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Cardiovascular imaging is going to change substantially in the next decade, fueled by the deep learning revolution.

For medical professionals, it is important to keep track of these developments to ensure that deep learning can have

meaningful impact on clinical practice. This review aims to be a stepping stone in this process. The general concepts

underlying most successful deep learning algorithms are explained, and an overview of the state-of-the-art deep

learning in cardiovascular imaging is provided. This review discusses >80 papers, covering modalities ranging from

cardiac magnetic resonance, computed tomography, and single-photon emission computed tomography, to intra-

vascular optical coherence tomography and echocardiography. Many different machines learning algorithms were

used throughout these papers, with the most common being convolutional neural networks. Recent algorithms such

as generative adversarial models were also used. The potential implications of deep learning algorithms on clinical

practice, now and in the near future, are discussed. (J Am Coll Cardiol Img 2019;12:1549–65)

© 2019 by the American College of Cardiology Foundation.
D eep learning techniques have recently revo-
lutionized many fields, from computer
vision and natural image classification to

speech recognition and language processing (1,2). In
addition, deep learning methods have started to have
a profound influence on medical imaging (3,4). This is
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exemplified by several key papers that
have illustrated deep learning methods that are per-
forming on par with experienced physicians for spe-
cific tasks, such as in disease classification in
dermatology (5), diagnosing diabetic retinopathy in
ophthalmology (6,7), and finding metastases in lymph
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ABBR EV I A T I ON S

AND ACRONYMS

3D = 3 dimensional

ACDC = Automatic Cardiac

Diagnosis Challenge

ANN = artificial neural network

CCTA = coronary compute

tomography angiography

CMR = cardiac magnetic

resonance

CNN = convolutional neural

network

CT = computed tomography

ED = end-diastolic

ES = end-systolic

FCN = fully convolutional

neural network

GAN = generative adversarial

network

LVEF = left ventricular ejection

fraction

RNN = recurrent neural

network
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nodes in pathology (8). These developments
are not limited to the research setting, because
deep learning-based algorithms and software
are making their way into the clinic, with the
first applications now receiving Food and
Drug Administration approval.

Because of the large number of cardiac im-
ages that are routinely acquired with a wide
range of modalities (9), there has been a surge
in publications applying deep learning in the
cardiac domain (Figure 1). In this review, we
aim to provide an introduction to basic deep
learning concepts and their possibilities, and
offer an overview of the state of the art in deep
learning for cardiovascular image analysis.

Several other reviews have already dis-
cussed the impact of machine learning or
deep learning on (parts of) cardiology and
cardiovascular imaging (4,10–14). The work
by Slomka et al. (12) and Litjens et al. (4) are
most similar to the current survey. Slomka
et al. (12) reviewed cardiovascular imaging
techniques in general and discussed ap-
proaches to automation, in which deep learning
played an important part. However, only a few
studies that applied deep learning to cardiovascular
imaging were covered by Slomka et al. (12). Litjens
et al. (4) reviewed applications of deep learning to
medical imaging in general, but only covered studies
that appeared before early 2017, whereas many works
on cardiovascular imaging appeared after that date.

This review includes >80 original research papers
on applications of deep learning to cardiovascular
image analysis. This includes 15 papers from our pre-
vious survey (4) and an update with >60 papers that
appeared after the publication of Litjens et al. (4).
These papers were selected by querying PubMed for
publications between January 1, 2017, and January 1,
2019, containing “deep learning” OR “convolutional”
OR “machine learning”, which resulted in 4,327 pa-
pers. Papers that focused on cardiovascular image
analysis were manually selected based on the title and
abstract for inclusion in this survey.

The survey is structured as follows. History of
Cardiovascular Image Analysis provides a historical
background on cardiovascular image analysis before
the introduction of deep learning methods. Basis of
Deep Learning introduces some key concepts and
techniques in deep learning that have driven recent
developments. In Applications, we review recent
deep learning publications for anatomical, func-
tional, and intraoperative cardiovascular imaging
across computed tomography (CT), cardiac magnetic
resonance (CMR), single-photon emission computed
tomography, ultrasound, and other modalities.
Finally, the Discussion section contains an overview
on the current and future implications of deep
learning on cardiovascular image analysis in clinical
practice.

HISTORY OF CARDIOVASCULAR

IMAGE ANALYSIS

Before the advent of deep learning, a wealth of
techniques had been developed to extract clinically
relevant information from cardiovascular images.
Early algorithms typically required significant manual
tuning to transform an input image into the desired
output (15).

More modern algorithms included a higher level of
automation. Some algorithms directly used image
intensities to drive an automated algorithm (e.g.,
level sets for segmentation) (16,17) or minimum cost
path computation for vessel centerline extraction
(18). Other methods extracted handcrafted features
from cardiovascular images and then fed those to a
statistical classifier, such as a support vector machine
(19), to perform some form of disease prediction.
These features generally described characteristics
such as texture and shape (20–22). Recently, research
moved in a new direction, typically referred to as
radiomics (23), in which hundreds or even thousands
of highly abstract features were automatically
extracted from medical images. Subsequently, sta-
tistical classifiers have to figure out which features
are relevant for the task at hand.

One key commonality between these approaches is
that the features are designed by humans and sub-
sequently fed to a prediction model. In contrast, deep
learning algorithms simultaneously learn relevant
features and the prediction model from input image
to desired outcome, which is often referred to as end-
to-end learning.

Nonetheless, many successful studies were per-
formed with traditional methods. Most focused on
segmentation of anatomical structures in cardiac im-
ages for visualization or quantitative analysis (24–28).
For example, automatic contouring of the left
ventricle and determination of the left ventricular
ejection fraction (LVEF) in short-axis cine MR images
and 3-dimensional (3D) echocardiography has long
been a topic of research (24,26). In coronary CT
angiography (CCTA), analysis of coronary arteries for
the detection of luminal stenosis and atherosclerotic
plaque requires the development of vessel detection
(27) and lumen segmentation methods (28). In the last
couple of years, machine learning approaches have
also explored direct prediction of patient outcome



FIGURE 1 Applications of Deep Learning in Cardiovascular Imaging
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A simple illustration of the variety of applications deep learning�based methods have in cardiovascular imaging. We highlight 5 examples here across 5 different

modalities and anatomies. (Top left) vessel lumen measurement (adapted from Yong et al. [58]), (top right) report generation (created based on Moradi et al. [59]),

(middle right) left ventricle segmentation, (middle left) obstructive disease prediction (adapted with permission from Betancur et al. [50]), and (bottom) calcium

deposit detection (adapted with permission from Lessmann et al. [46]). CMR ¼ cardiac magnetic resonance; CNN ¼ convolutional neural network; CT ¼ computed

tomography; LCx ¼ left circumflex; LAD ¼ left anterior descending; OCT ¼ optical coherence tomography; RCA ¼ right coronary artery; SPECT ¼ single-photon

emission computer tomography; TAC ¼ thoracic aortic calcification; US ¼ ultrasound.
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based on parameters extracted from images obtained
via nuclear cardiology (29).

To encourage machine learning researchers to work
on cardiovascular imaging and to provide frameworks
for comparison of different methods, challenges with
standardized datasets and evaluation criteria have
been set up. These include challenges for right
ventricle segmentation in cardiac MR (30), automatic
contouring of the left ventricle in 3D echocardiography
(31), coronary centerline extraction (32), stenosis
detection in CCTA (33), and coronary artery calcium
scoring in cardiac CT (34), among others.
Although many conventional techniques showed
promising results in challenging settings, they were
often not robust yet for a routine clinical environ-
ment. Many have now been superseded, either in
performance or in efficiency, by deep learning�based
methods, which will be discussed in the Discussion
section.

BASICS OF DEEP LEARNING

At the heart of all currently popular deep learning
methods are artificial neural networks (ANNs). In this



FIGURE 2 Schematic Drawing of an Artificial Neural Network With 5 Layers

X1

X2

X3

X4

f y
W1X1
W2X2
W3X3

+
+
+

W4X4

The input and output layers in this drawing are indicated in blue and green; the hidden layers are in pink. The output node y has been

highlighted to show explicitly the mathematical operation that occurs in every neuron. Each input xi to a neuron has its own weight wi,

indicated here with separate colors. Subsequently, a nonlinear function f is applied to the result.

Litjens et al. J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 2 , N O . 8 , 2 0 1 9

Deep Learning in Cardiovascular Image Analysis A U G U S T 2 0 1 9 : 1 5 4 9 – 6 5

1552
section, we introduce the basics of these networks
and the higher level concepts that are important to be
able to understand and assess the quality of publi-
cations that apply deep learning to cardiovascular
image analysis. For a more thorough review of the
history and technical aspects of deep learning, we
recommend the review by LeCun et al. (2).

ARTIFICIAL NEURONS AND NEURAL NETWORKS.

An ANN consists of a large number of artificial neu-
rons. A simple example of an ANN is shown in
Figure 2. A single artificial neuron can have multiple
inputs that are combined into a single output. Each
input is multiplied by a coefficient, typically referred
to as a weight, and all multiplied inputs are summed.
Often an extra coefficient, the bias, is added to this
summation. Subsequently, the resultant value is
passed through a nonlinear function.

The strength of ANNs lies in the fact that by
combining many neurons in layers, highly nonlinear
relationships between the input and the desired
output can be modeled, which is typically needed to
obtain accurate predictions. Although ANNs have
been around since the late 1950s (35) and even saw
successful application in medical imaging in 1995
(36), they never achieved the popularity they have
now. One of the key reasons, next to methodological
developments, was the lack of computational power,
which forced researchers to only use networks that
were only a few layers deep. Generally, the relation-
ship between a medical image and the desired output
is too complex to capture efficiently with such
shallow ANNs. Over the past decade, these issues
have been resolved because of the increasing avail-
ability of affordable computational power. Currently,
researchers can easily build ANNSs of tens or even
hundreds of layers. This has enabled direct applica-
tion of neural networks to medical images without
previous feature extraction.

DIFFERENT NETWORK STRUCTURES FOR DIFFERENT

TASKS. Depending on the task that is being solved
(e.g., image classification, image enhancement), a
specific neural network structure, or architecture, can
be chosen that is optimally suited for that specific
task. In this case, the architecture refers to how many
layers and neurons are in the neural network and how
they are connected.



FIGURE 3 Schematic Drawing of Convolutional Layers in a Neural Network

Input image Filter Convolution result Convolution resultDownsample Filter

Schematic drawing of 2 subsequent convolution layers with 1 downsampling (or pooling) layer. This network tries to identify locations of 2 diagonally-

oriented blue dots. By splitting this across 2 layers, this problem can be solved with 2 small filters. In the first layer, we look for blue dots. The filter is

applied to every position in the image and shows high responses (dark grey) where the image is most similar to the filter. In the second layer, we look for

positive detections from the first layer in a diagonal orientation. By stacking many convolutional layers in a neural network, complex patterns can be

identified and detected.
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The most common architecture in image analysis is
the convolutional neural network (CNN). Compared
with standard ANNs, CNNs dramatically reduce the
number of coefficients (weights) in the network by
sharing weights at each location in the image. This
leads to the networks applying a convolution opera-
tion, hence, the name convolutional neural network.
A simple illustration of a convolution is shown in
Figure 3. Generally, convolutional neural networks
consist of both convolutional and pooling layers.
Pooling layers do not have coefficients or weights, but
downsample the data, typically by a factor of 2. This
reduces the resolution of the image but increases the
field of view of subsequent layers, which help CNNs
incorporate more contextual information. This is also
shown via a simple example in Figure 3. Most con-
volutional networks for image classification or
regression also contain $1 fully connected layers at
the end of the network. These layers are the same as
in regular ANNs, as shown in Figure 2, and are
FIGURE 4 Schematic Drawing of a 15-Layer Convolutional Neural Ne
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A convolutional neural network for calcium scoring in chest CT (46) , with

those developed over the past few years, contain thousands of neurons.

works, block diagram representation, such as presented here, are often
intended to summarize all feature information into a
single prediction. An example of a typical CNN ar-
chitecture is shown in Figure 4 (37). Alternatively, the
architecture of CNNs can be adapted to perform
image segmentation. For example, use cases in car-
diovascular imaging are left or right ventricle seg-
mentation. Such architectures, which take an image
as input and directly predict an image-sized seg-
mentation, are called fully convolutional networks
(FCNs). An example of such an architecture is shown
in Figure 5, and is called U-net, due to its U-like shape
(38).

A second type of neural network architecture used
in medical imaging is the recurrent neural network
(RNN). RNNs are often used for sequential data, such
as electrocardiography, text, or cine-MRI. An RNN
takes the first instance of a sequence, makes a pre-
diction, and then takes its own output in combination
with the next instance of the sequence for subsequent
predictions. This is shown in Figure 6.
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each layer represented by a color-coded rectangle. Convolutional neural networks, especially

The representation shown in Figure 2 would become extremely cluttered. Thus, in published

encountered. Abbreviation as in Figure 1.



FIGURE 5 Schematic Drawing of a U-Net
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U-net for left ventricle segmentation in MRI, such as used by Tao et al. (55). In addition to the downsampling path, which is similar to the network shown in Figure 4,

this type of architecture contains an upsampling path that incorporates both low- and high-resolution features. The dashed arrows indicate a concatenation of

features. Abbreviation as in Figure 1.

Litjens et al. J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 2 , N O . 8 , 2 0 1 9

Deep Learning in Cardiovascular Image Analysis A U G U S T 2 0 1 9 : 1 5 4 9 – 6 5

1554
SUPERVISED AND UNSUPERVISED LEARNING.

The coefficients (or weights) in neural networks are
typically initialized randomly, and their values need
to be modified so the networks give a meaningful
output. This modification process is what is typically
referred to as “training” the neural network. This
process is in essence the same as fitting a regression
model to your data. Most of the studies included in
this review trained deep neural networks using su-
pervised learning, that is, during training, the neural
network had access to both the input (e.g., medical
image) and the reference (e.g., diagnostic label). This
is referred to as a labeled dataset. In the supervised
setting, neural networks are optimized by providing a
network with example input images, predicting the
output, calculating the error, and then computing
how much each coefficient contributed to this error.
Subsequently, all coefficients of the neural network
are slightly updated to minimize the error. This is
repeated many times until the error does not signifi-
cantly decrease anymore.

In contrast, in unsupervised learning, the refer-
ence is not available during training, only the input
data (e.g. medical images) are available. The data
are then referred to as unlabeled data. Although
this setting is less common in medical imaging, it is
gaining in popularity. The main reason is that
medical image data are widely available (e.g., in
Picture Archiving and Communication Systems
[PACS]), but accurate labels are less easy to obtain
and generally require extensive expert input. By
using unsupervised learning, we can still leverage
this wealth of unlabeled data. We will briefly
discuss one of the most popular unsupervised deep
learning algorithms: generative adversarial networks
(GANs).



FIGURE 6 Schematic Drawing of Recurrent Neural Network

Schematic drawing of a 2-layer recurrent neural network. The curved arrows

highlight the feedback loop in these networks, which makes them ideal for

sequence data, such as electrocardiography or cine-MRI. Another use case is

the tracking of vessel centerlines, as done by Wu et al. (56). Abbreviation as

in Figure 1.
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GANs are, often, used for image enhancement (e.g.,
noise reduction) or generation (e.g., conversion of
MRI to CT). GANs consist of 2 networks that have
opposing goals. Typically, 1 network acts as a gener-
ator (e.g., generating a high-dose CT image from a
noisy, low-dose CT image), and the other network
acts as a discriminator, assessing whether the gener-
ated image is realistic (Figure 7). This allows the
generator to be optimized without needing exact la-
bels (e.g., voxel-level correspondence between the CT
and MRI). This has also been extended to allow the
use of completely unpaired data (e.g., CTs and MRIs
from different patients) via cycle GANs (39). A brief
summary of all of the mentioned algorithms is pro-
vided in Table 1.

PRACTICAL CONSIDERATION IN TRAINING DEEP

NEURAL NETWORKS. Although deep learning has
shown incredible results across many fields, it remains
a tricky technique to master. Given the same dataset,
different researchers can obtain widely varying re-
sults. Themain cause is that many decisions have to be
made when training ANNs: how to pre-process the
data; which network architecture to select; and how to
optimize the coefficients of the network.

Leveraging task-specific knowledge often helps in
optimizing deep learning models. A simple example is
dealing with nonuniformity in signal intensities of
MRI scanners from different manufacturers. If 1 is
unaware of this effect, a network could be trained
that performs well on data from 1 MRI machine, but
poorly on data from another. A different example can
be taken from the Kaggle Data Science Bowl from 2015
on LVEF estimation from cardiac cine-MRI (40). Some
teams tried to predict the LVEF based on the image
data end-to-end, but the top 3 teams realized that it
was better to first segment the left ventricle using a
neural network and then use this segmentation to
calculate the LVEF.

When deciding on the architecture of a deep neural
network, many choices need to be made. Important
considerations are the type of network (e.g., ANN,
CNN, RNN), the network depth (i.e., the number of
layers), or the number of coefficients (i.e., number of
nodes in an ANN, number of convolutional filters in a
CNN). An example of typical network choices for spe-
cific tasks is shown in the Central Illustration. Typi-
cally, these choices are referred to as hyperparameters.
There are no theoretical guarantees or proofs for many
of these hyperparameters, and as such, they need to be
determined empirically. However, some guidance can
be obtained from domain experts or derived from
available data. For example, network depth roughly
correlates with the field of view (i.e., the number of
pixels in each dimension the network can use in its
prediction); the deeper the network, the more context
it can use. However, deeper networks generally have
more coefficients and thus need more training data to
be adequately optimized.

In clinical practice, some modes of variation exist
with respect to data that are not present in the data-
set. For example, CT images might be acquired with a
different dose depending on the equipment used and
the specific center. By adding different amounts of
noise to the training dataset, the deep neural network
can be made more robust to differences in dose
without acquiring new data. This strategy is called
data augmentation and is an effective method to
encode certain variations within an algorithm,
improving generalization to new data.

PRACTICAL CONSIDERATION IN EVALUATING DEEP

NEURAL NETWORKS. An often underestimated
part of algorithm development is performing a
meaningful, robust evaluation (41–43). Ideally, the
evaluation should result in metric estimates (e.g.,



FIGURE 7 Schematic Drawing of a Generative Adversarial Network
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Generative adversarial model for generation of high-dose CT images. The generator network has to convert a low-dose, noisy CT image to a high-dose CT. The

discriminator network has to differentiate between real high-dose CT images and generated images. An example is presented in Wolterink et al. (47).
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diagnostic accuracy) that are clinically meaningful
and generalize to real-world practice. As in all areas of
medicine, the strongest evidence for single studies
can be obtained via appropriately powered random-
ized controlled trials. However, most deep learning
algorithms are not at that stage of development yet
and are evaluated using retrospective cohort or
case�control studies. All caveats that apply to these
eep Learning Algorithms and Potential Applications

Description

network A neural network in which each node in each layer is connected
nodes in the subsequent layer (Figure 2).

etwork A neural network in which each node is connected to nodes in
subsequent layer in such a way that a convolution operation (
is performed. This reduces the number of parameters in the
significantly and allows these networks to identify features
independent of their position in an image. Typically, some f
connected layers are added at the end of the network to sum
information into a single prediction (Figure 4).

ral Fully convolutional neural networks do not contain fully connect
and often output complete images, for example, segmentatio
The most common fully convolutional network in cardiovasc
imaging is U-net (Figure 5).

rk Recurrent neural networks feed their own output back as input (F
making them ideally suited for sequence data where a point
sequence can be combined with information from previous p
Recurrent neural networks are flexible in structure and can
combine with convolutional layers.

network Consists of a generator and a discriminator, typically convolution
networks (Figure 7). The generator generates an image, and
discriminator predicts whether it is a real or generated imag
optimizing both in conjunction, the generator learns how to
realistic images.

y.
studies in general medical research also apply to
studies using deep learning. Aspects that contribute
to the likelihood of a dataset being representative are,
for example, multicenter and multivendor sources.

One challenge that is relatively specific to deep
neural networks is that they are extremely powerful
models that can memorize the training data if
trained long enough, resulting in near-perfect
Example Applications

to all These networks most often predict outcomes based on
unstructured data (e.g., clinical parameters like blood
pressure, heart rate, age).

the
Figure 3)
network

ully
marize all

These are the most common networks in cardiovascular
imaging. Use-cases include calcium scoring of chest or
cardiac CT (46) and quality prediction in
echocardiograms (54), among many others.

ed layers
n masks.
ular

Fully convolutional networks find most application in
segmentation tasks, such as left/right ventricle
segmentation (55).

igure 6),
in the
oints.
also be

Wide range of use cases, for example, labeling of the
coronary artery tree (56) or end-systolic and diastolic
frame prediction (57).

al neural
the
e. By
generate

Most applications are in image enhancement and image
generation, for example CT denoising (47).



CENTRAL ILLUSTRATION Flowchart of Imaging Modalities, Algorithms, and Potential Applications

Algorithms

Fully-connected neural network Classification

Regression

Segmentation

Plaque risk assessment

Calcium scoring

Ejection fraction
estimation

Content-based
image retrieval

CT dose reduction
Image enhancement or

generation

Report generation

Fully-convolutional neural network

Recurrent neural network

Generative adversarial network

Real

Fake

Convolutional neural network

Tasks Applications

Litjens, G. et al. J Am Coll Cardiol Img. 2019;12(8):1549–65.

This flowchart highlights how certain applications can be realized by using a specific algorithm. The arrows indicate for which application an algorithm is typically used.

Note that this does not mean that, for example, a fully-connected network cannot be used for segmentation, but it is not the most appropriate choice.
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accuracy. However, in general, these networks then
perform poorly on new data. This phenomenon is
referred to as overfitting. This can be prevented by
splitting data into 3 distinct datasets: training, vali-
dation (or tuning), and testing (or holdout). The
training set is used to optimize the coefficients of
the network, whereas the validation or tuning
dataset is used to identify overfitting and to opti-
mize hyperparameters. The testing set should not be
touched during algorithm development and only be
used to obtain the performance metrics. Ideally, the
testing set should contain cases from different cen-
ters or vendors to increase the likelihood of algo-
rithm robustness in routine practice.
Finally, when setting up an evaluation study, it is
also important to make sure relevant metrics are
used, such that they relate to meaningful clinical
parameters. For example, when optimizing neural
networks for segmentation of the left ventricle, the
voxel-level accuracy might not be the most useful
criterion; some form of volume estimation error
might be more suitable. These metrics can also be
used for network training so optimization of the most
meaningful metric is done.

APPLICATIONS

In this section, we provide an overview of the current
state of the art in the application of deep learning



TABLE 2 Applications of Deep Learning in Cardiac Ultrasound

First Author (Ref. #) Summary

Data Performance

Dev. Test CV (folds) Metric Value Compared Against

Abdi et al.
(Supplemental Ref. 12)

Quality assessment of echocardiograms; CNNs predict
the quality of echo series

5,532 (f) 1,384 (f) N 0.71 MAE EA

Carneiro et al.
(Supplemental Ref. 3)

Left ventricular segmentation; DBN embedded in
system using landmarks and nonrigid registration

12 2 N 0.86 MAD EA

Carneiro et al.
(Supplemental Ref. 4)

Left ventricle tracking; extension of (3) for tracking 15 5 N 0.94 MAD EA

Chen et al.
(Supplemental Ref. 2)

Left ventricle segmentation in 4 different 2D views;
uses transfer learning

34,361 (f) 8,533 (f) N 0.864–0.961 DC EA

Dezaki et al.
(Supplemental Ref. 11)

Prediction of end-systolic and end-diastolic frames
with a combination of RNN and CNN

2,470 617 N 0.98 R2 EA

Diller et al.
(Supplemental Ref. 8)

Disease classification using CNN and systemic
ventricle segmentation using U-Net

159 40 N 0.794–0.881 DC EA

Dong et al.
(Supplemental Ref. 6)

Segmentation of left ventricle in 3D echocardiography
using a 2D FCN and deformable models to refine
coarse segmentation

12 3 N 0.88–0.90 MDC EA

Ghesu et al.
(Supplemental Ref. 7)

3D aortic valve detection and segmentation; uses
shallow and deeper sparse networks

715 150 N 0.90 mm SE EA

Jun et al.
(Supplemental Ref. 9)

Classification of IVUS frames as normal vs. TCFA using
CNN

100 * N 0.911 AUC EA after OCT/IVUS
registration

Moradi et al.
(Supplemental Ref. 1)

Automatic generation of text descriptions for Doppler
US images of cardiac valves using doc2vec and a
combination of models based on CNNs

10,253/496/
226 (t)

48 N 96% Acc (valve
classification)

EA

Nascimento et al.
(Supplemental Ref. 5)

Left ventricular segmentation; DBN applied to patches
steers multi-atlas segmentation process

14 14 14 4 pixel AD EA

Ostvik et al.
(Supplemental Ref. 54)

Classification of cardiac view into 7 classes using a
real-time model based on CNN

500 500 10 98% Acc MA

Pereira et al.
(Supplemental Ref. 55)

Detection of coarctation in neonates; SVM classify
features extracted with stacked denoising
autoencoders

150 100 N 12.9% ER LRC

Yu et al.
(Supplemental Ref. 56)

Left ventricular segmentation; multiscale CNNs
exploit temporal information

10 (s) 41 (s) N 0.95 DC EA

Zhang et al.
(Supplemental Ref. 10)

Disease classification, cardiac chamber segmentation
and viewpoints classification in echocardiograms
using CNNs

14,035 (e) 8,666 (e) (m) N 0.85–0.93 AUC EA

If multiple metrics were reported in the paper, the most common 1 is reported to facilitate comparison.

2D ¼ 2 dimensional; Acc ¼ accuracy; AD ¼ average distance; AUC ¼ area under the curve; CNN ¼ convolutional neural network; CV ¼ cross-validation; DBN ¼ deep belief network; DC ¼ dice coefficient;
Dev. ¼ development; EA ¼ expert annotation; (e) ¼ echocardiograms; ER ¼ error rate; (f) ¼ frames; FCN ¼ fully connected neural network; IVUS ¼ intravascular ultrasound; LRC ¼ labels from routine care;
(m) ¼ mixed splits for different tasks; MA ¼ manual annotation; MAD ¼ mean absolute distance; MAE ¼ mean absolute error; MDC ¼ modified dice coefficient; OCT ¼ optical coherence tomography;
RNN ¼ recurrent neural network; (s) ¼ sequences; SE ¼ segmentation error; SVM ¼ support vector machine; (t) ¼ different types of data (e.g., text; images); TCFA ¼ thin-cap fibroatheroma.
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algorithms to cardiovascular imaging. This section is
organized by imaging modality, with most papers
focusing on ultrasound, CT, and MRI. Other modal-
ities are jointly discussed.
ULTRASOUND. Applications of deep learning for car-
diovascular ultrasound cover detection, classification,
segmentation, tracking, and report generation (Ta-
ble 2). Moradi et al. (Supplemental Ref. 1) presented an
application in which a plausible electronic medical
record was picked from a database based on a given
echocardiography study. A deep model was trained to
learn the relationship between the electronic medical
record and the echocardiography images. Subse-
quently, this model was used to identify the most
closely related electronic medical record from the
database, given an unseen echocardiography image.

Most deep learning ultrasound applications focus
on detection and segmentation. Chen et al.
(Supplemental Ref. 2) segmented the left ventricle in
5 different 2D views (apical, 2-, 3-, 4-, and 5-chamber)
with a CNN. They showed that using multiview CNNs
improved segmentation accuracy for each specific
view. Segmentation of the left ventricle of the heart
was also performed by Carneiro et al. (3) in a series of
studies. This first study (Supplemental Ref. 3) used an
ANN model to predict landmarks for defining the
segmentation contour. This approach was extended
in Carneiro and Nascimento (Supplemental Ref. 4) for
tracking of the left ventricle. This approach was then
combined with multi-atlas registration (Supplemental
Ref. 5) for improved left ventricle segmentation. Dong
et al. (Supplemental Ref. 6) and Ghesu et al. (Sup-
plemental Ref. 7) also combined deep learning with
traditional methods, specifically, deformable and
shape models, to segment the left ventricle and the
aortic valve, respectively. Ghesu et al. (Supplemental
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TABLE 3 Applications of Deep Learning in Cardiac CT

First Author (Ref. #) Summary

Data Performance

Dev. Test
CV

(folds) Metric Value Compared Against

Coenen et al. (Supplemental Ref. 17) FFR prediction in cardiac CCTA; clinical evaluation of method
by Manniesing et al. (16)

(s) 351 N 78% Acc FFR

Commandeur et al.
(Supplemental Ref. 13)

Adipose tissue segmentation in noncontrast CT; 2 subsequent
CNNs

1,638 1,638 10 0.719 – 0.822 DC EA

Gülsün et al. (Supplemental Ref. 57) Coronary centerline extraction in CCTA; CNN classifies paths as
correct or leakages

90 20 N 90.8%–92.7% MA

Green et al. (Supplemental Ref. 21) Noise and artifact reduction in low-dose CCTA; CNN for per
voxel prediction of routine-dose HU values

(x) 45 N 41.47 PSNR FD-CCTA

van Hamersvelt et al.
(Supplemental Ref. 19)

Identification of patients with functionally significant stenosis
in CCTA; clinical evaluation of Gandhi et al. (14)

101 101 10 0.76 AUC FFR <0.8 or
XAS >90%

Itu et al. (Supplemental Ref. 16) FFR prediction in CCTA; ANN classification of segments based
on handcrafted features

(s) 87 N 83.2% Acc FFR

Jin et al. (Supplemental Ref. 58) Left atrial appendage segmentation in CCTA; CNN with
conditional random field

150 150 5 0.95 DC MA

Kang et al. (Supplemental Ref. 59) Noise and artifact reduction in low-dose CCTA; 2D cycle-
consistent GAN (CycleGAN)

50 50 N 12.3 SNR FD-CCTA

Lessmann et al.
(Supplemental Ref. 20)

Calcium scoring in low-dose chest CT; 2 CNNs for voxel
classification

1,181 506 N 0.91 LWK EA

López-Lineares et al.
(Supplemental Ref. 60)

Segmentation of abdominal aortic thrombus in CTA; CNN for
ROI localization and CNN for segmentation

13 13 4 0.82 DC EA

Lossau et al. (Supplemental Ref. 23) Detection of motion artifacts in coronary CCTA; CNN for
classification of coronary cross-sectional images

13 4 N 99.3% Acc SD

Mannil et al. (Supplemental Ref. 61) Identification of MI in noncontrast low-dose CT; texture
feature classification with ANN

58 29 N 0.78 AUC RCP

Moradi et al. (Supplemental Ref. 62) Labeling of 2D slices from cardiac CT exams; comparison with
handcrafted features

75 75 5 0.92 Acc EA

Trullo et al. (Supplemental Ref. 63) Organ segmentation in noncontrast CT; CNN with conditional
random field

30 30 6 0.90 DC for heart MA

de Vos et al. (Supplemental Ref. 64) Anatomical structure localization in CT, including the heart;
CNN for 2D slice classification

200 200 N 0.97 F1 EA

Wolterink et al. (Supplemental
Ref. 18)

Coronary calcium detection in gated CTA; compares 3D CNN
with multistream 2D CNNs

100 100 N 0.872 ICC CACMS EA

Wolterink et al. (Supplemental
Ref. 22)

Noise and artifact reduction in low-dose CT; 3D GAN 28 28 2 43 PSNR RDCT

Wolterink et al. (Supplemental
Ref. 65)

Coronary centerline extraction in CCTA; 3D CNN predicts vessel
orientation and radius to guide iterative tracker

8 24 N 93.7 OV EA

Wu et al. (Supplemental Ref. 15) Coronary artery tree segment labeling; bi-directional LSTM in
tree graph representation

436 436 10 0.87 F1 EA

Zhou et al. (Supplemental Ref. 66) Organ segmentation in noncontrast CT; 3 2D FCNs and majority
voting

228 12 N 0.82 IOU of the heart EA

Zreik et al. (Supplemental Ref. 14) Identification of patients with functionally significant stenosis
in CCTA; auto-encoder and CNN

126 126 10 0.74 AUC FFR

Zreik et al. (Supplemental Ref. 67) Detection and categorization of coronary plaque and stenosis
in CCTA; 3D recurrent CNN

98 65 N 0.77 Acc EA

If multiple metrics were reported in the paper, the most common 1 is reported to facilitate comparison.

ANN ¼ artificial neural network; CACMS ¼ coronary artery calcification mass score; CCTA ¼ cardiac computed tomographic angiography; CT ¼ computed tomography; FD-CCTA ¼ full dose cardiac CT
angiography; FFR ¼ invasive fractional flow reserve; GAN ¼ generative adversarial network; ICC ¼ intraclass correlation coefficient; LSTM ¼ long short-term memory; LWK ¼ linear weighted kappa;
MI ¼ myocardial infarction; N ¼ no cross-validation; OV ¼ overlap; PSNR ¼ peak signal-to-noise ratio; RCP ¼ regular clinical protocol; ROI ¼ region of interest; (s) ¼ synthetic data; SD ¼ synthetic data;
(x) ¼ not mentioned in the paper; XAS ¼ x-ray angiography stenosis; other abbreviations as in Table 2.
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Ref. 7) evaluated their method on a large dataset of
869 patients and showed an improvement in seg-
mentation quality of >40% over the previous state-
of-the-art method.

Some studies also cover direct disease classifica-
tion from echocardiography, such as Diller et al.
(Supplemental Ref. 8), Jun et al. (Supplemental
Ref. 9), and Zhang et al. (Supplemental Ref. 10).
Remarkably, Zhang et al. (Supplemental Ref. 10) used
>14,000 echocardiograms for development and vali-
dation of the entire system, which also included view
classification and segmentation.

Deep learning has also been applied to time point
and view classification in sequences of ultrasound
images. Dezaki et al. (Supplemental Ref. 11) presented
a method to predict the end systolic (ES) as well as
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TABLE 4 Applications of Deep Learning in Cardiac MRI

First Author (Ref. #) Summary

Data Performance

Dev. Test
CV

(folds) Challenges
Metric
Value

Compared
Against

Avendi et al.
(Supplemental Ref. 27)

LV volume segmentation; sequential application of a CNN and an AE 30 15 N su 0.94 DC EA

Avendi et al.
(Supplemental Ref. 28)

Application of (27) for the right ventricle 16 32 N r 0.83 DC EA

Bai et al. (Supplemental Ref. 24) Comparison of between deep learning and human experts for cardiac
segmentation

4,275 600 N 0.94 DC EA

Bratt et al. (Supplemental Ref. 35) Segmentation of aortic valve borders in phase-contrast MRI for flow
quantification

200 270 N 0.85 ml
DF

EA

Bernard et al.
(Supplemental Ref. 29)

Overview of segmentation and diagnosis methods used in the
Automatic Cardiac Diagnosis Challenge

100 50 N a COP EA

Chakravarty et al.
(Supplemental Ref. 68)

Mean curvature velocity prediction for level sets; application of an
RNN

10 20 N st 0.92 DC EA

Chen et al. (Supplemental Ref. 69) Patch-based regression of contour coordinates of the right ventricle 145 145 145 0.84 DC EA

Dou et al. (34) Segmentation of blood pool and myocardium on congenital heart
disease images; CNN with deep supervision

10 10 N h 0.93 DC EA

Du et al. (Supplemental Ref. 70) Prediction of contours with an FCNN. A sequential LSTM-based
network predicts descriptive quantities from the contours.

145 * N 0.87 DC EA

Emad et al. (Supplemental Ref. 39) Bounding box localization of LV in short-axis MRI slices; multiscale
CNN.

19 14 N 0.99 Acc MA

Fahmy et al. (Supplemental Ref. 37) Scar tissue segmentation in short-axis CMR 833 208 N 0.57 DC EA

Hauptmann et al.
(Supplemental Ref. 71)

Residual CNN for artifact removal in undersampled k-space of highly
accelerated radial CMR of patients with congenital heart disease

250 25 N 4.2-4.6
IQLS

NR

Khened et al. (Supplemental Ref. 72) FCNN for multiscale segmentation of short-axis CMR and disease
classification

1,400 590 N a, st, k 100% Acc EA

Kong et al. (Supplemental Ref. 41) Prediction of ED and ES frames in cardiac cine MRI; CNN with LSTM
units

420 420 4 0.4 AFD EA

Liao et al. (Supplemental Ref. 33) Joint segmentation and volume regression of LV volume; multitask
CNN for voxel classification and full image regression

700 440 N k 0.0106
CRPS

EAS

Luo et al. (Supplemental Ref. 32) Direct quantification of ejection fraction fusing predictions; multiview
CNN-based regression

700 440 N k 9.6 ml
RMSE

EAS

Moccia et al. (Supplemental Ref. 36) Segmenting scar tissue in CMR late gadolinium enhancement; FCNN 30 30 30 0.88 DC EA

Molaei et al. (Supplemental Ref. 73) LV segmentation; regular CNN 33 * N 0.97 Acc MA

Ngo et al. (Supplemental Ref. 74) Contour prediction of left ventricle; DBN (i.e., ANN) features for level
sets

30 15 N su 0.88 DC EA

Schlemper et al.
(Supplemental Ref. 43)

Reconstruction of undersampled dynamic cardiac MRI; cascade of
CNNs

10 (m) N 0.04
RMSE

FSKS

Tan et al. (Supplemental Ref. 75) Semi-automatic approach for contour prediction of LVs; CNN-based
edge distance prediction

800 540 N l, k 0.0124
CPRS

EAS

Tan et al. (Supplemental Ref. 76) Fully automatic approach of (75); uses separate CNNs exploiting
long- and short-axis reconstructions

800 540 N l, k 0.0122
CRPS

EAS

Tao et al. (Supplemental Ref. 77) Impact of multicenter and multivendor data variability on LV
segmentation performance; U-Net.

400 196 N 0.95 DC EA

Vigneault et al.
(Supplemental Ref. 30)

Segmentation of 5 cardiac structures; sequential application of U-Net
for orientation normalization and segmentation

63/100 63/
100

3/5 a 0.95 DC EA

Winther et al. (Supplemental Ref. 78) Evaluation of n-Net architecture for segmentation of cardiac
structures

253 1,031 N k, l, r 0.95 DC EA

Xu et al. (Supplemental Ref. 38) Segmentation of infarcted regions in LV without contrast agents;
LSTM-RNN.

165 165 10 0.90 DC EA

Yang et al. (Supplemental Ref. 79) Voxel-based segmentation used as inputs to obtain contours 10/100 10/
100

10/N t 0.7 DC EA

Yang et al. (Supplemental Ref. 26) CNN-based label fusion for multi-atlas registration for LV
myocardium segmentation

83/30 83/15 5/N 0.83 DC EA

Yang et al. (Supplemental Ref. 42) Detecting ED and ES time frames in free breathing MRI 20 5 N 76.5% Acc EA

Zhang et al. (Supplemental Ref. 40) Automatic assessment for LV coverage; CNN. 5,065 5,065 10 4.6% ER EA

Zheng et al. (Supplemental Ref. 80) Segmentation of left and right ventricle structures by propagating
adjacent segmentations; U-Net.

3,078 902 a, su, r 0.86 DC
(on a)

EA

Zotti et al. (Supplemental Ref. 81) Segmentation with left and right ventricle shape priors; U-Net. 100 95 a, su 0.91 DC EA

Performance is reported for a single organ/part. If multiple metrics were reported in the paper, the most common 1 is reported to facilitate comparison. *Splits not specified.

a ¼ MICCAI Automated Cardiac Diagnosis Challenge (ACDC) (2017); AFD ¼ average frame difference; CMR ¼ cardiac magnetic resonance; OP ¼ challenge overview paper; CRPS ¼ continuous ranked
probability score; DF ¼ difference in flow; ED ¼ end diastolic; ES ¼ end systolic; FSKS¼ fully-sampled K-space; h ¼MICCAI Workshop on Whole-Heart and Great Vessel Segmentation from 3D Cardiovascular
MRI in Congenital Heart Disease (HSVMR) (2016); IQLS ¼ image quality on Likert scale; k ¼ Kaggle (2015); l ¼ MICCAI Statistical Atlases and Computational Modeling of the Heart (STACOM) Left Ventricle
Segmentation Challenge (LVSC) (2011); LV ¼ left ventricular; (m)¼mixed splits for different tasks; MICCAI ¼Medical Image Computing and Computer Assisted Intervention; N ¼ no cross-validation; NR ¼ no
reference; r ¼ MICCAI Right Ventricle Segmentation Challenge (RVSC) (2012); RMSE ¼ root mean square error; sa ¼ MICCAI Challenge Workshop on Segmentation: Algorithms, Theory and Applications
(SATA) (2013); st ¼ MICCAI STACOM Challenges (2013); su ¼ MICCAI STACOM LVSC/Sunnybrook (2009); other abbreviations as in Table 2.
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TABLE 5 Applications of Deep Learning in Other Modalities

First Author (Ref. #) Modality Summary

Data Performance

Dev. Test
CV

(folds) Metric Value
Compared
Against

Abdolmanafi et al. (Supplemental
Ref. 49)

OCT Classification of plaques in intravascular OCT 33 33 33 95%– 99% Acc EA

Aviles-Rivero et al. (Supplemental
Ref. 53)

Video Prediction of heart motion in intraoperative video using
restricted Boltzman machines

1,573 (i) * * 0.071 RMSE PD

Betancur et al. (Supplemental
Ref. 44)

SPECT Convolutional neural networks for prediction of obstructive
disease from myocardial perfusion imaging

1,638 1,638 10 0.8 AUC ICA

Betancur et al. (Supplemental
Ref. 45)

SPECT Extension of the previous paper, now combining supine and
semi-upright images for the same patient

1,160 1,160 4 (LOCO) 0.81 AUC ICA

Breiniger et al. (Supplemental
Ref. 47)

X-ray Segmentation of stents in intraoperative x-ray image using
convolutional neural networks

36 (i) 27 (i) N 0.990-0.996
AUC

MA

Gessert et al. (Supplemental
Ref. 50)

OCT Plaque detection in intravascular OCT using CNNs 40 9 N 0.88 F1 EA

Kolluru et al. (Supplemental Ref. 51) OCT Plaque classification in intravascular OCT using CNNs 48 48 10 77.7%-85.3% Acc EA

Sadda et al. (Supplemental Ref. 46) X-ray Real-time denoising of angiography frames using convolutional
auto-encoders

16 (v) 4 (v) N 0.97–0.99 SSIM CIAN

Toth et al. (Supplemental Ref. 48) X-ray Registration of cardiac models from CT to intraoperative x-ray
using convolutional neural networks

702 119 N 2.92 mm RE KT

Yong et al. (Supplemental Ref. 52) OCT Segmentation and measurement of the vessel lumen using
convolutional neural networks in intravascular OCT

45 (i) 19 i) N 0.985 DC MA

In case multiple metrics were reported, the most common 1 is presented. *Splits not specified.

CIAN ¼ clean images with added noise; (i) ¼ images; ICA ¼ invasive coronary angiography; KT ¼ known transformation; LOCO ¼ leave-one-center-out; PD ¼ phantom data; RE ¼ registration error;
SPECT ¼ single-photon emission tomography; SSIM ¼ structured similarity; (v) ¼ video; other abbreviations as in Tables 2 and 4.
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end diastolic (ED) frame in echocardiograms using a
combination of RNNs and CNNs. They developed and
validated their approach with 3,087 patients.

Abdi et al. (Supplemental Ref. 12) built a system for
quality assessment of echocardiograms. Based on the
opinion of 1 expert, who rated approximately 7,000
echograms, a regression CNN was trained to predict
the quality of echo series.

CT. Deep learning was used for several applications
in CT (full listing in Table 3). Most focused on locali-
zation and segmentation of anatomical structures for
various clinical purposes in both noncontrast and
coronary CT angiography (CCTA). Some examples are
highlighted here. Commandeur et al. (Supplemental
Ref. 13) segmented epicardial and thoracic adipose
tissue in noncontrast cardiac CT scans using 2 CNNs.
The first CNN segmented adipose tissue, whereas the
second CNN found the pericardium. They evaluated
their method in a large cohort of 1,638 patients.

The presence of a contrast agent in CCTA allows
more precise segmentation of cardiac structures (e.g.,
volume quantification). Zreik et al. (Supplemental
Ref. 14) segmented the left ventricular myocardium
using a multiscale patch-based CNN, in which each
voxel was classified based on 3 input patches with
different scales.

Wu et al. (Supplemental Ref. 15) showed how a long
short-term memory RNN could be used to automati-
cally label segments in the coronary artery tree. Such
coronary tree models could be used to identify plaque
and stenosis. For example, Itu et al. (Supplemental
Ref. 16) usedmachine learning in volumetric models of
the coronary artery tree to identify reduced fractional
flow reserve. Coenen et al. (Supplemental Ref. 17)
showed in a clinical analysis that this method obtained
accuracy levels comparable to those obtained with
computational fluid dynamics-based CT fractional
flow reserve. Alternatively, atherosclerosis could be
detected without coronary tree extraction. Wolterink
et al. (Supplemental Ref. 18) used 2 CNNs to identify
image voxels representing coronary artery calcifica-
tion in CCTA. The first CNN processed the full CCTA
image to identify voxels that were likely to be coronary
artery calcification, whereas the second CNN only
classified the voxels selected by the first CNN. Zreik
et al. (Supplemental Ref. 14) used deep
learning�based texture features to identify patients
with functionally significant stenosis. A clinical eval-
uation showed that this information was comple-
mentary to CCTA-derived coronary stenosis
measurements (Supplemental Ref. 19). As in CCTA,
deep learning could be used to detect atherosclerosis
in noncontrast CT. Lessmann et al.
(Supplemental Ref. 20) used 2 CNNs that progressively
excluded noncalcified voxels to identify coronary ar-
tery calcification and aortic calcifications in chest CT.
This system was trained and evaluated in a large
cohort of 1,687 patients.

Not all studies focus on localization, segmentation,
and classification. Because CT images are typically
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acquired with a low radiation dose, and image quality
may be affected by cardiac motion, there is a need for
noise and artifact reduction. Green et al. (Supple-
mental Ref. 21) trained a CNN to predict routine-dose
CCTA images based on low-dose CCTA images.
Alternatively, Wolterink et al. (Supplemental Ref. 22)
used a GAN to translate low-dose CT images into
routine-dose CT images, and Kang et al. (Supple-
mental Ref. 9) trained a GAN with cycle-consistency
(CycleGAN) to reduce noise in CCTA images. Lossau
et al. (Supplemental Ref. 23) trained a CNN to detect
and quantify coronary artery motion in CCTA images.
The CNN was trained with samples in which motion
was simulated.
MRI. As in CT, deep learning applications in MRI have
mainly focused on segmentation (Table 4), specif-
ically, cardiac structures in short-axis reconstructions
for quantification of cardiac function. State-of-the-art
deep learning segmentation methods are on par with
human expert performance (Supplemental Ref. 24).
Before the advent of deep learning, multi-atlas
registration and deformable shape models were
popular techniques for segmentation. Some
initial studies, such as the those by Yang
et al. (Supplemental Refs. 25,26) and Avendi et al.
(Supplemental Refs. 27,28) sought to combine deep
learning with multi-atlas registration and deformable
models, respectively. Although the combination of
more traditional techniques with deep learning was
an interesting avenue of research, most state-of-the-
art algorithms were based purely on CNNs. This was
shown by Bernard et al. (Supplemental Ref. 29), who
provided an overview of cardiac MRI analysis
methods that participated in the Automatic Cardiac
Diagnosis Challenge (ACDC). The challenge consisted
of 2 tasks. First, automatic segmentation of the left
ventricular cavity, the left ventricular myocardium,
and the right ventricle in cine cardiac MRI. Second,
participants were required to automatically classify
patients into 5 types of pathology. Almost all partic-
ipants in this challenge used CNNs, and algorithms
based on 2D and 3D U-nets (Figure 5) performed best.
Recent work by Vigneault et al. (Supplemental
Ref. 30) built on these results and further improved
left and right ventricle cavity segmentation.

ACDC was not the only public grand challenge on
image analysis in cardiovascular MRI. The biggest,
and perhaps the most well-known, was the Kaggle
Data Science Bowl of 2015 (Supplemental Ref. 31),
which had the goal of assessing LVEF. A plethora of
methods were developed for this challenge, mostly
segmentation-based (Table 4).

Luo et al. (Supplemental Ref. 32) used a
regression-based method using multiview CNNs to
estimate LVEF directly. The method used long- and
short-axis images as input for a CNN that directly
predicted the EF and left ventricular volumes at ED
and ED. Liao et al. (Supplemental Ref. 33) proposed a
hybrid approach, similar to the design by Dou et al.
(Supplemental Ref. 34), that performed direct left
ventricular volume quantification and segmentation
at the same time, without using segmentation masks
for algorithm training.

Not every study that applied deep learning to car-
diovascular MRI covered segmentation of the cardiac
ventricles and atria. Bratt et al. (Supplemental
Ref. 35) showed that CNN-based segmentation was a
faster and feasible alternative compared with manual
delineation of the aortic annulus in phase contrast
CMR. Some focused on segmenting scar tissue in the
myocardium (Supplemental Refs. 36–38). Other in-
vestigators focused on quality control, localization, or
reconstruction (Supplemental Refs. 39,40). For
example, Kong et al. (Supplemental Ref. 41) and Yang
et al. (Supplemental Ref. 42) used deep learning to
detect ES and ED time points in cardiac cine-MRI and
free-breathing MRI, respectively. Schlemper et al.
(Supplemental Ref. 43) showed that a cascade of
CNNs could outperform compressed sensing�based
reconstruction in undersampled dynamic cardiac
MRI.
OTHER MODALITIES. A complete overview of appli-
cations of deep learning in other modalities can be
found in Table 5.

Betancur et al. (Supplemental Ref. 44,45) were the
first to apply deep learning algorithms to nuclear
cardiology in a pair of studies. Specifically, they used
a CNN to predict obstructive disease in myocardial
perfusion imaging with single-photon emission
computed tomography. A key strength of their
studies was the evaluation on a substantial cohort of
>1,600 patients from different medical centers.

Next to nuclear cardiology, deep learning has also
seen use in intraoperative x-ray. Several different
applications were identified: real-time denoising
of x-rays (Supplemental Ref. 46), stent segmentation
(Supplemental Ref. 47), and registration of 3D pre-
operative cardiac models to 2D intraoperative x-ray
fluoroscopy (Supplemental Ref. 48).

Recently, several studies on applications of deep
learning to intravascular optical coherence tomogra-
phy were published. Three papers focused on
plaque detection and classification with CNNs
(Supplemental Refs. 49–51). One study covered vessel
lumen segmentation using CNNs, which might allow
automatic assessment of stenosis (Supplemental
Ref. 52). One paper detailed a deep learning method
to assess heart motion from an intraoperative video
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(Supplemental Ref. 53). These motion estimates could
be used to guide robot-assisted surgery, removing the
need for mechanical stabilizers in surgeries (e.g., off-
pump coronary artery bypass grafting).

DISCUSSION

Applications of deep learning can now be found
covering almost all aspects of cardiovascular imaging,
from echocardiography to intraoperative fluoroscopy.
Most applications can automatically determine rele-
vant clinical parameters from cardiovascular images
that could be used for diagnosis or prognosis. For
example, machine-learning based segmentation of
the left ventricular cavity in MRI can be used to
compute EFs and identify patients with heart failure
(44). Similarly, automatic identification of calcified
voxels in the coronary arteries can be used to deter-
mine the coronary calcium score and identify patients
at risk of cardiovascular events in CT scans (45,46).

Applications of deep learning are not limited to
quantification, they can also be found in enhancing
image quality (e.g., noise reduction [47], super-
resolution [48]) or merging of different imaging mo-
dalities (49). This shows the breadth of possible tasks
deep learning can be involved in to streamline the
diagnostic workflow or improve quantification of
important biomarkers.

Deep learning could also play a role in directly
predicting prognosis for patients based on imaging
data. Currently, this has not yet been explored, and
applications have been limited to mostly estimating
biomarkers (e.g., the amount of epicardial fat and the
amount of coronary calcium). This is understandable,
because directly predicting prognosis requires large
datasets to cover all kinds of confounding factors,
such as lifestyle, age, and genetic traits. Such datasets
are not widely available and challenging to collect.
This is a key limitation of currently published appli-
cations of deep learning in cardiovascular imaging.
Most published studies cover preliminary applica-
tions without extensive validation on large,
multicenter datasets. Thus, the generalization per-
formance of these studies cannot be guaranteed.
Some positive exceptions include the results based on
the Kaggle Data Science Bowl and the studies by
Betancur et al. (50), Lessmann et al. (46), and Zhang
et al. (51), which all cover large cohorts.

We also noted a significant heterogeneity in algo-
rithm evaluation metrics. Different investigators uses
different metrics on different proprietary datasets,
which made it close to impossible to fairly compare
algorithms based on the data in the papers alone.
Challenges, such as the Medical Image Computing and
Computer Assisted Intervention ACDC Challenge (44),
or the Kaggle Data Science Bowl, could play an
important role because they offer standardized eval-
uations on the same dataset, which does allow
meaningful comparison of algorithms. More high-
profile, well-organized challenges could help accel-
erate the adoption of deep learning in clinical practice.

A different limitation is that integration of imaging
data with other sources of clinical information has not
been extensively studied in the context of deep
learning. In practice, cardiologists have more infor-
mation at their disposal for diagnostic conclusions
than just the image data. Such information could
similarly be analyzed using deep learning. Chamaria
et al. (52) showed that integration from multiple
sources of data using Bayesian network analysis
could be beneficial. Choi et al. (53) showed that this
was also feasible using deep learning by applying an
RNN to electronic health record data. This allowed
prediction of incident heart failure.

Although most publications surveyed in this re-
view focused on MRI, this was not necessarily
reflective of clinical usefulness or impact. The work
on MRI has immensely benefited from the availability
of several large, high-quality public datasets, in
contrast to, for example, echocardiography or nuclear
cardiology.

There is an important role for cardiologists and
other physicians in guiding and applying deep
learning research. Although several important con-
tributions on deep learning in cardiovascular imag-
ing were done by groups without a medical
background (e.g., the winner of the Kaggle Data
Science Bowl on EF prediction), clinical experts can
identify the relevant areas for automation and
computerized quantification. In addition, they will
be the end-users of the developed algorithms and
can provide guidance for system developers on how
to best integrate algorithms into the clinical work-
flow to achieve maximum impact. Cardiologists play
an important role in making sure data collection and
annotation are performed adequately and can help
ensure that patient rights are treated in an ethical
manner.

Although the introduction of deep learning in car-
diovascular imaging is having a big impact, from both
the perspectives of research and industry, it
is important to realize that deep learning is not
a panacea. Although algorithms based on deep
learning have shown human-level or even
superhuman-level performance in certain medical
tasks, the scope of these tasks is relatively narrow.
We are nowhere close to artificial general intelligence
(AGI), which is often defined as a machine that can
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HIGHLIGHTS

� Deep learning has revolutionized com-
puter vision and is now seeing application
in cardiovascular imaging.

� This paper provides a thorough overview
of the state of the art across applications
and modalities for clinicians.

� Clinicians should guide the applications
of deep learning to have the most
meaningful clinical impact.

Litjens et al. J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 2 , N O . 8 , 2 0 1 9

Deep Learning in Cardiovascular Image Analysis A U G U S T 2 0 1 9 : 1 5 4 9 – 6 5

1564
perform any task a human could do. To reach this
level, many experts believe deep learning will only be
part of the solution. The debate now mostly centers
on how big this part will be. However, we do not need
AGI for machine learning to have impact on cardio-
vascular imaging. Most, if not all, diagnostic images
are acquired in a standardized way, to answer a
diagnostic question of relatively narrow scope. Deep
learning thrives in such scenarios.
As evident from this survey, deep learning and
artificial intelligence have pervaded many areas of
cardiovascular imaging. Many algorithms are still in
the early research phases, but the first are now going
through Food and Drug Administration approval and
entering clinical practice. As such, it is important to
perceive artificial intelligence and machine learning
not as a threat, but as tool to be used to improve
diagnosis, prognosis, and treatment for patients.
However, it is also paramount to be wary of unsub-
stantiated claims that are often levied on deep
learning�based image analysis tools, especially
because at the moment, many are evaluated on single-
center datasets of limited size. We hope this survey
has, in part, contributed to increased awareness of the
types of algorithms available for cardiovascular image
analysis and understanding of the aspects that are
important for successful clinical application.
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