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ABSTRACT

Prostate cancer is the most common cancer for men in Western countries, counting 1.1 million
new diagnoses every year. The incidence is expected to increase further, due to the growing elderly
population. This is leading to a significantly increased workload for pathologists. The burden of
this time-consuming and repetitive workload has the potential to be decreased by computational
pathology, e.g., by automatically screening prostate biopsies. The current state-of-the-art in many
computational pathology tasks use patch-based convolutional neural networks. Developing such
algorithms require detailed annotations of the task-specific classes on whole-slide images, which
are challenging to create due to low availability of the pathologists. Therefore, it would be benefi-
cial to be able to train using labels the pathologist already provides for regular clinical practice in
the form of a report. However, these reports correspond to whole-slide images which are of such
a high resolution that current accelerator cards cannot process them at once due to memory con-
straints. We developed a method, streaming stochastic gradient descent, to train a convolutional
neural network end-to-end with entire high resolution images and slide-level labels extracted
from pathology reports. Here we trained a neural network on 2812 whole prostate biopsies, at a
input size of 8000x8000 pixels, equivalent to 50x total magnification, for a binary classification,
cancerous or benign. We achieved an accuracy of 84%. These results show that we may not need
expensive annotations to train classification networks in this domain.

1. INTRODUCTION

Prostate cancer (PCa) is the most prevalent cancer for men in Western countries.1 Like most carci-
nomas, PCa develops from genetically damaged epithelium, resulting in uncontrolled cellular pro-
liferation. Once the epithelial cells break through the basal layer they are considered invasive, i.e.
carcinomatous. In low-grade tumors these epithelial cells still form glandular structures, however
in the case of high-grade tumors, the glandular structures are eventually lost.2 These morpholog-
ical changes can be appreciated on histopathological slides of prostate biopsies taken during the
diagnostic process. The percentage of cancerous glands in a prostate biopsy can differ substantially.
For a pathologist, assessing all epithelial regions can be a time-consuming task, especially when
considering the gigapixel-sized whole-slide images. This is exacerbated by the increasing incidence
of PCa due to the aging of the population. An automated method to identify biopsies containing
PCa can help pathologists become more efficient and deal with this increasing workload.

A straightforward approach to develop an automated method would be to train a deep convo-
lutional neural network (CNN) to classify biopsies automatically. However, due to sheer size of
whole-slide histopathology images, feeding in entire biopsies is not feasible because of memory lim-
itations. Typically this is solved by using a patch-based system, which is trained on small samples
from a whole-slide image. The labels of these samples are generally given by detailed outlines of
the classes (e.g. tumor regions) by a experienced pathologist. However, this outlining is a tedious
and time-consuming task which limits the dataset size for training deep networks. Several ap-
proaches exist to use slide-level labels to train a patch-based system, which circumvents the tedious
outlining process. One strategy is to use multiple instance learning (MIL) approaches.3,4 Addition-
ally, recently, a reinforcement learning strategy has been proposed.5 However, in both cases still



patch-based CNNs are trained, which has several disadvantages, such as the need to identify an
appropriate patch size and developing a method to combine patch predictions into a slide-level
classification.

In this paper we propose a novel method, using streaming stochastic gradient descent,6 enabling
the use of entire whole-slide biopsy images at high resolution directly. We show it is possible to
train a convolutional neural network with the biopsy level labels this way. This technique opens
the possibility to quickly gather enough data with labels from pathology reports to straightfor-
wardly train convolutional neural networks without using MIL or reinforcement learning.

2. METHODS

We collected 442 prostate biopsy section glass slides, containing 2182 biopsies sections, from 442
patients at the Radboud University Medical Center (IRB approval 2016-2275). The slides were
stained with standard hematoxylin and eosin. All glass slides were scanned using a 3DHistech
Pannoramic Flash II 250 scanner with a pixel resolution of 0.24µm. As a glass slide can contain
multiple biopsies, two trained non-experts outlined the individual biopsies and assigned each
biopsy a label (the Gleason score or ‘negative’) using the original pathologist’s report.

Individual biopsies were extracted at a pixel resolution of 1.92µm, visually equivalent to 50x total
magnification (i.e. 5x microscope objective with a standard 10x ocular lens), resulting in a total of
2182 whole prostate biopsies. The biopsies were divided into a train (1621 biopsies), validation
(130 biopsies) and test (431 biopsies) set, stratifying for patient and the presence of cancer. The
test set was not touched during the development of the method. The pixel size distribution of the
individual biopsies is shown in Figure 1. We decided to zero-pad the images to 8000x8000 and
center crop the few biopsies bigger than this size to obtain equivalent input size to the network for
all biopsies.

Distribution of the morphological prostate cancer grade, the Gleason groups,7 are shown in Figure
2. To improve clinically-relevant performance we oversampled worse prognostic Gleason scores
(Gleason primary score 5) as these are typically underrepresented.

Figure 1: Histogram of image sizes (longest axis). Figure 2: Histogram of Gleason Grade Groups.

Network architecture. We trained a 26-layer convolutional neural networks using StreamingSGD.6

The network contained six blocks of three 3x3 convolutions ending with a 2x2 max-pooling layer
with a stride of 2. In the first four blocks the amount of filters were doubled each block, with 16
filters in the first block. Before the final fully-connected layer the network contained a global max-
pooling layer to obtain the highest feature response. Self-normalizing activation functions (SELU)8

were used as non-linearity. The network was trained on a NVIDIA Titan V graphics card.



Table 1: Network architecture.

Block Layers Feature map shape

Input Conv2d (3x3x16) 8000 x 8000 x 3

1

Conv2d (3x3x16) 7998 x 7998 x 16
Conv2d (3x3x16) 7996 x 7996 x 16
Conv2d (3x3x16) 7994 x 7994 x 16
Maxpool2d (2x2) 7992 x 7992 x 16

2

Conv2d (3x3x16) 3996 x 3996 x 16
Conv2d (3x3x32) 3994 x 3994 x 32
Conv2d (3x3x32) 3992 x 3992 x 32
Maxpool2d (2x2) 3990 x 3990 x 32

3

Conv2d (3x3x32) 1995 x 1995 x 32
Conv2d (3x3x64) 1993 x 1993 x 64
Conv2d (3x3x64) 1991 x 1991 x 64
Maxpool2d (2x2) 1989 x 1989 x 64

4

Conv2d (3x3x64) 994 x 994 x 64
Conv2d (3x3x128) 992 x 992 x 128
Conv2d (3x3x128) 990 x 990 x 128
Maxpool2d (2x2) 988 x 988 x 128

5

Conv2d (3x3x128) 494 x 494 x 128
Conv2d (3x3x128) 492 x 492 x 128
Conv2d (3x3x128) 490 x 490 x 128
Maxpool2d (2x2) 488 x 488 x 128

6
Conv2d (3x3x128) 244 x 244 x 128
Conv2d (3x3x128) 242 x 242 x 128
Conv2d (3x3x128) 240 x 240 x 128
Global max pool 238 x 238 x 128

Final
Fully connected layer 128
Output 1

The network was optimized with stochastic gradient descent without momentum. The learning
rate was 0.00005 with a batch-size of 16. During training, the data was augmented with random
rotations, reflections, translations, and hue, brightness and saturation perturbations. The model
was trained for a total of 100 epochs.

Streaming stochastic gradient descent. To obtain a result for a high resolution image an interme-
diate activation map of a convolutional neural network is reconstructed by doing partial forward
passes with smaller parts, tiles, of the whole image up until the activation maps at a layer of choice
(Figure 3). This reconstructed activation map can then be fed as a whole through the rest of the
neural network resulting in a final output. This output subsequently be backpropagated through
the individual tiles using partial forward passes to recover the intermediate activations. An imple-
mentation of this algorithm is available at https://github.com/DIAGNijmegen/StreamingSGD.

Saliency maps. We created saliency maps of the predictions by calculating the gradient of the
input image with respect to the output of the network. The gradients were smoothed with a Gaus-
sian window of with a size of 10 pixels and thresholded at 0.0001 times the maximum level. These
saliency maps indicate which regions are important for the classification of the biopsy and should
coincide with regions containing cancerous epithelium.

https://github.com/DIAGNijmegen/StreamingSGD


Figure 3: Train and validation loss curve. Figure 4: Train and validation accuracy curve.

Some overlap between 
the tiles is needed to 
counteract for loss in 
convolutional layers.

Some images are 
too big to copy to 
the GPU or to 
perform convo-
lutions on.

To solve this we 
divide the image 
in a predefined 
number of tiles.

Tiles are processed 
one by one to 
reduce memory 
requirements. 

Pooling layers (or 
larger strides) 
reduce the sizes of 
the intermediate 
feature maps.

Once an intermediate 
feature map can fit 
on the GPU we 
reconstruct it from 
the tiles.

The reconstructed 
intermediate feature 
map is passed 
through the final 
layers.

The final output 
will be based on 
the whole input 
image.

Figure 5: Schematic overview of the StreamingSGD method.



3. RESULTS

As shown in Table 1, the convolutional neural network was trained for 100 epochs and achieved
accuracy of 84% on the test set (with 84% on train set) and a F1 score of 0.862. Saliency maps of
true positive (Figure 6) shows highlighting of cancerous glands with adjacent stroma and no signal
at normal glands. A saliency map of a false positive classified biopsy shows (Figure 6) highlights in
a region with high cell density where the epithelium is forming a small glands.

Table 2: Results of the test set.

Accuracy F1-score Recall Precision

Test set 84.0% 0.862 0.884 0.840

Figure 6: (above) true positive, highlighting small area with cancer. (below) false positive, small gland is
wrongly classified as tumorous.



4. DISCUSSION

We trained a convolutional neural network to detect prostate cancer on 8000x8000 pixel images
of whole prostate biopsies at 50x total magnification. Our results show that a neural network can
learn to extract relevant features from megapixel images using only a single label per biopsy.

Pathologist provide written reports to clinicians per examination using clinical diagnostic jargon.
From these reports slide level labels can be extracted to quickly build large, diverse datasets. We
show that these labels and slides can directly be used with StreamingSGD, as it provides the mem-
ory savings needed to make this end-to-end training possible. Training the proposed network archi-
tecture without StreamingSGD would require 377 gigabytes of memory.

For future work, we noticed that our test set accuracy (84%) was close to our train accuracy
(84%), which suggests underfitting (see Figure 3 & 4). The logical next step would be training
wider and deeper networks. Also, we expect the the results can be improved by using techniques
such as skip connections (e.g. used in ResNet), which increase gradient flow to the lower layers of
the network. Since StreamingSGD trades time for memory, a multiple GPU implementation should
make it feasible to train at even higher resolutions without taking too much time.

Furthermore, saliency maps created with these networks have the potential to show regions of
interest in new examinations. Recent improvements to these visualization methods9 provide more
precise maps, which might be used as surrogate segmentations.

To conclude, we use a novel method to train a convolutional neural network on 64 megapixel im-
ages of prostate biopsies. Our preliminary results show that convolutional neural networks can
learn to classify cancer from a single binary label on these large images. As expected, saliency
maps show the network is looking at the invasive epithelial cells. This work suggest it is worth-
while to train networks without expensive patch-level annotations.

Final details. This work has not been submitted for publication or presentation elsewhere.
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