In: Lecture Notes in Computer Science, 8674, pp. 462–
469. doi: 10.1007/978- 3- 319- 10470- 6 _ 58 . 

urlina, P., Freund, D.E., Joshi, N., Wolfson, Y., Bressler, N.M., 2016. Detection of age-

related macular degeneration via deep learning. In: Proceedings of the IEEE In-
ternational Symposium on Biomedical Imaging, pp. 184–188. doi: 10.1109/ISBI.

2016.7493240 . 
ychkov, D. , Turkki, R. , Haglund, C. , Linder, N. , Lundin, J. , 2016. Deep learning for

tissue microarray image-based outcome prediction in patients with colorectal
cancer. In: Proceedings of the SPIE on Medical Imaging, 9791, p. 979115 . 

ai, J., Lu, L., Zhang, Z., Xing, F., Yang, L., Yin, Q., 2016a. Pancreas segmentation in

MRI using graph-based decision fusion on convolutional neural networks. In:
Proceedings of the Medical Image Computing and Computer-Assisted Interven-

tion. In: Lecture Notes in Computer Science, 9901, pp. 442–450. doi: 10.1007/
978- 3- 319- 46723- 8 _ 51 . 

ai, Y., Landis, M., Laidley, D.T., Kornecki, A., Lum, A., Li, S., 2016b. Multi-modal ver-
tebrae recognition using transformed deep convolution network.. Comput. Med.

Imaging Graph 51, 11–19. doi: 10.1016/j.compmedimag.2016.02.002 . 

arneiro, G., Nascimento, J.C., 2013. Combining multiple dynamic models and deep
learning architectures for tracking the left ventricle endocardium in ultrasound

data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2592–2607. doi: 10.1109/TPAMI.
2013.96 . 

arneiro, G., Nascimento, J.C., Freitas, A., 2012. The segmentation of the left ven-
tricle of the heart from ultrasound data using deep learning architectures and

derivative-based search methods. IEEE Trans. Image Process 968–982. doi: 10.

1109/TIP.2011.2169273 . 
arneiro, G., Oakden-Rayner, L., Bradley, A.P., Nascimento, J., Palmer, L., 2016. Auto-

mated 5-year mortality prediction using deep learning and radiomics features
from chest computed tomography. arxiv: 1607.00267 . 

ha, K.H., Hadjiiski, L.M., Samala, R.K., Chan, H.-P., Cohan, R.H., Caoili, E.M., Para-
magul, C., Alva, A., Weizer, A.Z., 2016. Bladder cancer segmentation in CT for

treatment response assessment: application of deep-learning convolution neural

network-a pilot study. Tomography 2, 421–429. doi: 10.18383/j.tom.2016.00184 . 
hang, H., Han, J., Zhong, C., Snijders, A., Mao, J.-H., 2017. Unsupervised transfer

learning via multi-scale convolutional sparse coding for biomedical applications.
IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2656884 . 

http://dx.doi.org/10.1007/978-3-319-46976-8_21
http://dx.doi.org/10.1007/978-3-319-46723-8_68
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0005
http://dx.doi.org/10.1109/EMBC.2015.7319008
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0008
http://dx.doi.org/10.1109/TMI.2016.2535865
http://arxiv.org/abs/1609.02469
http://dx.doi.org/10.1016/j.compbiomed.2016.05.004
http://dx.doi.org/10.1016/j.cmpb.2015.12.014
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0013
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0013
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0013
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0013
http://dx.doi.org/10.1007/s11548-016-1395-2
http://dx.doi.org/10.1007/978-3-319-46976-8_5
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0016
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0016
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0016
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0017
http://dx.doi.org/10.1080/21681163.2016.1138324
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0020
http://arxiv.org/abs/1606.00897
http://dx.doi.org/10.1007/978-3-319-46723-8_24
http://dx.doi.org/10.1007/978-3-319-46976-8_9
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0023
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0023
http://dx.doi.org/10.1109/TPAMI.2013.50
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0027
http://dx.doi.org/10.1007/978-3-319-46723-8_53
http://dx.doi.org/10.1109/ISBI.2016.7493349
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0030
http://dx.doi.org/10.1007/978-3-319-46976-8_7
http://dx.doi.org/10.1007/978-3-642-40763-5_78
http://dx.doi.org/10.1109/TMI.2016.2528821
http://dx.doi.org/10.1007/978-3-319-10470-6_58
http://dx.doi.org/10.1109/ISBI.2016.7493240
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0038
http://dx.doi.org/10.1007/978-3-319-46723-8_51
http://dx.doi.org/10.1016/j.compmedimag.2016.02.002
http://dx.doi.org/10.1109/TPAMI.2013.96
http://dx.doi.org/10.1109/TIP.2011.2169273
http://arxiv.org/abs/1607.00267
http://dx.doi.org/10.18383/j.tom.2016.00184
http://dx.doi.org/10.1109/TPAMI.2017.2656884


82 G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  

 

 

 

C  

 

 

C  

 

 

C  

 

C  

 

 

 

C  

 

 

 

D  

 

d  

 

d  

 

 

d  

 

 

D  

 

D  

 

 

 

D  

 

D  

D  

 

 

D  

 

D  

 

 

D  

 

E  

 

 

E  

 

 

E  

 

F  

 

 

F  
Charbonnier, J., van Rikxoort, E., Setio, A., Schaefer-Prokop, C., van Ginneken, B.,
Ciompi, F., 2017. Improving airway segmentation in computed tomography us-

ing leak detection with convolutional networks. Med. Image Anal. 36, 52–60.
doi: 10.1016/j.media.2016.11.001 . 

Chen, H., Dou, Q., Ni, D., Cheng, J.-Z., Qin, J., Li, S., Heng, P.-A., 2015a. Automatic
fetal ultrasound standard plane detection using knowledge transferred recur-

rent neural networks. In: Proceedings of the Medical Image Computing and
Computer-Assisted Intervention. In: Lecture Notes in Computer Science, 9349,

pp. 507–514. doi: 10.1007/978- 3- 319- 24553- 9 _ 62 . 

Chen, H., Dou, Q., Yu, L., Heng, P.-A., 2016a. Voxresnet: deep voxelwise residual net-
works for volumetric brain segmentation. arxiv: 1608.05895 . 

Chen, H., Ni, D., Qin, J., Li, S., Yang, X., Wang, T., Heng, P.A., 2015b. Standard plane lo-
calization in fetal ultrasound via domain transferred deep neural networks. IEEE

J. Biomed. Health Inform. 19 (5), 1627–1636. doi: 10.1109/JBHI.2015.2425041 . 
Chen, H., Qi, X., Yu, L., Heng, P.-A., 2017. DCAN: Deep contour-aware networks for ac-

curate gland segmentation. Med. Image Anal. 36, 135–146. doi: 10.1016/j.media.

2016.11.004 . 
Chen, H., Shen, C., Qin, J., Ni, D., Shi, L., Cheng, J.C.Y., Heng, P.-A., 2015c. Auto-

matic localization and identification of vertebrae in spine CT via a joint learn-
ing model with deep neural networks. In: Proceedings of the Medical Image

Computing and Computer-Assisted Intervention. In: Lecture Notes in Computer
Science, 9349, pp. 515–522. doi: 10.1007/978- 3- 319- 24553- 9 _ 63 . 

Chen, H., Wang, X., Heng, P.A., 2016b. Automated mitosis detection with deep re-

gression networks. In: Proceedings of the IEEE International Symposium on
Biomedical Imaging, pp. 1204–1207. doi: 10.1109/ISBI.2016.74 934 82 . 

Chen, H., Zheng, Y., Park, J.-H., Heng, P.-A., Zhou, S.K., 2016c. Iterative multi-domain
regularized deep learning for anatomical structure detection and segmentation

from ultrasound images. In: Proceedings of the Medical Image Computing and
Computer-Assisted Intervention. In: Lecture Notes in Computer Science, 9901,

pp. 4 87–4 95. doi: 10.1007/978- 3- 319- 46723- 8 _ 56 . 

Chen, J. , Yang, L. , Zhang, Y. , Alber, M. , Chen, D.Z. , 2016d. Combining fully convo-
lutional and recurrent neural networks for 3D biomedical image segmenta-

tion. In: Proceedings of the Advances in Neural Information Processing Systems,
pp. 3036–3044 . 

Chen, S., Qin, J., Ji, X., Lei, B., Wang, T., Ni, D., Cheng, J.-Z., 2017. Automatic scor-
ing of multiple semantic attributes with multi-task feature leverage: a study on

pulmonary nodules in CT images.. IEEE Trans. Med. Imaging 36 (3), 802–804.

doi: 10.1109/TMI.2016.2629462 . 
Chen, X., Xu, Y., Wong, D.W.K., Wong, T.Y., Liu, J., 2015d. Glaucoma detection based

on deep convolutional neural network. In: Proceedings of the IEEE Engineering
in Medicine and Biology Society, pp. 715–718. doi: 10.1109/EMBC.2015.7318462 . 

Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., Huang, C.-S., Shen, D.,
Chen, C.-M., 2016a. Computer-aided diagnosis with deep learning architecture:

applications to breast lesions in US images and pulmonary nodules in CT scans..

Nat. Sci. Rep. 6, 24454. doi: 10.1038/srep24454 . 
Cheng, R. , Roth, H.R. , Lu, L. , Wang, S. , Turkbey, B. , Gandler, W. , McCreedy, E.S. , Agar-

wal, H.K. , Choyke, P. , Summers, R.M. , McAuliffe, M.J. , 2016b. Active appearance
model and deep learning for more accurate prostate segmentation on MRI. In:

Proceedings of the SPIE on Medical Imaging, 9784, p. 97842I . 
Cheng, X., Zhang, L., Zheng, Y., 2015. Deep similarity learning for multimodal

medical images. Comput. Methods Biomech. Biomed. Engin. 1–5. doi: 10.1080/
21681163.2015.1135299 . 

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. arxiv: 1406.1078 . 

Choi, H., Jin, K.H., 2016. Fast and robust segmentation of the striatum using deep
convolutional neural networks. J. Neurosci. Methods 274, 146–153. doi: 10.1016/

j.jneumeth.2016.10.007 . 
Christ, P.F., Elshaer, M.E.A., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M.,

Armbruster, M., Hofmann, F., D’Anastasi, M., et al., 2016. Automatic liver and le-

sion segmentation in CT using cascaded fully convolutional neural networks and
3D conditional random fields. In: Proceedings of the Medical Image Comput-

ing and Computer-Assisted Intervention. In: Lecture Notes in Computer Science,
9901, pp. 415–423. doi: 10.1007/978- 3- 319- 46723- 8 _ 48 . 

Christodoulidis, S., Anthimopoulos, M., Ebner, L., Christe, A., Mougiakakou, S., 2017.
Multi-source transfer learning with convolutional neural networks for lung

pattern analysis. IEEE J. Biomed. Health Inf. 21, 76–84. doi: 10.1109/JBHI.2016.

2636929 . 
Çiçek, Ö. , Abdulkadir, A. , Lienkamp, S.S. , Brox, T. , Ronneberger, O. , 2016. 3D U-Net:

learning dense volumetric segmentation from sparse annotation. In: Proceed-
ings of the Medical Image Computing and Computer-Assisted Intervention. In:

Lecture Notes in Computer Science, 9901. Springer, pp. 424–432 . 1606.06650v1 
Cicero, M., Bilbily, A., Colak, E., Dowdell, T., Gray, B., Perampaladas, K., Bar-

fett, J., 2017. Training and validating a deep convolutional neural network for

computer-aided detection and classification of abnormalities on frontal chest ra-
diographs. Invest Radiol. 52 (5), 281–287. doi: 10.1097/RLI.0 0 0 0 0 0 0 0 0 0 0 0 0341 . 

Ciompi, F., Chung, K., van Riel, S.J., Setio, A .A .A ., Gerke, P.K., Jacobs, C., Scholten, E.T.,
Schaefer-Prokop, C.M., Wille, M.M.W., Marchiano, A., Pastorino, U., Prokop, M.,

van Ginneken, B., 2016. Towards automatic pulmonary nodule management in
lung cancer screening with deep learning. arxiv: 1610.09157 . 

Ciompi, F., de Hoop, B., van Riel, S.J., Chung, K., Scholten, E.T., Oudkerk, M., de

Jong, P.A., Prokop, M., van Ginneken, B., 2015. Automatic classification of pul-
monary peri-fissural nodules in computed tomography using an ensemble of

2D views and a convolutional neural network out-of-the-box. Med. Image Anal.
26, 195–202. doi: 10.1016/j.media.2015.08.001 . 
 

ire ̧s an, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J., 2013. Mitosis detec-
tion in breast cancer histology images with deep neural networks. In: Pro-

ceedings of the Medical Image Computing and Computer-Assisted Interven-
tion. In: Lecture Notes in Computer Science, 8150, pp. 411–418. doi: 10.1007/

978- 3- 642- 40763- 5 _ 51 . 
iresan, D. , Giusti, A. , Gambardella, L.M. , Schmidhuber, J. , 2012. Deep neu-

ral networks segment neuronal membranes in electron microscopy images.
In: Proceedings of the Advances in Neural Information Processing Systems,

pp. 2843–2851 . 

odella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., Smith, J.R., 2015. Deep learn-
ing, sparse coding, and SVM for melanoma recognition in dermoscopy images.

In: Proceedings of the International Workshop on Machine Learning in Medical
Imaging, pp. 118–126. doi: 10.1007/978- 3- 319- 24888- 2 _ 15 . 

ollobert, R. , Kavukcuoglu, K. , Farabet, C. , 2011. Torch7: a matlab-like environment
for machine learning. In: Proceedings of the Advances in Neural Information

Processing Systems . 

ruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S.,
Shih, N., Tomaszewski, J., Madabhushi, A., 2014. Automatic detection of invasive

ductal carcinoma in whole slide images with convolutional neural networks. In:
Proceedings of the SPIE on Medical Imaging, 9041, p. 904103. doi: 10.1117/12.

2043872 . 
ruz-Roa, A .A . , Ovalle, J.E.A . , Madabhushi, A . , Osorio, F.A .G. , 2013. A deep learn-

ing architecture for image representation, visual interpretability and automated

basal-cell carcinoma cancer detection. In: Proceedings of the Medical Image
Computing and Computer-Assisted Intervention. In: Lecture Notes in Computer

Science, 8150, pp. 403–410 . 978-3-642-40763-5. 
almis, M., Litjens, G., Holland, K., Setio, A., Mann, R., Karssemeijer, N., Gubern-

Mérida, A., 2017. Using deep learning to segment breast and fibroglandular tis-
sue in MRI volumes.. Med. Phys. 44, 533–546. doi: 10.1002/mp.12079 . 

e Brebisson, A. , Montana, G. , 2015. Deep neural networks for anatomical brain

segmentation. In: Proceedings of the Computer Vision and Pattern Recognition,
pp. 20–28 . 

e Vos, B.D., Viergever, M.A ., de Jong, P.A ., Išgum, I., 2016a. Automatic slice identi-
fication in 3D medical images with a ConvNet regressor. In: Proceedings of the

Deep Learning in Medical Image Analysis (DLMIA). In: Lecture Notes in Com-
puter Science, 10 0 08, pp. 161–169. doi: 10.1007/978- 3- 319- 46976- 8 _ 17 . 

e Vos, B.D., Wolterink, J.M., de Jong, P.A., Viergever, M.A., Išgum, I., 2016b. 2D image

classification for 3D anatomy localization: employing deep convolutional neu-
ral networks. In: Proceedings of the SPIE on Medical Imaging, 9784, p. 97841Y.

doi: 10.1117/12.2216971 . 
emyanov, S., Chakravorty, R., Abedini, M., Halpern, A., Garnavi, R., 2016. Classifica-

tion of dermoscopy patterns using deep convolutional neural networks. In: Pro-
ceedings of the IEEE International Symposium on Biomedical Imaging, pp. 364–

368. doi: 10.1109/ISBI.2016.7493284 . 

hungel, N., Carneiro, G., Bradley, A.P., 2016. The automated learning of deep
features for breast mass classification from mammograms. In: Proceedings of

the Medical Image Computing and Computer-Assisted Intervention. In: Lec-
ture Notes in Computer Science, 9901. Springer, pp. 106–114. doi: 10.1007/

978- 3- 319- 46723- 8 _ 13 . 
ou, Q. , Chen, H. , Jin, Y. , Yu, L. , Qin, J. , Heng, P.-A. , 2016a. 3D deeply supervised

network for automatic liver segmentation from CT volumes. IEEE Transactions
on Biomedical Engineering 64 (7), 1558–1567 . 

ou, Q., Chen, H., Yu, L., Qin, J., Heng, P. A., 2017. Multi-level contextual 3D CNNs

for false positive reduction in pulmonary nodule detection, (in press). 
ou, Q., Chen, H., Yu, L., Shi, L., Wang, D., Mok, V.C., Heng, P.A., 2015. Automatic

cerebral microbleeds detection from MR images via independent subspace anal-
ysis based hierarchical features. In: Proceedings of the IEEE Engineering in

Medicine and Biology Society, pp. 7933–7936. doi: 10.1109/EMBC.2015.7320232 . 
ou, Q. , Chen, H. , Yu, L. , Zhao, L. , Qin, J. , Wang, D. , Mok, V.C. , Shi, L. , Heng, P.-A. ,

2016b. Automatic detection of cerebral microbleeds from MR images via 3D

convolutional neural networks. IEEE Trans. Med. Imaging 35, 1182–1195 . 
rozdzal, M. , Vorontsov, E. , Chartrand, G. , Kadoury, S. , Pal, C. , 2016. The importance

of skip connections in biomedical image segmentation. In: Proceedings of the
Deep Learning in Medical Image Analysis (DLMIA). In: Lecture Notes in Com-

puter Science, 10 0 08, pp. 179–187 . 
ubrovina, A. , Kisilev, P. , Ginsburg, B. , Hashoul, S. , Kimmel, R. , 2016. Computa-

tional mammography using deep neural networks. Comput. Methods Biomech.

Biomed. Eng. Imag. Vis. 1–5 . 
hteshami Bejnordi, B., Litjens, G., Timofeeva, N., Otte-Holler, I., Homeyer, A., Karsse-

meijer, N., van der Laak, J., 2016. Stain specific standardization of whole-slide
histopathological images. IEEE Trans. Med. Imaging 35 (2), 404–415. doi: 10.

1109/TMI.2015.2476509 . 
mad, O., Yassine, I.A., Fahmy, A.S., 2015. Automatic localization of the left ventricle

in cardiac MRI images using deep learning. In: Proceedings of the IEEE Engi-

neering in Medicine and Biology Society, pp. 6 83–6 86. doi: 10.1109/EMBC.2015.
7318454 . 

steva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S., 2017.
Dermatologist-level classification of skin cancer with deep neural networks. Na-

ture 542, 115–118. doi: 10.1038/nature21056 . 
arabet, C. , Couprie, C. , Najman, L. , LeCun, Y. , 2013. Learning hierarchical features for

scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35 (8), 1915–1929 . 

Farag, A., Lu, L., Roth, H.R., Liu, J., Turkbey, E., Summers, R.M., 2015. A bottom-up ap-
proach for pancreas segmentation using cascaded superpixels and (deep) image

patch labeling. arxiv: 1505.06236 . 
errari, A., Lombardi, S., Signoroni, A., 2015. Bacterial colony counting by convolu-

tional neural networks. In: Proceedings of the IEEE Engineering in Medicine and
Biology Society., pp. 7458–7461. doi: 10.1109/EMBC.2015.7320116 . 

http://dx.doi.org/10.1016/j.media.2016.11.001
http://dx.doi.org/10.1007/978-3-319-24553-9_62
http://arxiv.org/abs/1608.05895
http://dx.doi.org/10.1109/JBHI.2015.2425041
http://dx.doi.org/10.1016/j.media.2016.11.004
http://dx.doi.org/10.1007/978-3-319-24553-9_63
http://dx.doi.org/10.1109/ISBI.2016.7493482
http://dx.doi.org/10.1007/978-3-319-46723-8_56
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0052
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0052
http://dx.doi.org/10.1109/TMI.2016.2629462
http://dx.doi.org/10.1109/EMBC.2015.7318462
http://dx.doi.org/10.1038/srep24454
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0056
http://dx.doi.org/10.1080/21681163.2015.1135299
http://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1016/j.jneumeth.2016.10.007
http://dx.doi.org/10.1007/978-3-319-46723-8_48
http://dx.doi.org/10.1109/JBHI.2016.2636929
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0061
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0061
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0061
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0061
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0061
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0061
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0061
http://dx.doi.org/10.1097/RLI.0000000000000341
http://arxiv.org/abs/1610.09157
http://dx.doi.org/10.1016/j.media.2015.08.001
http://dx.doi.org/10.1007/978-3-642-40763-5_51
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0065
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0065
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0065
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0065
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0065
http://dx.doi.org/10.1007/978-3-319-24888-2_15
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0067
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0067
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0067
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0067
http://dx.doi.org/10.1117/12.2043872
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0069
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0069
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0069
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0069
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0069
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0069
http://dx.doi.org/10.1002/mp.12079
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0032
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0032
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0032
http://dx.doi.org/10.1007/978-3-319-46976-8_17
http://dx.doi.org/10.1117/12.2216971
http://dx.doi.org/10.1109/ISBI.2016.7493284
http://dx.doi.org/10.1007/978-3-319-46723-8_13
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0070a
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0070a
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0070a
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0070a
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0070a
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0070a
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0070a
http://dx.doi.org/10.1109/EMBC.2015.7320232
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0075
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0075
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0075
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0075
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0075
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0075
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0076
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0076
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0076
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0076
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0076
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0076
http://dx.doi.org/10.1109/TMI.2015.2476509
http://dx.doi.org/10.1109/EMBC.2015.7318454
http://dx.doi.org/10.1038/nature21056
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0080
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0080
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0080
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0080
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0080
http://arxiv.org/abs/1505.06236
http://dx.doi.org/10.1109/EMBC.2015.7320116


G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 83 

F  

 

 

F  

 

F  

 

 

F  

 

 

 

F  

 

 

 

F  

 

 

F  

 

G  

 

 

 

G  

 

 

 

G  

 

 

G  

 

G  

 

G  

G  

 

 

 

G  

 

 

G  

 

 

 

G  

 

 

 

G  

 

 

G  

 

 

 

G  

 

 

G  

G  

 

G  

 

 

 

G  

 

 

 

G  

 

 

G  

 

G  

 

 

 

H  

 

 

H  

H  

 

H  

 

 

H  

H  

H  

H  

H  

H  

 

 

H  

 

H  

H  

 

H  

 

H  

 

 

H  

 

H  

H  

 

J  

 

 

J  

 

J  

 

onseca, P. , Mendoza, J. , Wainer, J. , Ferrer, J. , Pinto, J. , Guerrero J.and Castaneda, B. ,
2015. Automatic breast density classification using a convolutional neural net-

work architecture search procedure. In: Proceedings of the SPIE on Medical
Imaging, 9413, p. 941428 . 

orsberg, D., Sjöblom, E., Sunshine, J.L., 2017. Detection and labeling of vertebrae
in MR images using deep learning with clinical annotations as training data. J.

Digit Imaging doi: 10.1007/s10278- 017- 9945- x . in press. 
otin, S.V. , Yin, Y. , Haldankar, H. , Hoffmeister, J.W. , Periaswamy, S. , 2016. Detection

of soft tissue densities from digital breast tomosynthesis: comparison of con-

ventional and deep learning approaches. In: Proceedings of the SPIE on Medical
Imaging, 9785, p. 97850X . 

ritscher, K., Raudaschl, P., Zaffino, P., Spadea, M.F., Sharp, G.C., Schubert, R., 2016.
Deep neural networks for fast segmentation of 3D medical images. In: Pro-

ceedings of the Medical Image Computing and Computer-Assisted Interven-
tion. In: Lecture Notes in Computer Science, 9901, pp. 158–165. doi: 10.1007/

978- 3- 319- 46723- 8 _ 19 . 

u, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J., 2016a. Deepvessel: retinal ves-
sel segmentation via?deep learning and conditional random?field. In: Pro-

ceedings of the Medical Image Computing and Computer-Assisted Interven-
tion. In: Lecture Notes in Computer Science, 9901, pp. 132–139. doi: 10.1007/

978- 3- 319- 46723- 8 _ 16 . 
u, H., Xu, Y., Wong, D.W.K., Liu, J., 2016b. Retinal vessel segmentation via deep

learning network and fully-connected conditional random fields. In: Proceed-

ings of the IEEE International Symposium on Biomedical Imaging, pp. 698–701.
doi: 10.1109/ISBI.2016.7493362 . 

ukushima, K., 1980. Neocognitron: a self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biol. Cybern.

36 (4), 193–202. doi: 10.10 07/BF0 0344251 . 
ao, M., Bagci, U., Lu, L., Wu, A., Buty, M., Shin, H.-C., Roth, H., Papadakis, G.Z.,

Depeursinge, A., Summers, R.M., Xu, Z., Mollura, D.J., 2016a. Holistic classifica-

tion of CT attenuation patterns for interstitial lung diseases via deep convolu-
tional neural networks. Comput. Methods Biomech. Biome., Eng. Imag. Vis. 1–6.

doi: 10.1080/21681163.2015.1124249 . 
ao, M., Xu, Z., Lu, L., Harrison, A.P., Summers, R.M., Mollura, D.J., 2016b. Multi-

label deep regression and unordered pooling for holistic interstitial lung disease
pattern detection. In: Proceedings of the Machine Learning in Medical Imag-

ing. In: Lecture Notes in Computer Science, 10019, pp. 147–155. doi: 10.1007/

978- 3- 319- 47157- 0 _ 18 . 
ao, M., Xu, Z., Lu, L., Nogues, I., Summers, R., Mollura, D., 2016c. Segmentation

label propagation using deep convolutional neural networks and dense condi-
tional random field. In: Proceedings of the IEEE International Symposium on

Biomedical Imaging, pp. 1265–1268. doi: 10.1109/ISBI.2016.7493497 . 
ao, X., Lin, S., Wong, T.Y., 2015. Automatic feature learning to grade nuclear

cataracts based on deep learning. IEEE Trans Biomed. Eng. 62 (11), 2693–2701.

doi: 10.1109/TBME.2015.24 4 4389 . 
ao, Y., Maraci, M.A., Noble, J.A., 2016d. Describing ultrasound video content using

deep convolutional neural networks. In: Proceedings of the IEEE International
Symposium on Biomedical, pp. 787–790. doi: 10.1109/ISBI.2016.7493384 . 

ao, Z. , Wang, L. , Zhou, L. , Zhang, J. , 2016e. Hep-2 cell image classification with deep
convolutional neural networks. J. Biomed. Health Inf 21 (2), 416–428 . 

hafoorian, M., Karssemeijer, N., Heskes, T., Bergkamp, M., Wissink, J., Obels, J.,
Keizer, K., de Leeuw, F.-E., van Ginneken, B., Marchiori, E., Platel, B., 2017. Deep

multi-scale location-aware 3d convolutional neural networks for automated de-

tection of lacunes of presumed vascular origin. NeuroImage. Clin. 14, 391–399.
doi: 10.1016/j.nicl.2017.01.033 . 

hafoorian, M., Karssemeijer, N., Heskes, T., van Uden, I., Sanchez, C., Litjens, G., de
Leeuw, F.-E., van Ginneken, B., Marchiori, E., Platel, B., 2016a. Location sensitive

deep convolutional neural networks for segmentation of white matter hyperin-
tensities. arxiv: 1610.04834 . 

hafoorian, M., Karssemeijer, N., Heskes, T., van Uden, I.W.M., de Leeuw, F.-E., Mar-

chiori, E., van Ginneken, B., Platel, B., 2016b. Non-uniform patch sampling with
deep convolutional neural networks for white matter hyperintensity segmenta-

tion. In: Proceedings of the IEEE International Symposium on Biomedical Imag-
ing, pp. 1414–1417. doi: 10.1109/ISBI.2016.7493532 . 

hesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.,
2016a. An artificial agent for anatomical landmark detection in medical

images. In: Proceedings of the Medical Image Computing and Computer-

Assisted Intervention. In: Lecture Notes in Computer Science, 9901 doi: 10.1007/
978- 3- 319- 46726- 9 _ 27 . 

hesu, F.C., Krubasik, E., Georgescu, B., Singh, V., Zheng, Y., Hornegger, J., Comani-
ciu, D., 2016b. Marginal space deep learning: efficient architecture for volumet-

ric image parsing. IEEE Trans. Med. Imaging 35, 1217–1228. doi: 10.1109/TMI.
2016.2538802 . 

olan, D., Donner, Y., Mansi, C., Jaremko, J., Ramachandran, M., 2016. Fully au-

tomating Graf‘s method for DDH diagnosis using deep convolutional neural
networks. In: Proceedings of the Deep Learning in Medical Image Analysis

(DLMIA). In: Lecture Notes in Computer Science, 10 0 08, pp. 130–141. doi: 10.
1007/978- 3- 319- 46976- 8 _ 14 . 

olkov, V., Dosovitskiy, A., Sperl, J., Menzel, M., Czisch, M., Samann, P., Brox, T., Cre-
mers, D., 2016. Q-space deep learning: twelve-fold shorter and model-free diffu-

sion MRI scans. IEEE Trans. Med. Imaging 35, 1344–1351. doi: 10.1109/tmi.2016.

2551324 . 
oodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., Bengio, Y., 2014. Generative adversarial nets. arxiv: 1406.2661 . 
reenspan, H., Summers, R.M., van Ginneken, B., 2016. Deep learning in medical
imaging: overview and future promise of an exciting new technique. IEEE Trans.

Med. Imaging 35 (5), 1153–1159. doi: 10.1109/TMI.2016.2553401 . 
ulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venu-

gopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P.C.,
Mega, J.L., Webster, D.R., 2016. Development and validation of a deep learning

algorithm for detection of diabetic retinopathy in retinal fundus photographs.. J.
Am. Medd. Assoc. 316, 2402–2410. doi: 10.1001/jama.2016.17216 . 

ülsün, M.A., Funka-Lea, G., Sharma, P., Rapaka, S., Zheng, Y., 2016. Coronary cen-

terline extraction via optimal flow paths and CNN path pruning. In: Proceed-
ings of the Medical Image Computing and Computer-Assisted Intervention. In:

Lecture Notes in Computer Science, 9902. Springer, pp. 317–325. doi: 10.1007/
978- 3- 319- 46726- 9 _ 37 . 

ünhan Ertosun, M. , Rubin, D.L. , 2015. Automated grading of gliomas using deep
learning in digital pathology images: a modular approach with ensemble of

convolutional neural networks. In: Proceedings of the AMIA Annual Symposium,

pp. 1899–1908 . 
uo, Y., Gao, Y., Shen, D., 2016. Deformable MR prostate segmentation via deep

feature learning and sparse patch matching. IEEE Trans. Med. Imaging 35 (4),
1077–1089. doi: 10.1109/TMI.2015.2508280 . 

uo, Y., Wu, G., Commander, L.A., Szary, S., Jewells, V., Lin, W., Shen, D., 2014.
Segmenting hippocampus from infant brains by sparse patch matching with

deep-learned features. In: Proceedings of the Medical Image Computing and

Computer-Assisted Intervention. In: Lecture Notes in Computer Science, 8674,
pp. 308–315. doi: 10.1007/978- 3- 319- 10470- 6 _ 39 . 

an, X.-H., Lei, J., Chen, Y.-W., 2016. HEp-2 cell classification using K -support spatial
pooling in deep CNNs. In: Proceedings of the Deep Learning in Medical Im-

age Analysis (DLMIA). In: Lecture Notes in Computer Science, 10 0 08, pp. 3–11.
doi: 10.1007/978- 3- 319- 46976- 8 _ 1 . 

augeland, J. , 1985. Artificial Intelligence: The Very Idea. The MIT Press, Cambridge,

Mass . 
avaei, M., Davy, A., Warde-Farley, D., Biard, A ., Courville, A ., Bengio, Y., Pal, C.,

Jodoin, P.-M., Larochelle, H., 2016a. Brain tumor segmentation with deep neu-
ral networks. Med. Image Anal. 35, 18–31. doi: 10.1016/j.media.2016.05.004 . 

avaei, M., Guizard, N., Chapados, N., Bengio, Y., 2016b. HeMIS: Hetero-modal image
segmentation. In: Proceedings of the Medical Image Computing and Computer-

Assisted Intervention. In: Lecture Notes in Computer Science, 9901, pp. 469–477.

doi: 10.1007/978- 3- 319- 46723- 8 _ 54 . 
e, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition.

arxiv: 1512.03385 . 
inton, G. , 2010. A practical guide to training restricted boltzmann machines. Mo-

mentum 9 (1), 926 . 
inton, G.E., Osindero, S., Teh, Y.-W., 2006. A fast learning algorithm for deep belief

nets. Neural Comput. 18, 1527–1554. doi: 10.1162/neco.2006.18.7.1527 . 

inton, G.E. , Salakhutdinov, R.R. , 2006. Reducing the dimensionality of data with
neural networks. Science 313, 504–507 . 

ochreiter, S. , Schmidhuber, J. , 1997. Long short-term memory. Neural Comput. 9
(8), 1735–1780 . 

offmann, N. , Koch, E. , Steiner, G. , Petersohn, U. , Kirsch, M. , 2016. Learning thermal
process representations for intraoperative analysis of cortical perfusion during

ischemic strokes. In: Proceedings of the Deep Learning in Medical Image Anal-
ysis (DLMIA). In: Lecture Notes in Computer Science, 10 0 08, pp. 152–160 . 

oogi, A., Subramaniam, A., Veerapaneni, R., Rubin, D., 2016. Adaptive estimation

of active contour parameters using convolutional neural networks and texture
analysis. IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2628084 . 

osseini-Asl, E., Gimel’farb, G., El-Baz, A., 2016. Alzheimer’s disease diagnostics by
a deeply supervised adaptable 3D convolutional network. arxiv: 1607.00556 . 

u, P., Wu, F., Peng, J., Bao, Y., Chen, F., Kong, D., 2016a. Automatic abdominal multi-
organ segmentation using deep convolutional neural network and time-implicit

level sets. Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548- 016- 1501- 5 . 

u, P., Wu, F., Peng, J., Liang, P., Kong, D., 2016b. Automatic 3D liver segmentation
based on deep learning and globally optimized surface evolution. Phys. Med.

Biol. 61, 8676–8698. doi: 10.1088/1361-6560/61/24/8676 . 
uang, H., Hu, X., Han, J., Lv, J., Liu, N., Guo, L., Liu, T., 2016. Latent source mining

in FMRI data via deep neural network. In: Proceedings of the IEEE International
Symposium on Biomedical Imaging, pp. 638–641. doi: 10.1109/ISBI.2016.74 9334 8 .

uynh, B.Q., Li, H., Giger, M.L., 2016. Digital mammographic tumor classification us-

ing transfer learning from deep convolutional neural networks. J. Med. Imaging
3, 034501. doi: 10.1117/1.JMI.3.3.034501 . 

wang, S., Kim, H., 2016. Self-transfer learning for fully weakly supervised object
localization. arxiv: 1602.01625 . 

wang, S., Kim, H.-E., Jeong, J., Kim, H.-J., 2016. A novel approach for tuberculosis
screening based on deep convolutional neural networks. In: Proceedings of the

SPIE on Medical Imaging, 9785, pp. 97852W–1. doi: 10.1117/12.2216198 . 

amaludin, A., Kadir, T., Zisserman, A., 2016. SpineNet: automatically pinpointing
classification evidence in spinal MRIs. In: Proceedings of the Medical Image

Computing and Computer-Assisted Intervention. In: Lecture Notes in Computer
Science, 9901, pp. 166–175. doi: 10.1007/978- 3- 319- 46723- 8 _ 20 . 

amieson, A.R., Drukker, K., Giger, M.L., 2012. Breast image feature learning with
adaptive deconvolutional networks. In: Proceedings of the SPIE on Medical

Imaging, 8315, p. 831506. doi: 10.1117/12.910710 . 

anowczyk, A. , Basavanhally, A. , Madabhushi, A. , 2017. Stain normalization using
sparse autoencoders (STANOSA): application to digital pathology.. Comput. Med.

Imaging Graph 57, 50–61 . 

http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0082
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0082
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0082
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0082
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0082
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0082
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0082
http://dx.doi.org/10.1007/s10278-017-9945-x
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0084
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0084
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0084
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0084
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0084
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0084
http://dx.doi.org/10.1007/978-3-319-46723-8_19
http://dx.doi.org/10.1007/978-3-319-46723-8_16
http://dx.doi.org/10.1109/ISBI.2016.7493362
http://dx.doi.org/10.1007/BF00344251
http://dx.doi.org/10.1080/21681163.2015.1124249
http://dx.doi.org/10.1007/978-3-319-47157-0_18
http://dx.doi.org/10.1109/ISBI.2016.7493497
http://dx.doi.org/10.1109/TBME.2015.2444389
http://dx.doi.org/10.1109/ISBI.2016.7493384
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0094
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0094
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0094
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0094
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0094
http://dx.doi.org/10.1016/j.nicl.2017.01.033
http://arxiv.org/abs/1610.04834
http://dx.doi.org/10.1109/ISBI.2016.7493532
http://dx.doi.org/10.1007/978-3-319-46726-9_27
http://dx.doi.org/10.1109/TMI.2016.2538802
http://dx.doi.org/10.1007/978-3-319-46976-8_14
http://dx.doi.org/10.1109/tmi.2016.2551324
http://arxiv.org/abs/1406.2661
http://dx.doi.org/10.1109/TMI.2016.2553401
http://dx.doi.org/10.1001/jama.2016.17216
http://dx.doi.org/10.1007/978-3-319-46726-9_37
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0106
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0106
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0106
http://dx.doi.org/10.1109/TMI.2015.2508280
http://dx.doi.org/10.1007/978-3-319-10470-6_39
http://dx.doi.org/10.1007/978-3-319-46976-8_1
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0110
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0110
http://dx.doi.org/10.1016/j.media.2016.05.004
http://dx.doi.org/10.1007/978-3-319-46723-8_54
http://arxiv.org/abs/1512.03385
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0113
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0113
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0115
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0115
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0115
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0116
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0116
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0116
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0117
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0117
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0117
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0117
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0117
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0117
http://dx.doi.org/10.1109/TMI.2016.2628084
http://arxiv.org/abs/1607.00556
http://dx.doi.org/10.1007/s11548-016-1501-5
http://dx.doi.org/10.1088/1361-6560/61/24/8676
http://dx.doi.org/10.1109/ISBI.2016.7493348
http://dx.doi.org/10.1117/1.JMI.3.3.034501
http://arxiv.org/abs/1602.01625
http://dx.doi.org/10.1117/12.2216198
http://dx.doi.org/10.1007/978-3-319-46723-8_20
http://dx.doi.org/10.1117/12.910710
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0126
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0126
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0126
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0126


84 G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K  

 

 

L  

L  

 

 

L  

 

 

 

L  

 

 

 

 

L  

L  

 

 

L  

 

 

 

L

L  

 

 

L  

 

 

L  

 

L  

 

 

L  

 

 

L  

 

L  

 

 

M  

 

M  

 

 

M  

 

M  

 

 

M  

 

 

M  

 

 

M  
Janowczyk, A. , Doyle, S. , Gilmore, H. , Madabhushi, A. , 2016. A resolution adaptive
deep hierarchical (RADHical) learning scheme applied to nuclear segmentation

of digital pathology images. Comput. Methods .Biomech. Biomed. Eng. Imag. Vis.
1–7 . 

Janowczyk, A ., Madabhushi, A ., 2016. Deep learning for digital pathology image
analysis: a comprehensive tutorial with selected use cases.. J. Pathol. Inf. 7, 29.

doi: 10.4103/2153-3539.186902 . 
Jaumard-Hakoun, A., Xu, K., Roussel-Ragot, P., Dreyfus, G., Denby, B., 2016. Tongue

contour extraction from ultrasound images based on deep neural network.

arxiv: 1605.05912 . 
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,

Darrell, T., 2014. Caffe: convolutional architecture for fast feature embedding.
In: Proceedings of the Twenty-Second ACM International Conference on Multi-

media, pp. 675–678. doi: 10.1145/264786 8.2654 889 . 
Kainz, P., Pfeiffer, M., Urschler, M., 2015. Semantic segmentation of colon glands

with deep convolutional neural networks and total variation segmentation.

arxiv: 1511.06919 . 
Källén, H., Molin, J., Heyden, A., Lundstr, C., Aström, K., 2016. Towards grading glea-

son score using generically trained deep convolutional neural networks. In: Pro-
ceedings of the IEEE International Symposium on Biomedical Imaging, pp. 1163–

1167. doi: 10.1109/ISBI.2016.7493473 . 
Kallenberg, M., Petersen, K., Nielsen, M., Ng, A., Diao, P., Igel, C., Vachon, C., Hol-

land, K., Karssemeijer, N., Lillholm, M., 2016. Unsupervised deep learning ap-

plied to breast density segmentation and mammographic risk scoring. IEEE
Trans. Med. Imaging 35, 1322–1331. doi: 10.1109/TMI.2016.2532122 . 

Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K.,
Rueckert, D., Glocker, B., 2017. Efficient multi-scale 3D CNN with fully con-

nected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78.
doi: 10.1016/j.media.2016.10.004 . 

Karpathy, A. , Fei-Fei, L. , 2015. Deep visual-semantic alignments for generating image

descriptions. In: Proceedings of the Computer Vision and Pattern Recognition . 
Kashif, M.N., Raza, S.E.A., Sirinukunwattana, K., Arif, M., Rajpoot, N., 2016. Hand-

crafted features with convolutional neural networks for detection of tumor cells
in histology images. In: Proceedings of the IEEE International Symposium on

Biomedical Imaging, pp. 1029–1032. doi: 10.1109/ISBI.2016.7493441 . 
Kawahara, J., BenTaieb, A., Hamarneh, G., 2016a. Deep features to classify skin le-

sions. In: Proceedings of the IEEE International Symposium on Biomedical Imag-

ing, pp. 1397–1400. doi: 10.1109/ISBI.2016.7493528 . 
Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., Grunau, R.E., Zwicker, J.G.,

Hamarneh, G., 2016b. Brainnetcnn: convolutional neural networks for brain
networks; towards predicting neurodevelopment. Neuroimage doi: 10.1016/j.

neuroimage.2016.09.046 . 
Kawahara, J., Hamarneh, G., 2016. Multi-resolution-tract CNN with hybrid pretrained

and skin-lesion trained layers. In: Proceedings of the Machine Learning in

Medical Imaging. In: Lecture Notes in Computer Science, 10019, pp. 164–171.
doi: 10.1007/978- 3- 319- 47157- 0 _ 20 . 

Kendall, A., Gal, Y., 2017. What uncertainties do we need in Bayesian deep learning
for computer vision? arXiv: 1703.04977 . 

Kim, E. , Cortre-Real, M. , Baloch, Z. , 2016a. A deep semantic mobile application for
thyroid cytopathology. In: Proceedings of the SPIE on Medical Imaging, 9789,

p. 97890A . 
Kim, H., Hwang, S., 2016. Scale-invariant feature learning using deconvolutional

neural networks for weakly-supervised semantic segmentation. arxiv: 1602.

04984 . 
Kim, J. , Calhoun, V.D. , Shim, E. , Lee, J.-H. , 2016b. Deep neural network with weight

sparsity control and pre-training extracts hierarchical features and enhances
classification performance: evidence from whole-brain resting-state functional

connectivity patterns of schizophrenia. Neuroimage 124, 127–146 . 
Kingma, D. P., Welling, M., 2013. Auto-encoding variational bayes. arxiv: 1312.6114 . 

Kisilev, P. , Sason, E. , Barkan, E. , Hashoul, S. , 2016. Medical image description us-

ing multi-task-loss CNN. In: Proceedings of the International Workshop on
Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Springer,

pp. 121–129 . 
Kleesiek, J., Urban, G., Hubert, A., Schwarz, D., Maier-Hein, K., Bendszus, M., Biller, A.,

2016. Deep MRI brain extraction: a 3D convolutional neural network for skull
stripping.. Neuroimage 129, 460–469. doi: 10.1016/j.neuroimage.2016.01.024 . 

Kong, B., Zhan, Y., Shin, M., Denny, T., Zhang, S., 2016. Recognizing end-diastole

and end-systole frames via deep temporal regression network. In: Proceed-
ings of the Medical Image Computing and Computer-Assisted Intervention.

In: Lecture Notes in Computer Science, 9901, pp. 264–272. doi: 10.1007/
978- 3- 319- 46726- 9 _ 31 . 

Kooi, T. , van Ginneken, B. , Karssemeijer, N. , den Heeten, A. , 2017. Discriminating soli-
tary cysts from soft tissue lesions in mammography using a pretrained deep

convolutional neural network. Med. Phys 44 (3), 1017–1027 . 

Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C.I., Mann, R., den
Heeten, A., Karssemeijer, N., 2016. Large scale deep learning for computer aided

detection of mammographic lesions. Med. Image Anal. 35, 303–312. doi: 10.1016/
j.media.2016.07.007 . 

Korez, R., Likar, B., Pernuš, F., Vrtovec, T., 2016. Model-based segmentation of verte-
bral bodies from MR images with 3D CNNs. In: Proceedings of the Medical Im-

age Computing and Computer-Assisted Intervention. In: Lecture Notes in Com-

puter Science, 9901. Springer, pp. 433–441. doi: 10.1007/978- 3- 319- 46723- 8 _ 50 .
Krizhevsky, A. , Sutskever, I. , Hinton, G. , 2012. Imagenet classification with deep con-

volutional neural networks. In: Proceedings of the Advances in Neural Informa-
tion Processing Systems, pp. 1097–1105 . 
M  
umar, A., Sridar, P., Quinton, A., Kumar, R.K., Feng, D., Nanan, R., Kim, J., 2016.
Plane identification in fetal ultrasound images using saliency maps and convo-

lutional neural networks. In: Proceedings of the IEEE International Symposium
on Biomedical Imaging, pp. 791–794. doi: 10.1109/ISBI.2016.7493385 . 

eCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791 . 

ekadir, K., Galimzianova, A., Betriu, A., Del Mar Vila, M., Igual, L., Rubin, D.L., Fer-
nandez, E., Radeva, P., Napel, S., 2017. A convolutional neural network for au-

tomatic characterization of plaque composition in carotid ultrasound. IEEE J.

Biomed. Health Inf. 21, 48–55. doi: 10.1109/JBHI.2016.2631401 . 
essmann, N., Isgum, I., Setio, A .A ., de Vos, B.D., Ciompi, F., de Jong, P.A., Oud-

kerk, M., Mali, W.P.T.M., Viergever, M.A., van Ginneken, B., 2016. Deep convo-
lutional neural networks for automatic coronary calcium scoring in a screening

study with low-dose chest CT. In: Proceedings of the SPIE on Medical Imaging,
9785 doi: 10.1117/12.2216978 . 978511-1–978511-6 

i, R. , Zhang, W. , Suk, H.-I. , Wang, L. , Li, J. , Shen, D. , Ji, S. , 2014. Deep learning based

imaging data completion for improved brain disease diagnosis. In: Proceedings
of the Medical Image Computing and Computer-Assisted Intervention. In: Lec-

ture Notes in Computer Science, 8675, pp. 305–312 . 
Li, W., Cao, P., Zhao, D., Wang, J., 2016a. Pulmonary nodule classification with

deep convolutional neural networks on computed tomography images. Comput.
Math. Methods Med. 6215085. doi: 10.1155/2016/6215085 . 

i, W. , Jia, F. , Hu, Q. , 2015. Automatic segmentation of liver tumor in CT images with

deep convolutional neural networks. J. Comput. Commun. 3 (11), 146–151 . 
i, W., Manivannan, S., Akbar, S., Zhang, J., Trucco, E., McKenna, S.J., 2016b. Gland

segmentation in colon histology images using hand-crafted features and convo-
lutional neural networks. In: Proceedings of the IEEE International Symposium

on Biomedical Imaging, pp. 1405–1408. doi: 10.1109/ISBI.2016.7493530 . 
iao, S., Gao, Y., Oto, A., Shen, D., 2013. Representation learning: A unified

deep learning framework for automatic prostate mr segmentation. In: Pro-

ceedings of the Medical Image Computing and Computer-Assisted Interven-
tion. In: Lecture Notes in Computer Science, 8150, pp. 254–261. doi: 10.1007/

978- 3- 642- 40763- 5 _ 32 . 
in, M., Chen, Q., Yan, S., 2013. Network in network. arxiv: 1312.4400 . 

itjens, G., Sánchez, C.I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I.,
Hulsbergen-van de Kaa, C., Bult, P., van Ginneken, B., van der Laak, J., 2016. Deep

learning as a tool for increased accuracy and efficiency of histopathological di-

agnosis. Nat. Sci. Rep. 6, 26286. doi: 10.1038/srep26286 . 
iu, J., Wang, D., Wei, Z., Lu, L., Kim, L., Turkbey, E., Summers, R.M., 2016a. Colitis de-

tection on computed tomography using regional convolutional neural networks.
In: Proceedings of the IEEE International Symposium on Biomedical Imaging,

pp. 863–866. doi: 10.1109/ISBI.2016.7493402 . 
iu, X. , Tizhoosh, H.R. , Kofman, J. , 2016b. Generating binary tags for fast medical im-

age retrieval based on convolutional nets and Radon transform. In: Proceedings

of the International Joint Conference on Neural Networks . 
iu, Y., Gadepalli, K., Norouzi, M., Dahl, G. E., Kohlberger, T., Boyko, A., Venugopalan,

S., Timofeev, A., Nelson, P. Q., Corrado, G. S., Hipp, J. D., Peng, L., Stumpe, M. C.,
2017. Detecting cancer metastases on gigapixel pathology images. arxiv: 1703.

02442 . 
o, S.-C., Lou, S.-L., Lin, J.-S., Freedman, M.T., Chien, M.V., Mun, S.K., 1995. Artificial

convolution neural network techniques and applications for lung nodule detec-
tion. IEEE Trans. Med. Imaging 14, 711–718. doi: 10.1109/42.476112 . 

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic

segmentation. arxiv: 1411.4038 . 
u, F., Wu, F., Hu, P., Peng, Z., Kong, D., 2017. Automatic 3D liver location and seg-

mentation via convolutional neural network and graph cut. Int. J. Comput. As-
sist. Radiol. Surg. 12, 171–182. doi: 10.1007/s11548- 016- 1467- 3 . 

u, X., Xu, D., Liu, D., 2016. Robust 3d organ localization with dual learning ar-
chitectures and fusion. In: Proceedings of the Deep Learning in Medical Im-

age Analysis (DLMIA). In: Lecture Notes in Computer Science, 10 0 08, pp. 12–20.

doi: 10.1007/978- 3- 319- 46976- 8 _ 2 . 
a, J., Wu, F., Zhu, J., Xu, D., Kong, D., 2017. A pre-trained convolutional neural

network based method for thyroid nodule diagnosis.. Ultrasonics 73, 221–230.
doi: 10.1016/j.ultras.2016.09.011 . 

ahapatra, D., Roy, P.K., Sedai, S., Garnavi, R., 2016. Retinal image quality classifi-
cation using saliency maps and CNNs. In: Proceedings of the Machine Learning

in Medical Imaging. In: Lecture Notes in Computer Science, 10019, pp. 172–179.

doi: 10.1007/978- 3- 319- 47157- 0 _ 21 . 
alon, C.D., Cosatto, E., 2013. Classification of mitotic figures with convolutional

neural networks and seeded blob features.. J. Pathol. Inform. doi: 10.4103/
2153-3539.112694 . 

aninis, K.-K., Pont-Tuset, J., Arbeláez, P., Gool, L., 2016. Deep retinal image un-
derstanding. In: Proceedings of the Medical Image Computing and Computer-

Assisted Intervention. In: Lecture Notes in Computer Science, 9901, pp. 140–148.

doi: 10.1007/978- 3- 319- 46723- 8 _ 17 . 
ansoor, A., Cerrolaza, J., Idrees, R., Biggs, E., Alsharid, M., Avery, R., Linguraru, M.G.,

2016. Deep learning guided partitioned shape model for anterior visual path-
way segmentation. IEEE Trans. Med. Imaging 35 (8), 1856–1865. doi: 10.1109/

TMI.2016.2535222 . 
ao, Y., Yin, Z., 2016. A hierarchical convolutional neural network for mitosis detec-

tion in phase-contrast microscopy images. In: Proceedings of the Medical Image

Computing and Computer-Assisted Intervention. In: Lecture Notes in Computer
Science, 9901, pp. 685–692. doi: 10.1007/978- 3- 319- 46723- 8 _ 79 . 

enegola, A., Fornaciali, M., Pires, R., Avila, S., Valle, E., 2016. Towards automated
melanoma screening: exploring transfer learning schemes. arxiv: 1609.01228 . 

erkow, J., Kriegman, D., Marsden, A., Tu, Z., 2016. Dense volume-to-volume vascu-
lar boundary detection. arxiv: 1605.08401 . 

http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0127
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0127
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0127
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0127
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0127
http://dx.doi.org/10.4103/2153-3539.186902
http://arxiv.org/abs/1605.05912
http://dx.doi.org/10.1145/2647868.2654889
http://arxiv.org/abs/1511.06919
http://dx.doi.org/10.1109/ISBI.2016.7493473
http://dx.doi.org/10.1109/TMI.2016.2532122
http://dx.doi.org/10.1016/j.media.2016.10.004
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0133
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0133
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0133
http://dx.doi.org/10.1109/ISBI.2016.7493441
http://dx.doi.org/10.1109/ISBI.2016.7493528
http://dx.doi.org/10.1016/j.neuroimage.2016.09.046
http://dx.doi.org/10.1007/978-3-319-47157-0_20
http://arxiv.org/abs/1703.04977
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0138
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0138
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0138
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0138
http://arxiv.org/abs/1602.04984
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0139
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0139
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0139
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0139
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0139
http://arxiv.org/abs/1312.6114
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0140
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0140
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0140
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0140
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0140
http://dx.doi.org/10.1016/j.neuroimage.2016.01.024
http://dx.doi.org/10.1007/978-3-319-46726-9_31
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0143
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0143
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0143
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0143
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0143
http://dx.doi.org/10.1016/j.media.2016.07.007
http://dx.doi.org/10.1007/978-3-319-46723-8_50
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0146
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0146
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0146
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0146
http://dx.doi.org/10.1109/ISBI.2016.7493385
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/JBHI.2016.2631401
http://dx.doi.org/10.1117/12.2216978
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0151
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0151
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0151
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0151
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0151
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0151
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0151
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0151
http://dx.doi.org/10.1155/2016/6215085
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0153
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0153
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0153
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0153
http://dx.doi.org/10.1109/ISBI.2016.7493530
http://dx.doi.org/10.1007/978-3-642-40763-5_32
http://arxiv.org/abs/1312.4400
http://dx.doi.org/10.1038/srep26286
http://dx.doi.org/10.1109/ISBI.2016.7493402
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0158
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0158
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0158
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0158
http://arxiv.org/abs/1703.02442
http://dx.doi.org/10.1109/42.476112
http://arxiv.org/abs/1411.4038
http://dx.doi.org/10.1007/s11548-016-1467-3
http://dx.doi.org/10.1007/978-3-319-46976-8_2
http://dx.doi.org/10.1016/j.ultras.2016.09.011
http://dx.doi.org/10.1007/978-3-319-47157-0_21
http://dx.doi.org/10.4103/2153-3539.112694
http://dx.doi.org/10.1007/978-3-319-46723-8_17
http://dx.doi.org/10.1109/TMI.2016.2535222
http://dx.doi.org/10.1007/978-3-319-46723-8_79
http://arxiv.org/abs/1609.01228
http://arxiv.org/abs/1605.08401


G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 85 

M  

 

M  

 

 

M  

M  

 

 

M  

 

 

M  

 

 

 

M  

 

M  

 

 

 

M  

 

 

N  

 

N  

 

N  

 

 

N  

 

 

N  

 

 

N  

 

 

 

N  

 

 

 

 

O  

 

 

 

O  

 

P  

P  

 

 

P  

P  

 

 

P  

 

P  

 

 

P  

 

 

P  

 

P  

P  

 

 

P  

 

 

P  

 

Q  

 

 

Q  

 

R  

 

 

R  

 

R  

 

R  

 

R  

 

 

R  

 

 

 

R  

 

R  

 

 

R  

 

 

R  

 

 

R  

 

 

R  

 

 

R  

 

 

R  

 

 

 

 

iao, S., Wang, Z.J., Liao, R., 2016. A CNN regression approach for real-time 2D/3D
registration. IEEE Trans. Med. Imaging 35 (5), 1352–1363. doi: 10.1109/TMI.2016.

2521800 . 
illetari, F., Ahmadi, S.-A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J., Levin, J., Diet-

rich, O., Ertl-Wagner, B., Bötzel, K., Navab, N., 2016a. Hough-CNN: deep learning
for segmentation of deep brain regions in MRI and ultrasound. arxiv: 1601.07014 .

illetari, F., Navab, N., Ahmadi, S.-A., 2016b. V-Net: fully convolutional neural net-
works for volumetric medical image segmentation. arxiv: 1606.04797 . 

ishra, M., Schmitt, S., Wang, L., Strasser, M.K., Marr, C., Navab, N., Zischka, H.,

Peng, T., 2016. Structure-based assessment of cancerous mitochondria us-
ing deep networks. In: Proceedings of the IEEE International Symposium on

Biomedical Imaging, pp. 545–548. doi: 10.1109/ISBI.2016.7493327 . 
oeskops, P., Viergever, M.A ., Mendrik, A .M., de Vries, L.S., Benders, M.J.N.L., Is-

gum, I., 2016a. Automatic segmentation of MR brain images with a convolu-
tional neural network. IEEE Trans. Med. Imaging 35 (5), 1252–1262. doi: 10.1109/

TMI.2016.2548501 . 

oeskops, P., Wolterink, J.M., Velden, B.H.M., Gilhuijs, K.G.A., Leiner, T.,
Viergever, M.A., Isgum, I., 2016b. Deep learning for multi-task medical im-

age segmentation in multiple modalities. In: Proceedings of the Medical Image
Computing and Computer-Assisted Intervention. In: Lecture Notes in Computer

Science, 9901, pp. 478–486. doi: 10.1007/978- 3- 319- 46723- 8 _ 55 . 
ontavon, G. , Lapuschkin, S. , Binder, A. , Samek, W. , Müller, K.-R. , 2017. Explain-

ing nonlinear classification decisions with deep taylor decomposition. Pattern

Recognit. 65, 211–222 . 
oradi, M., Guo, Y., Gur, Y., Negahdar, M., Syeda-Mahmood, T., 2016a. A cross-

modality neural network transform for semi-automatic medical image annota-
tion. In: Proceedings of the Medical Image Computing and Computer-Assisted

Intervention. In: Lecture Notes in Computer Science, 9901, pp. 300–307. doi: 10.
1007/978- 3- 319- 46723- 8 _ 35 . 

oradi, M., Gur, Y., Wang, H., Prasanna, P., Syeda-Mahmood, T., 2016b. A hybrid

learning approach for semantic labeling of cardiac CT slices and recognition of
body position. In: Proceedings of the IEEE International Symposium on Biomed-

ical Imaging doi: 10.1109/ISBI.2016.7493533 . 
appi, J.J., Hironaka, T., Regge, D., Yoshida, H., 2016. Deep transfer learning of virtual

endoluminal views for the detection of polyps in CT colonography. In: Proceed-
ings of the Medical Imaging, p. 97852B. doi: 10.1117/12.2217260 . 

ascimento, J.C., Carneiro, G., 2016. Multi-atlas segmentation using manifold learn-

ing with deep belief networks. In: Proceedings of the IEEE International Sym-
posium on Biomedical Imaging, pp. 867–871. doi: 10.1109/ISBI.2016.7493403 . 

go, T.A., Lu, Z., Carneiro, G., 2017. Combining deep learning and level set for the au-
tomated segmentation of the left ventricle of the heart from cardiac cine mag-

netic resonance. Med. Image Anal. 35, 159–171. doi: 10.1016/j.media.2016.05.009 .
ie, D., Cao, X., Gao, Y., Wang, L., Shen, D., 2016a. Estimating CT image from MRI

data using 3D fully convolutional networks. In: Proceedings of the Deep Learn-

ing in Medical Image Analysis (DLMIA). In: Lecture Notes in Computer Science,
10 0 08, pp. 170–178. doi: 10.1007/978- 3- 319- 46976- 8 _ 18 . 

ie, D., Wang, L., Gao, Y., Shen, D., 2016b. Fully convolutional networks for multi-
modality isointense infant brain image segmentation. In: Proceedings of the

IEEE International Symposium on Biomedical Imaging, pp. 1342–1345. doi: 10.
1109/ISBI.2016.7493515 . 

ie, D., Zhang, H., Adeli, E., Liu, L., Shen, D., 2016c. 3D deep learning for multi-
modal imaging-guided survival time prediction of brain tumor patients. In:

Proceedings of the Medical Image Computing and Computer-Assisted Interven-

tion. In: Lecture Notes in Computer Science, 9901, pp. 212–220. doi: 10.1007/
978- 3- 319- 46723- 8 _ 25 . 

ogues, I., Lu, L., Wang, X., Roth, H., Bertasius, G., Lay, N., Shi, J., Tsehay, Y., Sum-
mers, R.M., 2016. Automatic lymph node cluster segmentation using holistically-

nested neural networks and structured optimization in CT images. In: Pro-
ceedings of the Medical Image Computing and Computer-Assisted Interven-

tion. In: Lecture Notes in Computer Science, 9901, pp. 388–397. doi: 10.1007/

978- 3- 319- 46723- 8 _ 45 . 
ktay, O., Bai, W., Lee, M., Guerrero, R., Kamnitsas, K., Caballero, J., Marvao, A.,

Cook, S., O’Regan, D., Rueckert, D., 2016. Multi-input cardiac image super-
resolution using convolutional neural networks. In: Proceedings of the Medi-

cal Image Computing and Computer-Assisted Intervention. In: Lecture Notes in
Computer Science, 9902, pp. 246–254. doi: 10.1007/978- 3- 319- 46726- 9 _ 29 . 

rtiz, A., Munilla, J., Górriz, J.M., Ramírez, J., 2016. Ensembles of deep learning ar-

chitectures for the early diagnosis of the Alzheimer’s disease. Int. J. Neural Syst.
26, 1650025. doi: 10.1142/S0129065716500258 . 

aeng, K., Hwang, S., Park, S., Kim, M., Kim, S., 2016. A unified framework for tumor
proliferation score prediction in breast histopathology. arxiv: 1612.07180 . 

an, Y., Huang, W., Lin, Z., Zhu, W., Zhou, J., Wong, J., Ding, Z., 2015. Brain tumor
grading based on neural networks and convolutional neural networks. In: Pro-

ceedings of the IEEE Engineering in Medicine and Biology Society, pp. 699–702.

doi: 10.1109/EMBC.2015.7318458 . 
ayan, A., Montana, G., 2015. Predicting Alzheimer’s disease: a neuroimaging study

with 3D convolutional neural networks. arxiv: 1502.02506 . 
ayer, C., Stern, D., Bischof, H., Urschler, M., 2016. Regressing heatmaps for mul-

tiple landmark localization using CNNs. In: Proceedings of the Medical Image
Computing and Computer-Assisted Intervention. In: Lecture Notes in Computer

Science, 9901, pp. 230–238. doi: 10.1007/978- 3- 319- 46723- 8 _ 27 . 

ereira, S. , Pinto, A. , Alves, V. , Silva, C.A. , 2016. Brain tumor segmentation using
convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35 (5),

1240–1251 . 
han, H.T.H., Kumar, A., Kim, J., Feng, D., 2016. Transfer learning of a convolutional

neural network for HEp-2 cell image classification. In: Proceedings of the IEEE
International Symposium on Biomedical Imaging, pp. 1208–1211. doi: 10.1109/
ISBI.2016.74 934 83 . 

inaya, W.H.L., Gadelha, A., Doyle, O.M., Noto, C., Zugman, A., Cordeiro, Q., Jack-
owski, A.P., Bressan, R.A., Sato, J.R., 2016. Using deep belief network modelling

to characterize differences in brain morphometry in schizophrenia. Nat. Sci. Rep.
6, 38897. doi: 10.1038/srep38897 . 

lis, S.M., Hjelm, D.R., Salakhutdinov, R., Allen, E.A., Bockholt, H.J., Long, J.D., John-
son, H.J., Paulsen, J.S., Turner, J.A., Calhoun, V.D., 2014. Deep learning for neu-

roimaging: a validation study. Front. Neurosci. doi: 10.3389/fnins.2014.00229 . 

oudel, R. P. K., Lamata, P., Montana, G., 2016. Recurrent fully convolutional neural
networks for multi-slice MRI cardiac segmentation. arxiv: 1608.03974 . 

rasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M., 2013. Deep feature
learning for knee cartilage segmentation using a triplanar convolutional neu-

ral network. In: Proceedings of the Medical Image Computing and Computer-
Assisted Intervention. In: Lecture Notes in Computer Science, 8150, pp. 246–

253. doi: 10.1007/978- 3- 642- 40763- 5 _ 31 . 

rentasic, P., Heisler, M., Mammo, Z., Lee, S., Merkur, A., Navajas, E., Beg, M.F.,
Sarunic, M., Loncaric, S., 2016. Segmentation of the foveal microvasculature us-

ing deep learning networks.. J. Biomed. Opt. 21, 75008. doi: 10.1117/1.JBO.21.7.
075008 . 

rentasic, P., Loncaric, S., 2016. Detection of exudates in fundus photographs us-
ing deep neural networks and anatomical landmark detection fusion. Comput.

Methods Programs Biomed. 137, 281–292. doi: 10.1016/j.cmpb.2016.09.018 . 

iu, Y. , Wang, Y. , Yan, S. , Tan, M. , Cheng, S. , Liu, H. , Zheng, B. , 2016. An initial inves-
tigation on developing a new method to predict short-term breast cancer risk

based on deep learning technology. In: Proceedings of the SPIE Medical Imag-
ing, 9785, p. 978521 . 

uinn, J.A., Nakasi, R., Mugagga, P.K.B., Byanyima, P., Lubega, W., Andama, A., 2016.
Deep convolutional neural networks for microscopy-based point of care diag-

nostics. arxiv: 1608.02989 . 

ajchl, M., Lee, M.C., Oktay, O., Kamnitsas, K., Passerat-Palmbach, J., Bai, W.,
Kainz, B., Rueckert, D., 2017. Deepcut: object segmentation from bounding box

annotations using convolutional neural networks. IEEE Trans. Med. Imaging 36
(2), 674–683. doi: 10.1109/TMI.2016.2621185 . 

ajchl, M., Lee, M. C., Schrans, F., Davidson, A., Passerat-Palmbach, J., Tarroni, G.,
Alansary, A., Oktay, O., Kainz, B., Rueckert, D., 2016. Learning under distributed

weak supervision. arxiv: 1606.01100 . 

ajkomar, A., Lingam, S., Taylor, A.G., Blum, M., Mongan, J., 2017. High-throughput
classification of radiographs using deep convolutional neural networks. J. Digit.

Imaging 30, 95–101. doi: 10.1007/s10278- 016- 9914- 9 . 
avi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., Yang, G.-Z.,

2017. Deep learning for health informatics.. IEEE J. Biomed. Health Inf. 21, 4–21.
doi: 10.1109/JBHI.2016.2636665 . 

avishankar, H., Prabhu, S.M., Vaidya, V., Singhal, N., 2016a. Hybrid approach for

automatic segmentation of fetal abdomen from ultrasound images using deep
learning. In: Proceedings of the IEEE International Symposium on Biomedical

Imaging, pp. 779–782. doi: 10.1109/ISBI.2016.7493382 . 
avishankar, H. , Sudhakar, P. , Venkataramani, R. , Thiruvenkadam, S. , Annangi, P. ,

Babu, N. , Vaidya, V. , 2016b. Understanding the mechanisms of deep transfer
learning for medical images. In: Proceedings of the Deep Learning in Med-

ical Image Analysis (DLMIA). In: Lecture Notes in Computer Science, 10 0 08,
pp. 188–196 . 

ezaeilouyeh, H., Mollahosseini, A., Mahoor, M.H., 2016. Microscopic medical image

classification framework via deep learning and shearlet transform. J. Med. Imag-
ing 3 (4), 044501. doi: 10.1117/1.JMI.3.4.044501 . 

omo-Bucheli, D., Janowczyk, A., Gilmore, H., Romero, E., Madabhushi, A., 2016. Au-
tomated tubule nuclei quantification and correlation with Oncotype DX risk

categories in ER+ breast cancer whole slide images. Nat. Sci. Rep. 6, 32706.
doi: 10.1038/srep32706 . 

onneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for

biomedical image segmentation. In: Proceedings of the Medical Image Comput-
ing and Computer-Assisted Intervention. In: Lecture Notes in Computer Science,

9351, pp. 234–241. doi: 10.1007/978- 3- 319- 24574- 4 _ 28 . 
oth, H.R., Lee, C.T., Shin, H.-C., Seff, A., Kim, L., Yao, J., Lu, L., Summers, R.M., 2015a.

Anatomy-specific classification of medical images using deep convolutional nets.
In: Proceedings of the IEEE International Symposium on Biomedical Imaging,

pp. 101–104. doi: 10.1109/ISBI.2015.7163826 . 

oth, H.R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E.B., Summers, R.M., 2015b.
DeepOrgan: Multi-level deep convolutional networks for automated pancreas

segmentation. In: Proceedings of the Medical Image Computing and Computer-
Assisted Intervention. In: Lecture Notes in Computer Science, 9349, pp. 556–

564. doi: 10.1007/978- 3- 319- 24553- 9 _ 68 . 
oth, H.R. , Lu, L. , Farag, A. , Sohn, A. , Summers, R.M. , 2016a. Spatial aggregation of

holistically-nested networks for automated pancreas segmentation. In: Proceed-

ings of the Medical Image Computing and Computer-Assisted Intervention. In:
Lecture Notes in Computer Science, 9901, pp. 451–459 . 

oth, H.R., Lu, L., Liu, J., Yao, J., Seff, A., Cherry, K., Kim, L., Summers, R.M., 2016b.
Improving computer-aided detection using convolutional neural networks and

random view aggregation. IEEE Trans. Med. Imaging 35 (5), 1170–1181. doi: 10.
1109/TMI.2015.2482920 . 

oth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E.,

Summers, R.M., 2014. A new 2.5D representation for lymph node detection us-
ing random sets of deep convolutional neural network observations. In: Pro-

ceedings of the Medical Image Computing and Computer-Assisted Interven-
tion. In: Lecture Notes in Computer Science, 8673, pp. 520–527. doi: 10.1007/

978- 3- 319- 10404-1 _ 65 . 

http://dx.doi.org/10.1109/TMI.2016.2521800
http://arxiv.org/abs/1601.07014
http://arxiv.org/abs/1606.04797
http://dx.doi.org/10.1109/ISBI.2016.7493327
http://dx.doi.org/10.1109/TMI.2016.2548501
http://dx.doi.org/10.1007/978-3-319-46723-8_55
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0172
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0172
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0172
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0172
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0172
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0172
http://dx.doi.org/10.1007/978-3-319-46723-8_35
http://dx.doi.org/10.1109/ISBI.2016.7493533
http://dx.doi.org/10.1117/12.2217260
http://dx.doi.org/10.1109/ISBI.2016.7493403
http://dx.doi.org/10.1016/j.media.2016.05.009
http://dx.doi.org/10.1007/978-3-319-46976-8_18
http://dx.doi.org/10.1109/ISBI.2016.7493515
http://dx.doi.org/10.1007/978-3-319-46723-8_25
http://dx.doi.org/10.1007/978-3-319-46723-8_45
http://dx.doi.org/10.1007/978-3-319-46726-9_29
http://dx.doi.org/10.1142/S0129065716500258
http://arxiv.org/abs/1612.07180
http://dx.doi.org/10.1109/EMBC.2015.7318458
http://arxiv.org/abs/1502.02506
http://dx.doi.org/10.1007/978-3-319-46723-8_27
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0186
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0186
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0186
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0186
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0186
http://dx.doi.org/10.1109/ISBI.2016.7493483
http://dx.doi.org/10.1038/srep38897
http://dx.doi.org/10.3389/fnins.2014.00229
http://arxiv.org/abs/1608.03974
http://dx.doi.org/10.1007/978-3-642-40763-5_31
http://dx.doi.org/10.1117/1.JBO.21.7.075008
http://dx.doi.org/10.1016/j.cmpb.2016.09.018
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0193
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0193
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0193
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0193
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0193
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0193
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0193
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0193
http://arxiv.org/abs/1608.02989
http://dx.doi.org/10.1109/TMI.2016.2621185
http://arxiv.org/abs/1606.01100
http://dx.doi.org/10.1007/s10278-016-9914-9
http://dx.doi.org/10.1109/JBHI.2016.2636665
http://dx.doi.org/10.1109/ISBI.2016.7493382
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0198
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0198
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0198
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0198
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0198
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0198
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0198
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0198
http://dx.doi.org/10.1117/1.JMI.3.4.044501
http://dx.doi.org/10.1038/srep32706
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/ISBI.2015.7163826
http://dx.doi.org/10.1007/978-3-319-24553-9_68
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0204
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0204
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0204
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0204
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0204
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0204
http://dx.doi.org/10.1109/TMI.2015.2482920
http://dx.doi.org/10.1007/978-3-319-10404-1_65


86 G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

 

 

S  

 

 

S  

 

 

 

S  

 

S  

 

S  

 

S  

 

 

S  

 

S  

 

 

 

S  

 

 

S  

S  

 

S  

 

 

 

 

S  

 

S  

 

S  

 

 

 

 

 

T  

 

T  

 

 

 

T  

 

 

Roth, H.R. , Wang, Y. , Yao, J. , Lu, L. , Burns, J.E. , Summers, R.M. , 2016c. Deep convolu-
tional networks for automated detection of posterior-element fractures on spine

CT. In: Proceedings of the SPIE of Medical Imaging, 9785, p. 97850P . 
Roth, H.R., Yao, J., Lu, L., Stieger, J., Burns, J.E., Summers, R.M., 2015c. Detec-

tion of sclerotic spine metastases via random aggregation of deep convolu-
tional?neural network classifications. In: Proceedings of the Recent Advances in

Computational Methods and Clinical Applications for Spine Imaging. In: Lecture
Notes in Computational Vision and Biomechanics, 20, pp. 3–12. doi: 10.1007/

978- 3- 319- 14148-0 _ 1 . 

Rupprecht, C., Huaroc, E., Baust, M., Navab, N., 2016. Deep active contours.
arxiv: 1607.05074 . 

Russakovsky, O. , Deng, J. , Su, H. , Krause, J. , Satheesh, S. , Ma, S. , Huang, Z. , Karpa-
thy, A . , Khosla, A . , Bernstein, M. , Berg, A.C. , Fei-Fei, L. , 2014. Imagenet large scale

visual recognition challenge. Int. J. Comput. Vis. 115 (3), 1–42 . 
Sahiner, B., Chan, H.-P., Petrick, N., Wei, D., Helvie, M.A., Adler, D.D., Goodsitt, M.M.,

1996. Classification of mass and normal breast tissue: a convolution neural net-

work classifier with spatial domain and texture images. IEEE Trans. Med. Imag-
ing 15, 598–610. doi: 10.1109/42.538937 . 

Samala, R.K. , Chan, H.-P. , Hadjiiski, L. , Cha, K. , Helvie, M.A. , 2016a. Deep-learning
convolution neural network for computer-aided detection of microcalcifications

in digital breast tomosynthesis. In: Proceedings of the SPIE on Medical Imaging,
9785, p. 97850Y . 

Samala, R.K. , Chan, H.-P. , Hadjiiski, L. , Helvie, M.A. , Wei, J. , Cha, K. , 2016b. Mass de-

tection in digital breast tomosynthesis: deep convolutional neural network with
transfer learning from mammography. Med. Phys. 43 (12), 6654–6666 . 

Sarraf, S., Tofighi, G., 2016. Classification of Alzheimer’s disease using fmri data and
deep learning convolutional neural networks. arxiv: 1603.08631 . 

Schaumberg, A.J., Rubin, M.A., Fuchs, T.J., 2016. H&e-stained whole slide deep learn-
ing predicts SPOP mutation state in prostate cancer. arxiv: 064279 http://biorxiv.

org/content/early/2016/07/21/064279.full.pdf . 10.1101/064279 

Schlegl, T., Waldstein, S.M., Vogl, W.-D., Schmidt-Erfurth, U., Langs, G., 2015. Pre-
dicting semantic descriptions from medical images with convolutional neu-

ral networks. In: Proceedings of the Information Processing in Medical Imag-
ing. In: Lecture Notes in Computer Science, 9123, pp. 437–448. doi: 10.1007/

978- 3- 319- 19992- 4 _ 34 . 
Sethi, A., Sha, L., Vahadane, A.R., Deaton, R.J., Kumar, N., Macias, V., Gann, P.H., 2016.

Empirical comparison of color normalization methods for epithelial-stromal

classification in h and e images. J. Pathol. Inf. 7, 17. doi: 10.4103/2153-3539.
179984 . 

Setio, A .A .A ., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., van Riel, S., Wille, M.W.,
Naqibullah, M., Sanchez, C., van Ginneken, B., 2016. Pulmonary nodule detection

in CT images: false positive reduction using multi-view convolutional networks.
IEEE Trans. Med. Imaging 35 (5), 1160–1169. doi: 10.1109/TMI.2016.2536809 . 

Sevetlidis, V., Giuffrida, M.V., Tsaftaris, S.A., 2016. Whole image synthesis using a

deep encoder–decoder network. In: Proceedings of the Simulation and Synthe-
sis in Medical Imaging. In: Lecture Notes in Computer Science, 9968, pp. 127–

137. doi: 10.1007/978- 3- 319- 46630- 9 _ 13 . 
Shah, A. , Conjeti, S. , Navab, N. , Katouzian, A. , 2016. Deeply learnt hashing forests

for content based image retrieval in prostate MR images. In: Proceedings of the
SPIE on Medical Imaging, 9784, p. 978414 . 

Shakeri, M., Tsogkas, S., Ferrante, E., Lippe, S., Kadoury, S., Paragios, N., Kokki-
nos, I., 2016. Sub-cortical brain structure segmentation using F-CNNs. In: Pro-

ceedings of the IEEE International Symposium on Biomedical Imaging, pp. 269–

272. doi: 10.1109/ISBI.2016.7493261 . 
Shen, D., Wu, G., Suk, H.-I., 2017. Deep learning in medical image analysis.. Annu.

Rev. Biomed. Eng. doi: 10.1146/annurev- bioeng- 071516- 04 4 4 42 . 
Shen, W. , Yang, F. , Mu, W. , Yang, C. , Yang, X. , Tian, J. , 2015a. Automatic localization of

vertebrae based on convolutional neural networks. In: Proceedings of the SPIE
on Medical Imaging, 9413, p. 94132E . 

Shen, W., Zhou, M., Yang, F., Dong, D., Yang, C., Zang, Y., Tian, J., 2016. Learning

from experts: Developing transferable deep features for patient-level lung can-
cer prediction. In: Proceedings of the Medical Image Computing and Computer-

Assisted Intervention. In: Lecture Notes in Computer Science, 9901, pp. 124–131.
doi: 10.1007/978- 3- 319- 46723- 8 _ 15 . 

Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J., 2015b. Multi-scale convolutional neu-
ral networks for lung nodule classification. In: Proceedings of the Information

Processing in Medical Imaging. In: Lecture Notes in Computer Science, 9123,

pp. 588–599. doi: 10.1007/978- 3- 319- 19992- 4 _ 46 . 
Shi, J., Zheng, X., Li, Y., Zhang, Q., Ying, S., 2017. Multimodal neuroimaging feature

learning with multimodal stacked deep polynomial networks for diagnosis of
aLzheimer’s disease. IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2017.2655720 .

in press 
Shin, H.-C., Lu, L., Kim, L., Seff, A., Yao, J., Summers, R.M., 2015. Interleaved

text/image deep mining on a very large-scale radiology database. In: Proceed-

ings of the Computer Vision and Pattern Recognition, pp. 1090–1099. doi: 10.
1109/CVPR.2015.7298712 . 

Shin, H.-C., Orton, M.R., Collins, D.J., Doran, S.J., Leach, M.O., 2013. Stacked autoen-
coders for unsupervised feature learning and multiple organ detection in a pilot

study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1930–
1943. doi: 10.1109/TPAMI.2012.277 . 

Shin, H.-C., Roberts, K., Lu, L., Demner-Fushman, D., Yao, J., Summers, R. M., 2016a.

Learning to read chest x-rays: recurrent neural cascade model for automated
image annotation. arxiv: 1603.08486 . 

Shin, H.-C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Sum-
mers, R.M., 2016b. Deep convolutional neural networks for computer-aided de-
tection: CNN architectures, dataset characteristics and transfer learning. IEEE
Trans. Med. Imaging 35 (5), 1285–1298. doi: 10.1109/TMI.2016.2528162 . 

hkolyar, A., Gefen, A., Benayahu, D., Greenspan, H., 2015. Automatic detection of
cell divisions (mitosis) in live-imaging microscopy images using convolutional

neural networks. In: Proceedings of the IEEE Engineering in Medicine and Biol-
ogy Society, pp. 743–746. doi: 10.1109/EMBC.2015.7318469 . 

imonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N., 2016. A
deep metric for multimodal registration. In: Proceedings of the Medical Image

Computing and Computer-Assisted Intervention. In: Lecture Notes in Computer

Science, 9902, pp. 10–18. doi: 10.1007/978- 3- 319- 46726- 9 _ 2 . 
imonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale

image recognition. arxiv: 1409.1556 . 
Sirinukunwattana, K. , Raza, S.E.A. , Tsang, Y.-W. , Snead, D.R. , Cree, I.A. , Rajpoot, N.M. ,

2016. Locality sensitive deep learning for detection and classification of nu-
clei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35 (5),

1196–1206 . 

mistad, E., Løvstakken, L., 2016. Vessel detection in ultrasound images using deep
convolutional neural networks. In: Proceedings of the Deep Learning in Medical

Image Analysis (DLMIA). In: Lecture Notes in Computer Science, 10 0 08, pp. 30–
38. doi: 10.1007/978- 3- 319- 46976- 8 _ 4 . 

noek, J. , Larochelle, H. , Adams, R.P. , 2012. Practical Bayesian optimization of ma-
chine learning algorithms. In: Proceedings of the Advances in Neural Informa-

tion Processing Systems, pp. 2951–2959 . 

ong, Y., Tan, E.-L., Jiang, X., Cheng, J.-Z., Ni, D., Chen, S., Lei, B., Wang, T., 2017. Accu-
rate cervical cell segmentation from overlapping clumps in pap smear images.

IEEE Trans. Med. Imaging 36, 288–300. doi: 10.1109/TMI.2016.2606380 . 
ong, Y., Zhang, L., Chen, S., Ni, D., Lei, B., Wang, T., 2015. Accurate segmentation of

cervical cytoplasm and nuclei based on multiscale convolutional network and
graph partitioning. IEEE Trans. Biomed. Eng. 62 (10), 2421–2433. doi: 10.1109/

TBME.2015.2430895 . 

pampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., Leonardi, R., 2017. Deep
learning for automated skeletal bone age assessment in X-ray images. Med. Im-

age Anal. 36, 41–51. doi: 10.1016/j.media.2016.10.010 . 
pringenberg, J. T., Dosovitskiy, A., Brox, T., Riedmiller, M., 2014. Striving for simplic-

ity: the all convolutional net. arxiv: 1412.6806 . 
Štern, D., Payer, C., Lepetit, V., Urschler, M., 2016. Automated age estimation from

hand MRI volumes using deep learning. In: Proceedings of the Medical Image

Computing and Computer-Assisted Intervention. In: Lecture Notes in Computer
Science, 9901, pp. 194–202. doi: 10.1007/978- 3- 319- 46723- 8 _ 23 . 

tollenga, M.F. , Byeon, W. , Liwicki, M. , Schmidhuber, J. , 2015. Parallel multi-dimen-
sional LSTM, with application to fast biomedical volumetric image segmenta-

tion. In: Proceedings of the Advances in Neural Information Processing Systems,
pp. 2998–3006 . 

uk, H.-I., Lee, S.-W., Shen, D., 2014. Hierarchical feature representation and multi-

modal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101, 569–
582. doi: 10.1016/j.neuroimage.2014.06.077 . 

uk, H.-I., Lee, S.-W., Shen, D., 2015. Latent feature representation with stacked auto-
encoder for AD/MCI diagnosis. Brain Struct. Funct. 220, 841–859. doi: 10.1007/

s00429- 013- 0687- 3 . 
uk, H.-I., Shen, D., 2013. Deep learning-based feature representation for AD/MCI

classification. In: Proceedings of the Medical Image Computing and Computer-
Assisted Intervention. In: Lecture Notes in Computer Science, 8150, pp. 583–

590. doi: 10.1007/978- 3- 642- 40763- 5 _ 72 . 

Suk, H.-I., Shen, D., 2016. Deep ensemble sparse regression network for Alzheimer’s
disease diagnosis. In: Proceedings of the Medical Image Computing and

Computer-Assisted Intervention. In: Lecture Notes in Computer Science, 10019,
pp. 113–121. doi: 10.1007/978- 3- 319- 47157- 0 _ 14 . 

uk, H.-I., Wee, C.-Y., Lee, S.-W., Shen, D., 2016. State-space model with deep learn-
ing for functional dynamics estimation in resting-state FMRI. Neuroimage 129,

292–307. doi: 10.1016/j.neuroimage.2016.01.005 . 

un, W., Tseng, T.-L. B., Zhang, J., Qian, W., 2016a. Enhancing deep convolutional
neural network scheme for breast cancer diagnosis with unlabeled data.. Com-

put. Med. Imaging Graph doi: 10.1016/j.compmedimag.2016.07.004 . 
un, W. , Zheng, B. , Qian, W. , 2016b. Computer aided lung cancer diagnosis with

deep learning algorithms. In: Proceedings of the SPIE Medical Imaging, 9785,
p. 97850Z . 

Suzani, A . , Rasoulian, A . , Seitel, A . , Fels, S. , Rohling, R. , Abolmaesumi, P. , 2015. Deep

learning for automatic localization, identification, and segmentation of vertebral
bodies in volumetric MR images. In: Proceedings of the SPIE Medical Imaging,

9415, p. 941514 . 
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V., Rabinovich, A., 2014. Going deeper with convolutions. arxiv: 1409.4842 . 
achibana, R. , Näppi, J.J. , Hironaka, T. , Kim, S.H. , Yoshida, H. , 2016. Deep learning for

electronic cleansing in dual-energy ct colonography. In: Proceedings of the SPIE

Medical Imaging, 9785, p. 97851M . 
ajbakhsh, N., Gotway, M.B., Liang, J., 2015a. Computer-aided pulmonary embolism

detection using a novel vessel-aligned multi-planar image representation and
convolutional neural networks. In: Proceedings of the Medical Image Comput-

ing and Computer-Assisted Intervention. In: Lecture Notes in Computer Science,
9350, pp. 62–69. doi: 10.1007/978- 3- 319- 24571- 3 _ 8 . 

ajbakhsh, N., Gurudu, S.R., Liang, J., 2015b. A comprehensive computer-aided polyp

detection system for colonoscopy videos. In: Proceedings of the Information
Processing in Medical Imaging. In: Lecture Notes in Computer Science, 9123,

pp. 327–338. doi: 10.1007/978- 3- 319- 19992- 4 _ 25 . 

http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0207
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0207
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0207
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0207
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0207
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0207
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0207
http://dx.doi.org/10.1007/978-3-319-14148-0_1
http://arxiv.org/abs/1607.05074
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0209
http://dx.doi.org/10.1109/42.538937
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0211
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0211
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0211
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0211
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0211
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0211
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0212
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0212
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0212
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0212
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0212
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0212
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0212
http://arxiv.org/abs/1603.08631
http://arxiv.org/abs/064279
http://biorxiv.org/content/early/2016/07/21/064279.full.pdf
http://dx.doi.org/10.1007/978-3-319-19992-4_34
http://dx.doi.org/10.4103/2153-3539.179984
http://dx.doi.org/10.1109/TMI.2016.2536809
http://dx.doi.org/10.1007/978-3-319-46630-9_13
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0217
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0217
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0217
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0217
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0217
http://dx.doi.org/10.1109/ISBI.2016.7493261
http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0220
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0220
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0220
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0220
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0220
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0220
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0220
http://dx.doi.org/10.1007/978-3-319-46723-8_15
http://dx.doi.org/10.1007/978-3-319-19992-4_46
http://dx.doi.org/10.1109/JBHI.2017.2655720
http://dx.doi.org/10.1109/CVPR.2015.7298712
http://dx.doi.org/10.1109/TPAMI.2012.277
http://arxiv.org/abs/1603.08486
http://dx.doi.org/10.1109/TMI.2016.2528162
http://dx.doi.org/10.1109/EMBC.2015.7318469
http://dx.doi.org/10.1007/978-3-319-46726-9_2
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0229
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0229
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0229
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0229
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0229
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0229
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0229
http://dx.doi.org/10.1007/978-3-319-46976-8_4
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0231
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0231
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0231
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0231
http://dx.doi.org/10.1109/TMI.2016.2606380
http://dx.doi.org/10.1109/TBME.2015.2430895
http://dx.doi.org/10.1016/j.media.2016.10.010
http://arxiv.org/abs/1412.6806
http://dx.doi.org/10.1007/978-3-319-46723-8_23
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0236
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0236
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0236
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0236
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0236
http://dx.doi.org/10.1016/j.neuroimage.2014.06.077
http://dx.doi.org/10.1007/s00429-013-0687-3
http://dx.doi.org/10.1007/978-3-642-40763-5_72
http://dx.doi.org/10.1007/978-3-319-47157-0_14
http://dx.doi.org/10.1016/j.neuroimage.2016.01.005
http://dx.doi.org/10.1016/j.compmedimag.2016.07.004
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0243
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0243
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0243
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0243
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0244
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0244
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0244
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0244
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0244
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0244
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0244
http://arxiv.org/abs/1409.4842
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0245
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0245
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0245
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0245
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0245
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0245
http://dx.doi.org/10.1007/978-3-319-24571-3_8
http://dx.doi.org/10.1007/978-3-319-19992-4_25


G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 87 

T  

 

T  

 

T  

 

T  

 

 

T  

 

T  

T  

 

 

T  

 

v  

 

 

v  

 

 

v  

 

 

v  

 

V  

 

 

V  

 

V  

 

 

W  

 

W  

 

 

 

W  

W
W  

 

 

W  

 

W  

 

 

 

W  

 

 

W  

 

W  

 

 

W  

 

 

W  

 

 

W  

 

 

 

X  

 

X  

 

 

 

X  

 

 

 

X  

 

 

 

X  

 

X  

 

 

X  

 

X  

 

 

X  

X  

 

 

X  

 

 

X  

Y  

 

Y  

 

 

Y  

 

 

Y  

 

 

 

Y  

 

 

Y  

 

 

Y  

 

ajbakhsh, N. , Shin, J.Y. , Gurudu, S.R. , Hurst, R.T. , Kendall, C.B. , Gotway, M.B. , Liang, J. ,
2016. Convolutional neural networks for medical image analysis: fine tuning or

full training? IEEE Trans. Med. Imaging 35 (5), 1299–1312 . 
arando, S.R. , Fetita, C. , Faccinetto, A. , Yves, P. , 2016. Increasing CAD system efficacy

for lung texture analysis using a convolutional network. In: Proceedings of the
SPIE on Medical Imaging, 9785 . 97850Q–97850Q 

eikari, P., Santos, M., Poon, C., Hynynen, K., 2016. Deep learning convolutional net-
works for multiphoton microscopy vasculature segmentation. arxiv: 1606.02382 .

eramoto, A., Fujita, H., Yamamuro, O., Tamaki, T., 2016. Automated detection of pul-

monary nodules in PET/CT images: ensemble false-positive reduction using a
convolutional neural network technique. Med. Phys. 43, 2821–2827. doi: 10.1118/

1.4 94 84 98 . 
hong, W., Kadoury, S., Piché, N., Pal, C.J., 2016. Convolutional networks for kid-

ney segmentation in contrast-enhanced CT scans. Computer. Methods Biomech.
Biomed. Eng. Imag. Vis. 1–6. doi: 10.1080/21681163.2016.1148636 . 

ran, P.V., 2016. A fully convolutional neural network for cardiac segmentation in

short-axis MRI. arxiv: 1604.00494 . 
urkki, R., Linder, N., Kovanen, P.E., Pellinen, T., Lundin, J., 2016. Antibody-supervised

deep learning for quantification of tumor-infiltrating immune cells in hema-
toxylin and eosin stained breast cancer samples.. J. Pathol. Inf. 7, 38. doi: 10.

4103/2153-3539.189703 . 
winanda, A.P., Shehata, S., Mutter, D., Marescaux, J., de Mathelin, M., Padoy, N.,

2017. Endonet: a deep architecture for recognition tasks on laparoscopic videos.

IEEE Trans. Med. Imaging 36, 86–97. doi: 10.1109/TMI.2016.2593957 . 
an der Burgh, H.K., Schmidt, R., Westeneng, H.-J., de Reus, M.A., van den Berg, L.H.,

van den Heuvel, M.P., 2017. Deep learning predictions of survival based on MRI
in amyotrophic lateral sclerosis. Neuroimage Clin. 13, 361–369. doi: 10.1016/j.

nicl.2016.10.008 . 
an Ginneken, B., Setio, A .A ., Jacobs, C., Ciompi, F., 2015. Off-the-shelf convolutional

neural network features for pulmonary nodule detection in computed tomogra-

phy scans. In: Proceedings of the IEEE International Symposium on Biomedical
Imaging, pp. 286–289. doi: 10.1109/ISBI.2015.7163869 . 

an Grinsven, M.J.J.P., van Ginneken, B., Hoyng, C.B., Theelen, T., Sánchez, C.I., 2016.
Fast convolutional neural network training using selective data sampling: appli-

cation to hemorrhage detection in color fundus images. IEEE Trans. Med. Imag-
ing 35 (5), 1273–1284. doi: 10.1109/TMI.2016.2526689 . 

an Tulder, G. , de Bruijne, M. , 2016. Combining generative and discriminative repre-

sentation learning for lung CT analysis with convolutional Restricted Boltzmann
machines. IEEE Trans. Med. Imaging 35 (5), 1262–1272 . 

eta, M. , van Diest, P.J. , Pluim, J.P.W. , 2016. Cutting out the middleman: measuring
nuclear area in histopathology slides without segmentation. In: Proceedings of

the Medical Image Computing and Computer-Assisted Intervention. In: Lecture
Notes in Computer Science, 9901, pp. 632–639 . 

incent, P. , Larochelle, H. , Lajoie, I. , Bengio, Y. , Manzagol, P.-A. , 2010. Stacked de-

noising autoencoders: learning useful representations in a deep network with a
local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 . 

ivanti, R. , Ephrat, A. , Joskowicz, L. , Karaaslan, O. , Lev-Cohain, N. , Sosna, J. , 2015.
Automatic liver tumor segmentation in follow-up CT studies using convolutional

neural networks. In: Proceedings of the Patch-Based Methods in Medical Image
Processing Workshop, MICCAI’2015, pp. 54–61 . 

ang, C., Elazab, A., Wu, J., Hu, Q., 2016a. Lung nodule classification using deep
feature fusion in chest radiography. Comput. Med. Imaging Graph doi: 10.1016/j.

compmedimag.2016.11.004 . 

ang, C., Yan, X., Smith, M., Kochhar, K., Rubin, M., Warren, S.M., Wrobel, J., Lee, H.,
2015. A unified framework for automatic wound segmentation and analysis

with deep convolutional neural networks. In: Proceedings of the IEEE Engi-
neering in Medicine and Biology Society, pp. 2415–2418. doi: 10.1109/EMBC.2015.

7318881 . 
ang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A. H., 2016b. Deep learning for

identifying metastatic breast cancer. arxiv: 1606.05718 . 

ang, G. , 2016. A perspective on deep imaging. IEEE Access 4, 8914–8924 . 
ang, H., Cruz-Roa, A., Basavanhally, A., Gilmore, H., Shih, N., Feldman, M.,

Tomaszewski, J., Gonzalez, F., Madabhushi, A., 2014. Mitosis detection in breast
cancer pathology images by combining handcrafted and convolutional neural

network features. J. Med. Imaging 1, 034003. doi: 10.1117/1.JMI.1.3.034003 . 
ang, J., Ding, H., Azamian, F., Zhou, B., Iribarren, C., Molloi, S., Baldi, P., 2017.

Detecting cardiovascular disease from mammograms with deep learning. IEEE

Trans. Med. Imaging doi: 10.1109/TMI.2017.2655486 . 
ang, J., MacKenzie, J.D., Ramachandran, R., Chen, D.Z., 2016. A deep learning

approach for semantic segmentation in histology tissue images. In: Proceed-
ings of the Medical Image Computing and Computer-Assisted Intervention. In:

Lecture Notes in Computer Science, 9901. Springer, pp. 176–184. doi: 10.1007/
978- 3- 319- 46723- 8 _ 21 . 

ang, S., Yao, J., Xu, Z., Huang, J., 2016d. Subtype cell detection with an acceler-

ated deep convolution neural network. In: Proceedings of the Medical Image
Computing and Computer-Assisted Intervention. In: Lecture Notes in Computer

Science, 9901, pp. 640–648. doi: 10.1007/978- 3- 319- 46723- 8 _ 74 . 
ang, X., Lu, L., Shin, H.-c., Kim, L., Nogues, I., Yao, J., Summers, R., 2016e. Unsu-

pervised category discovery via looped deep pseudo-task optimization using a
large scale radiology image database. arxiv: 1603.07965 . 

olterink, J.M., Leiner, T., de Vos, B.D., van Hamersvelt, R.W., Viergever, M.A., Is-

gum, I., 2016. Automatic coronary artery calcium scoring in cardiac CT angiogra-
phy using paired convolutional neural networks. Med. Image Anal. 34, 123–136.

doi: 10.1016/j.media.2016.04.004 . 

 

orrall, D.E., Wilson, C.M., Brostow, G.J., 2016. Automated retinopathy of prematu-
rity case detection with convolutional neural networks. In: Proceedings of the

Deep Learning in Medical Image Analysis (DLMIA). In: Lecture Notes in Com-
puter Science, 10 0 08, pp. 68–76. doi: 10.1007/978- 3- 319- 46976- 8 _ 8 . 

u, A., Xu, Z., Gao, M., Buty, M., Mollura, D.J., 2016. Deep vessel tracking: a gen-
eralized probabilistic approach via deep learning. In: proceedings of the IEEE

International Symposium on Biomedical Imaging, pp. 1363–1367. doi: 10.1109/
ISBI.2016.7493520 . 

u, G., Kim, M., Wang, Q., Gao, Y., Liao, S., Shen, D., 2013. Unsupervised deep

feature learning for deformable registration of MR brain images. In: Pro-
ceedings of the Medical Image Computing and Computer-Assisted Interven-

tion. In: Lecture Notes in Computer Science, 8150, pp. 649–656. doi: 10.1007/
978- 3- 642- 40763- 5 _ 80 . 

ie, W. , Noble, J.A . , Zisserman, A . , 2016a. Microscopy cell counting and detec-
tion with fully convolutional regression networks. Comput. Methods Biomech.

Biomed. Eng. Imaging Vis. 1–10 . 

ie, Y., Kong, X., Xing, F., Liu, F., Su, H., Yang, L., 2015a. Deep voting: a robust ap-
proach toward nucleus localization in microscopy images. In: Proceedings of

the Medical Image Computing and Computer-Assisted Intervention. In: Lecture
Notes in Computer Science, 9351, pp. 374–382. doi: 10.1007/978- 3- 319- 24574- 4 _

45 . 
ie, Y., Xing, F., Kong, X., Su, H., Yang, L., 2015b. Beyond classification: structured

regression for robust cell detection using convolutional neural network. In: Pro-

ceedings of the Medical Image Computing and Computer-Assisted Interven-
tion. In: Lecture Notes in Computer Science, 9351, pp. 358–365. doi: 10.1007/

978- 3- 319- 24574- 4 _ 43 . 
ie, Y., Zhang, Z., Sapkota, M., Yang, L., 2016b. Spatial clockwork recurrent neural

network for muscle perimysium segmentation. In: Proceedings of the Interna-
tional Conference on Medical Image Computing and Computer-Assisted Inter-

vention. In: Lecture Notes in Computer Science, 9901. Springer, pp. 185–193.

doi: 10.1007/978- 3- 319- 46723- 8 _ 22 . 
ing, F., Xie, Y., Yang, L., 2016. An automatic learning-based framework for robust

nucleus segmentation. IEEE Trans. Med. Imaging 35 (2), 550–566. doi: 10.1109/
TMI.2015.2481436 . 

u, J., Luo, X., Wang, G., Gilmore, H., Madabhushi, A., 2016a. A deep convolutional
neural network for segmenting and classifying epithelial and stromal regions in

histopathological images. Neurocomputing 191, 214–223. doi: 10.1016/j.neucom.

2016.01.034 . 
u, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A., 2016b. Stacked

sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology
images. IEEE Trans. Med. Imaging 35, 119–130. doi: 10.1109/TMI.2015.2458702 . 

u, T., Zhang, H., Huang, X., Zhang, S., Metaxas, D.N., 2016c. Multimodal deep learn-
ing for cervical dysplasia diagnosis. In: Proceedings of the Medical Image Com-

puting and Computer-Assisted Intervention. In: Lecture Notes in Computer Sci-

ence, 9901, pp. 115–123. doi: 10.1007/978- 3- 319- 46723- 8 _ 14 . 
u, Y., Li, Y., Liu, M., Wang, Y., Lai, M., Chang, E. I.-C., 2016d. Gland instance segmen-

tation by deep multichannel side supervision. arxiv: 1607.03222 . 
u, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., Chang, E.I.C., 2014. Deep learning of fea-

ture representation with multiple instance learning for medical image analysis.
In: Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 1626–1630. doi: 10.1109/ICASSP.2014.6853873 . 
u, Z., Huang, J., 2016. Detecting 10,0 0 0 Cells in one second. In: Proceed-

ings of the Medical Image Computing and Computer-Assisted Intervention.

In: Lecture Notes in Computer Science, 9901, pp. 676–684. doi: 10.1007/
978- 3- 319- 46723- 8 _ 78 . 

ue, D.-X., Zhang, R., Feng, H., Wang, Y.-L., 2016. CNN-SVM For microvascular mor-
phological type recognition with data augmentation. J. Med. Biol. Eng. 36, 755–

764. doi: 10.1007/s40846- 016- 0182- 4 . 
an, Z. , Zhan, Y. , Peng, Z. , Liao, S. , Shinagawa, Y. , Zhang, S. , Metaxas, D.N. , Zhou, X.S. ,

2016. Multi-instance deep learning: discover discriminative local anatomies for

bodypart recognition. IEEE Trans. Med. Imaging 35 (5), 1332–1343 . 
ang, D., Zhang, S., Yan, Z., Tan, C., Li, K., Metaxas, D., 2015. Automated anatomical

landmark detection on distal femur surface using convolutional neural network.
In: proceedings of the IEEE International Symposium on Biomedical Imaging,

pp. 17–21. doi: 10.1109/isbi.2015.7163806 . 
ang, H., Sun, J., Li, H., Wang, L., Xu, Z., 2016a. Deep fusion net for multi-atlas seg-

mentation: Application to cardiac mr images. In: Proceedings of the Medical Im-

age Computing and Computer-Assisted Intervention. In: Lecture Notes in Com-
puter Science, 9901, pp. 521–528. doi: 10.1007/978- 3- 319- 46723- 8 _ 60 . 

ang, L., Zhang, Y., Guldner, I.H., Zhang, S., Chen, D.Z., 2016b. 3d segmentation of
glial cells using fully convolutional networks and k -terminal cut. In: Proceed-

ings of the Medical Image Computing and Computer-Assisted Intervention. In:
Lecture Notes in Computer Science, 9901. Springer, pp. 658–666. doi: 10.1007/

978- 3- 319- 46723- 8 _ 76 . 

ang, W., Chen, Y., Liu, Y., Zhong, L., Qin, G., Lu, Z., Feng, Q., Chen, W., 2016c. Cas-
cade of multi-scale convolutional neural networks for bone suppression of chest

radiographs in gradient domain.. Med. Image Anal. 35, 421–433. doi: 10.1016/j.
media.2016.08.004 . 

ang, X., Kwitt, R., Niethammer, M., 2016d. Fast predictive image registration.
In: Proceedings of the Deep Learning in Medical Image Analysis (DLMIA).

In: Lecture Notes in Computer Science, 10 0 08, pp. 48–57. doi: 10.1007/

978- 3- 319- 46976- 8 _ 6 . 
ao, J., Wang, S., Zhu, X., Huang, J., 2016. Imaging biomarker discovery for lung can-

cer survival prediction. In: Proceedings of the Medical Image Computing and
Computer-Assisted Intervention. In: Lecture Notes in Computer Science, 9901,

pp. 649–657. doi: 10.1007/978- 3- 319- 46723- 8 _ 75 . 

http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0248
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0248
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0248
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0248
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0248
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0248
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0248
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0248
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0249
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0249
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0249
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0249
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0249
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0249
http://arxiv.org/abs/1606.02382
http://dx.doi.org/10.1118/1.4948498
http://dx.doi.org/10.1080/21681163.2016.1148636
http://arxiv.org/abs/1604.00494
http://dx.doi.org/10.4103/2153-3539.189703
http://dx.doi.org/10.1109/TMI.2016.2593957
http://dx.doi.org/10.1016/j.nicl.2016.10.008
http://dx.doi.org/10.1109/ISBI.2015.7163869
http://dx.doi.org/10.1109/TMI.2016.2526689
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0252
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0252
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0252
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0255
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0255
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0255
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0255
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0256
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0256
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0256
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0256
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0256
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0256
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0257
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0257
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0257
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0257
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0257
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0257
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0257
http://dx.doi.org/10.1016/j.compmedimag.2016.11.004
http://dx.doi.org/10.1109/EMBC.2015.7318881
http://arxiv.org/abs/1606.05718
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0262
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0262
http://dx.doi.org/10.1117/1.JMI.1.3.034003
http://dx.doi.org/10.1109/TMI.2017.2655486
http://dx.doi.org/10.1007/978-3-319-46723-8_21
http://dx.doi.org/10.1007/978-3-319-46723-8_74
http://arxiv.org/abs/1603.07965
http://dx.doi.org/10.1016/j.media.2016.04.004
http://dx.doi.org/10.1007/978-3-319-46976-8_8
http://dx.doi.org/10.1109/ISBI.2016.7493520
http://dx.doi.org/10.1007/978-3-642-40763-5_80
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0271
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0271
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0271
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0271
http://dx.doi.org/10.1007/978-3-319-24574-4_45
http://dx.doi.org/10.1007/978-3-319-24574-4_43
http://dx.doi.org/10.1007/978-3-319-46723-8_22
http://dx.doi.org/10.1109/TMI.2015.2481436
http://dx.doi.org/10.1016/j.neucom.2016.01.034
http://dx.doi.org/10.1109/TMI.2015.2458702
http://dx.doi.org/10.1007/978-3-319-46723-8_14
http://arxiv.org/abs/1607.03222
http://dx.doi.org/10.1109/ICASSP.2014.6853873
http://dx.doi.org/10.1007/978-3-319-46723-8_78
http://dx.doi.org/10.1007/s40846-016-0182-4
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0282
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0282
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0282
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0282
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0282
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0282
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0282
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0282
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0282
http://dx.doi.org/10.1109/isbi.2015.7163806
http://dx.doi.org/10.1007/978-3-319-46723-8_60
http://dx.doi.org/10.1007/978-3-319-46723-8_76
http://dx.doi.org/10.1016/j.media.2016.08.004
http://dx.doi.org/10.1007/978-3-319-46976-8_6
http://dx.doi.org/10.1007/978-3-319-46723-8_75


88 G. Litjens et al. / Medical Image Analysis 42 (2017) 60–88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z  

 

 

 

Z  

 

Z  

Z  

 

 

 

Z  

 

 

Z  

 

Z  

 

 

Z  

 

 

Yoo, Y., Tang, L.W., Brosch, T., Li, D.K.B., Metz, L., Traboulsee, A., Tam, R., 2016. Deep
learning of brain lesion patterns for predicting future disease activity in patients

with early symptoms of multiple sclerosis. In: Proceedings of the Deep Learn-
ing in Medical Image Analysis (DLMIA). In: Lecture Notes in Computer Science,

10 0 08, pp. 86–94. doi: 10.1007/978- 3- 319- 46976- 8 _ 10 . 
Ypsilantis, P.-P., Siddique, M., Sohn, H.-M., Davies, A., Cook, G., Goh, V., Montana, G.,

2015. Predicting response to neoadjuvant chemotherapy with pet imaging using
convolutional neural networks. PLoS One 10 (9), 1–18. doi: 10.1371/journal.pone.

0137036 . 

Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A., 2017a. Automated melanoma recogni-
tion in dermoscopy images via very deep residual networks. IEEE Trans. Med.

Imaging 36 (4), 994–1004. doi: 10.1109/TMI.2016.2642839 . 
Yu, L., Guo, Y., Wang, Y., Yu, J., Chen, P., 2017b. Segmentation of fetal left ventricle in

echocardiographic sequences based on dynamic convolutional neural networks.
IEEE Trans. Biomed. Eng. 64 (8), 1886–1895. doi: 10.1109/TBME.2016.2628401 . 

Yu, L. , Yang, X. , Chen, H. , Qin, J. , Heng, P.A. , 2017c. Volumetric convnets with mixed

residual connections for automated prostate segmentation from 3D MR images.
In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence . 

Zeiler, M.D. , Fergus, R. , 2014. Visualizing and understanding convolutional networks.
In: Proceedings of the European Conference on Computer Vision, pp. 818–833 . 

Zhang, H., Li, L., Qiao, K., Wang, L., Yan, B., Li, L., Hu, G., 2016a. Image prediction for
limited-angle tomography via deep learning with convolutional neural network.

arxiv: 1607.08707 . 

Zhang, L., Gooya, A., Dong, B.H.R., Petersen, S.E., Medrano-Gracia, K.P., Frangi, A.F.,
2016b. Automated quality assessment of cardiac MR images using convolutional

neural networks. In: Proceedings of the Simulation and Synthesis in Medical
Imaging (SASHIMI). In: Lecture Notes in Computer Science, 9968, pp. 138–145.

doi: 10.1007/978- 3- 319- 46630- 9 _ 14 . 
Zhang, Q., Xiao, Y., Dai, W., Suo, J., Wang, C., Shi, J., Zheng, H., 2016c. Deep learning

based classification of breast tumors with shear-wave elastography. Ultrasonics

72, 150–157. doi: 10.1016/j.ultras.2016.08.004 . 
hang, R., Zheng, Y., Mak, T.W.C., Yu, R., Wong, S.H., Lau, J.Y.W., Poon, C.C.Y., 2017.
Automatic detection and classification of colorectal polyps by transferring low-

level CNN features from nonmedical domain. IEEE J. Biomed. Health Inf. 21, 41–
47. doi: 10.1109/JBHI.2016.2635662 . 

Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D., 2015. Deep convolutional
neural networks for multi-modality isointense infant brain image segmentation.

Neuroimage 108, 214–224. doi: 10.1016/j.neuroimage.2014.12.061 . 
hao, J., Zhang, M., Zhou, Z., Chu, J., Cao, F., 2016. Automatic detection and classifica-

tion of leukocytes using convolutional neural networks. Med. Biol. Eng. Comput.

doi: 10.1007/s11517- 016- 1590- x . 
hao, L., Jia, K., 2016. Multiscale CNNs for brain tumor segmentation and diagnosis.

Comput. Math. Methods Med. 2016, 8356294. doi: 10.1155/2016/8356294 . 
heng, Y., Liu, D., Georgescu, B., Nguyen, H., Comaniciu, D., 2015. 3D deep learn-

ing for efficient and robust landmark detection in volumetric data. In: Pro-
ceedings of the Medical Image Computing and Computer-Assisted Interven-

tion. In: Lecture Notes in Computer Science, 9349, pp. 565–572. doi: 10.1007/

978- 3- 319- 24553- 9 _ 69 . 
hou, X. , Ito, T. , Takayama, R. , Wang, S. , Hara, T. , Fujita, H. , 2016. Three-dimensional

CT image segmentation by combining 2D fully convolutional network with 3D
majority voting. In: Proceedings of the Deep Learning in Medical Image Analysis

(DLMIA). In: Lecture Notes in Computer Science, 10 0 08, pp. 111–120 . 
hu, Y., Wang, L., Liu, M., Qian, C., Yousuf, A., Oto, A., Shen, D., 2017. MRI Based

prostate cancer detection with high-level representation and hierarchical classi-

fication. Med. Phys. 44 (3), 1028–1039. doi: 10.1002/mp.12116 . in press 
illy, J., Buhmann, J.M., Mahapatra, D., 2017. Glaucoma detection using entropy sam-

pling and ensemble learning for automatic optic cup and disc segmentation.
Comput. Med. Imaging Graph 55, 28–41. doi: 10.1016/j.compmedimag.2016.07.

012 . 
reik, M., Leiner, T., de Vos, B., van Hamersvelt, R., Viergever, M., Isgum, I., 2016.

Automatic segmentation of the left ventricle in cardiac CT angiography using

convolutional neural networks. In: Proceedings of the IEEE International Sym-
posium on Biomedical Imaging, pp. 40–43. doi: 10.1109/ISBI.2016.7493206 . 

http://dx.doi.org/10.1007/978-3-319-46976-8_10
http://dx.doi.org/10.1371/journal.pone.0137036
http://dx.doi.org/10.1109/TMI.2016.2642839
http://dx.doi.org/10.1109/TBME.2016.2628401
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0293
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0293
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0293
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0293
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0293
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0293
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0294
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0294
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0294
http://arxiv.org/abs/1607.08707
http://dx.doi.org/10.1007/978-3-319-46630-9_14
http://dx.doi.org/10.1016/j.ultras.2016.08.004
http://dx.doi.org/10.1109/JBHI.2016.2635662
http://dx.doi.org/10.1016/j.neuroimage.2014.12.061
http://dx.doi.org/10.1007/s11517-016-1590-x
http://dx.doi.org/10.1155/2016/8356294
http://dx.doi.org/10.1007/978-3-319-24553-9_69
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0302
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0302
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0302
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0302
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0302
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0302
http://refhub.elsevier.com/S1361-8415(17)30113-5/sbref0302
http://dx.doi.org/10.1002/mp.12116
http://dx.doi.org/10.1016/j.compmedimag.2016.07.012
http://dx.doi.org/10.1109/ISBI.2016.7493206

	A survey on deep learning in medical image analysis
	1 Introduction
	2 Overview of deep learning methods
	2.1 Learning algorithms
	2.2 Neural networks
	2.3 Convolutional neural networks (CNNs)
	2.4 Deep CNN architectures
	2.4.1 General classification architectures
	2.4.2 Multi-stream architectures
	2.4.3 Segmentation architectures

	2.5 Recurrent neural networks (RNNs)
	2.6 Unsupervised models
	2.6.1 Auto-encoders (AEs) and stacked auto-encoders (SAEs)
	2.6.2 Restricted Boltzmann machines (RBMs) and deep belief networks (DBNs)
	2.6.3 Variational auto-Encoders and generative adverserial networks

	2.7 Hardware and software

	3 Deep learning uses in medical imaging
	3.1 Classification
	3.1.1 Image/exam classification
	3.1.2 Object or lesion classification

	3.2 Detection
	3.2.1 Organ, region and landmark localization
	3.2.2 Object or lesion detection

	3.3 Segmentation
	3.3.1 Organ and substructure segmentation
	3.3.2 Lesion segmentation

	3.4 Registration
	3.5 Other tasks in medical imaging
	3.5.1 Content-based image retrieval
	3.5.2 Image generation and enhancement
	3.5.3 Combining image data with reports


	4 Anatomical application areas
	4.1 Brain
	4.2 Eye
	4.3 Chest
	4.4 Digital pathology and microscopy
	4.5 Breast
	4.6 Cardiac
	4.7 Abdomen
	4.8 Musculoskeletal
	4.9 Other

	5 Discussion
	5.1 Overview
	5.2 Key aspects of successful deep learning methods
	5.3 Unique challenges in medical image analysis
	5.4 Outlook

	 Acknowledgments
	Appendix A Literature selection
	 References


