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Pulmonary Nodule Detection in CT Images:
False Positive Reduction Using Multi-View
Convolutional Networks

Arnaud Arindra Adiyoso Setio*, Francesco Ciompi, Geert Litjens, Paul Gerke, Colin Jacobs, Sarah J. van Riel,
Mathilde Marie Winkler Wille, Matiullah Naqibullah, Clara I. Sanchez, and Bram van Ginneken

Abstract—We propose a novel Computer-Aided Detection
(CAD) system for pulmonary nodules using multi-view convolu-
tional networks (ConvNets), for which discriminative features are
automatically learnt from the training data. The network is fed
with nodule candidates obtained by combining three candidate de-
tectors specifically designed for solid, subsolid, and large nodules.
For each candidate, a set of 2-D patches from differently oriented
planes is extracted. The proposed architecture comprises multiple
streams of 2-D ConvNets, for which the outputs are combined
using a dedicated fusion method to get the final classification. Data
augmentation and dropout are applied to avoid overfitting. On 888
scans of the publicly available LIDC-IDRI dataset, our method
reaches high detection sensitivities of 85.4% and 90.1% at 1 and 4
false positives per scan, respectively. An additional evaluation on
independent datasets from the ANODE(09 challenge and DLCST
is performed. We showed that the proposed multi-view ConvNets
is highly suited to be used for false positive reduction of a CAD
system.

Index Terms—Computed tomography, computer-aided de-
tection, convolutional networks, deep learning, lung cancer,
pulmonary nodule.

I. INTRODUCTION

UNG cancer is the leading cause of cancer death world-
wide [1]. The seminal National Lung Screening Trial [2]
showed a reduction 0f 20% in lung cancer mortality in high-risk
subjects scanned with low-dose Computed Tomography (CT),
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compared to the control group that received chest radiography.
As a consequence of this result, lung cancer screening programs
with low-dose CT imaging are being implemented in the US.
Currently, only 15% of all diagnosed lung cancers are detected
at an early stage, which causes a five-year survival rate of only
16%. The aim of screening is to detect cancers in an earlier stage
when curative treatment options are better.

The implementation of screening would mean a significant
increase of reading effort for radiologists. Computer-Aided De-
tection (CAD) systems have been developed to assist radiolo-
gists in the reading process and thereby potentially making lung
cancer screening more cost-effective [3]-[5]. The architecture
of a CAD system typically consists of two stages: 1) nodule can-
didates detection and 2) false positive reduction. The aim of the
first step is to detect nodule candidates at a very high sensitivity,
which typically implies the presence of many false positives.
Simple techniques such as double thresholding and morpholog-
ical operations are often used to detect a large set of candidates
[4], [5]. False positives are subsequently reduced in a second
stage, which determine most of the performance of CAD sys-
tems. Typically, a large set of dedicated features set is extracted
and a supervised classification scheme is used [3]-[5].

Although it has been shown that CAD systems improve
the reading efficiency of radiologists, a considerable number
of nodules remains undetected at low false positive rates,
prohibiting the use of CAD in clinical practice [6], [7]. Fig. 1
illustrates that nodules come with a wide variation in shapes,
sizes, and types (e.g., solid, subsolid, calcified, pleural, etc.). In
addition, the number of nodules from different categories are
highly imbalanced and many irregular lesions that are visible
in CT are not nodules. As a consequence, extracting under-
lying characteristics of nodules is difficult and requires many
heuristic steps. Techniques to detect lesions with a broad spec-
trum of appearances are needed to improve the performance of
CAD systems.

In the last years, spurred by to the large amount of available
data and computational power of modern-day computers, con-
volutional networks (ConvNets) [8], [9] have been shown to
outperform the state-of-the-art in several computer vision ap-
plications [10]-[13]. ConvNets have also been introduced in
the field of medical image analysis [14]-[18]. Because Con-
vNets can be trained end-to-end in a supervised fashion while
learning highly discriminative features, removing the need for
handcrafting nodule descriptors, they are well suited to be used
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Fig. 1. Examples of lesions (nodules and non-nodules) in axial, sagittal, and coronal view. Lesions are located in the center of the box (50 X 50 mm). The left set of
images are nodules with a wide range of morphological characteristic: (a) solid nodule, (b) pleural nodule, (¢)—(d) large nodules with irregular shape, (e)—(f) subsolid
nodules. The right set of images are irregular lesions that are not related with nodules or cancers. These examples illustrate that designing features for accurate

detection and classification of nodules may not be trivial.

for the false positive reduction step of a pulmonary nodule CAD
system. To the best of our knowledge, the work of Lo ef al. [19]
is the only study which used ConvNets specifically trained for
pulmonary nodule detection, and was solely applied to chest ra-
diography images.

Although ConvNets have been shown to outperform other
supervised learning methods, only few studies extended the use
of conventional 2-D ConvNets to the analysis of volumetric
3-D images [14], [17], [20]. In all these studies, volumetric
candidates are firstly decomposed into fixed triplanar views
(sagittal, coronal, and axial planes). Thereafter, each plane is
processed using a multi-view architecture, for which streams
of 2-D ConvNets are applied to all patches and output units are
combined using data fusion technique, such as late-fusion [14],
committee-fusion [10], [20], or the combination of both fusion
methods [17]. Although all of these fusion methods show
promising performance gain, how different methods compare
with each other remains an open question.

The contributions of this paper are as follows: (1) We for-
mulate a novel false positive reduction step using multi-view
ConvNets for pulmonary nodule detection. Candidates are com-
puted by combining three existing detection algorithms, which
is also a contribution to boost the sensitivity of the candidate de-
tection step. (2) We evaluated different architectures of multi-
view ConvNets and their influence to the detection performance.
The impact of adding more views and applying a certain fusion
method on the performance of each architecture is also assessed.
(3) Performance benchmark is presented and an external valida-
tion on completely independent datasets from screening trials
are included.

II. MATERIALS

A. LIDC-IDRI

We trained and validated the proposed CAD system using the
large publicly available dataset, Lung Image Database Consor-
tium (LIDC-IDRI) [21]. LIDC-IDRI contains a heterogeneous
set of 1,018 cases from seven institutions. The slice thickness
of CT images varies from 0.6 mm to 5.0 mm with a median of

2.0 mm. The reference standard is set by manual annotations
from four radiologists who reviewed each scan in two reading
rounds. In the first blinded reading round, suspicious lesions
were independently annotated and each of them was catego-
rized as non-nodule, nodule < 3 mm, or nodule > 3 mm.
Manual 3-D segmentation was performed only for lesions cat-
egorized as nodules > 3 mm. In the second reading round,
annotations from all four radiologists were reviewed in an un-
blinded fashion and each radiologist decided to either accept or
reject each annotation.

In our study, we excluded thick-slice scans (> 2.5 mm), as
these are not recommended anymore [22], [23], and scans with
inconsistent slice spacing, obtaining 888 scans. We made the
list of selected scans available on a public website (http://luna.
grand-challenge.org/). We considered only annotations catego-
rized as nodule > 3 mm. Nodules < 3 mm are not con-
sidered relevant according to current screening protocols [2],
[24]. As nodules could be annotated by multiple readers, we
merged annotations that are distant less than the sum of their
radii. For these merged annotations, the diameters, and coordi-
nates were averaged. We selected nodules > 3 mm accepted
by the majority of radiologists (3 or 4 out of 4 radiologists) as
reference standard. This resulted in a set of 1,186 nodules. Any
non-nodule, nodule < 3 mm, or nodules > 3 mm accepted by
the minority was not counted as false positive and is considered
as an irrelevant finding [6], because marks by a CAD system on
such locations are not necessarily undesirable.

B. ANODE09Y

In order to further validate the performance of the proposed
system on a dataset completely independent from the training
set, we used data from the ANODE(Q9 challenge [6]. The
ANODEO09 dataset consists of 55 CT scans. Each scan was
annotated by two observers in a blinded fashion. Five scans
were provided as training cases, while the remaining 50 cases
were provided as testing cases. The reference standard for
testing cases is not publicly available.

All cases were collected from the University Medical Center
Utrecht and originated from a CT lung cancer screening trial
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Fig. 2. An overview of the proposed CAD system. (a) An example of extracted 2-D patches from nine symmetrical planes of a cube. The candidate is located at
the center of the patch with a bounding box of 50 x 50 mm and 64 x 64 px. (b) Candidates are detected by merging the outputs of detectors specifically designed
for solid, subsolid and large nodules. The false positive reduction stage is implemented as a combination of multiple ConvNets. Each of the ConvNets stream
processes 2-D patches extracted from a specific view. (c¢) Different methods for fusing the output of each ConvNet stream. Grey and orange boxes represent
concatenated neurons from the first fully connected layers and the nodule classification output. Neurons are combined using fully connected layers with softmax
or a fixed combiner (product-rule). (a) extracted 2-D patches using nine views of a volumetric object. (b) schematic of the proposed system. (c) fusion methods.

in Europe [24]. The images were reconstructed at 1.0 mm
thickness. A web-based framework for objective evaluation of
nodule detection algorithms is available!, where the results of
CAD systems can be uploaded for benchmarking.

C. DLCST

To assess the performance of the proposed nodule detection
algorithm on screening setting, an evaluation on cases from
the Danish Lung Cancer Screening Trial [25] was conducted.
The evaluation was performed on the 612 baseline scans that
were included in a recently published clinical study [26]. Nod-
ules were annotated by 2 experienced screening radiologists of
DLCST, in which the diameter was manually measured. The
diameters of the two observations were averaged and positive
findings were defined as nodules > 3 mm. This results in a set
of 898 nodules, which was used as the reference standard in this
study.

III. METHODS

The architecture of the proposed CAD system is schematized
in Fig. 2. Two main stages are incorporated: 1) candidates de-
tection and 2) false positive reduction. We applied three can-
didates detectors specifically designed for solid, subsolid, and
large solid nodules. The combination of these detectors is ap-
plied to increase the detection sensitivity of nodules. Note that

Thttp://anode09.grand-challenge.org/

nodules have a large variations in both size and morpholog-
ical characteristics. For each candidate, we extract multiple 2-D
views in fixed planes. Each 2-D view is then processed by one
ConvNets stream. The ConvNets features are then fused to com-
pute a final score. In the next sections we describe the CAD
system in details.

A. Candidates Detection

Candidate detection algorithms play an important role in the
performance of any CAD system, as it determines the maximum
detection sensitivity of subsequent stages. Candidate detection
algorithms should ideally detect all suspicious lesions. How-
ever, the morphological variation of nodules is often greater
than what a single candidate detection algorithm can detect.

To detect a wider spectrum of nodules, we applied a com-
bination of multiple algorithms used for candidate detection.
Three existing CAD systems are used to detect nodule candi-
dates [3], [5], [27]. Each algorithm aims at a specific type of
nodules, namely solid nodules, subsolid nodules, and large solid
nodules. For each candidate, the position = (x,y, z) and the
nodule probability are given. Three sets of nodule candidates
are computed and are merged in order to maximize the sensi-
tivity of the detector. The candidates located closer than 5 mm
to each others are merged. For these combined candidates, the
position p and nodule probability are averaged [28].
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The methods for candidate detection stage, for which the lo-
cations of volume of interest (VOI) are obtained, are described
in the following paragraphs.

For solid nodules, we implemented the technique proposed
by Murphy et al. [3]. For each voxel in the lungs, shape index
and curvedness are computed, and thresholding is applied on the
two measures to define the seedpoints. An automatic segmenta-
tion method is executed at the seedpoints to obtain clusters of
interest. Subsequently, clusters located close to each other are
merged. Finally, we discard clusters with a volume < 40 mm?3.

For subsolid nodules, we implemented the technique pro-
posed by Jacobs et al. [5]. A double-threshold density mask
(=750, —350 Houndsfield Unit (HU)) is first performed to
obtain a mask with voxels of interest. Morphological opening
is applied to remove connected clusters, followed by 3D con-
nected component analysis. Clusters for which the centers of
mass are within 5 mm are merged. Finally, an accurate segmen-
tation of the candidates is obtained by using a previously pub-
lished nodule segmentation algorithm [29].

Large solid nodules (> 10 mm) have surface/shape index
values that are locally different from smaller solid lesions and
have a specific intensity range that is not captured by both solid
and subsolid nodules detection algorithms [27]. Therefore, the
two aforementioned algorithms do not perform well in detecting
large solid nodules. In addition, large solid nodules attached
to the pleural wall may be excluded by lung segmentation al-
gorithms since the contrast with the pleura is low. For these
reasons, as in [27], we implemented a third detector that con-
sists of three steps: (1) post-processing of lung segmentation
by applying a rolling-ball algorithm to the segmentation mask,
which includes large nodules attached to the pleura in the lung
segmentation; (2) density thresholding (—300 HU), to obtain
a mask with voxels of interest; (3) morphological opening in
a multi-stage fashion to get candidate clusters, where we start
with large structuring elements to extract larger nodules, and
progressively continue with smaller structuring elements to ex-
tract smaller nodules.

One issue with training an algorithm using highly unbalanced
data is that the learned parameters may be skewed toward char-
acteristics of the most common candidates (e.g., vessels) while
overlooking important characteristics of rarer nodules. To pre-
vent overfitting on highly prevalent false positives, we discarded
candidates with a low probability for being nodules. The prob-
ability was given by subsequent classification stages of existing
algorithms [3], [5], [27] and the threshold is empirically set to
reduce a large number of false positives while maintaining high
detection sensitivity.

B. Patches Extraction

For each candidate, we extracted multiple 2-D patches of
50 x 50 mm centered on p. The size of the patch was chosen
in order to have all nodules (< 30 mm) fully visible on the
2-D views and include sufficient context information to aid in
the classification of the candidate. We resized each 50 x 50
mm patch to a size of 64 X 64 px, working at the resolution
of 0.78 mm, which corresponds to the typical resolution of
thin slice CT data. The pixel intensity range is rescaled from
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(—1000,400 HU) to (0,1). Intensity outside the given range is
clipped.

In order to extract patches, we first consider a cube of 50 x 50
x 50 mm, which encloses the candidate. Nine patches are ex-
tracted on planes corresponding to the plane of symmetry in a
cube. Similar to [14], [17], [20], three planes of symmetry that
are parallel to a pair of faces of the cube are used. These planes
are commonly known as sagittal, coronal, and axial planes. The
other six planes are the planes of symmetry that cut two op-
posite faces of cubes in diagonals. Such a plane contains two
opposite edges of the cube and four vertices. Examples of ex-
tracted patches are shown in Fig. 2(a).

C. False Positive Reduction: 2-D Convnets Configuration

The false positive reduction stage is constructed by com-
bining various streams of ConvNets, referred as a multi-view
architecture. Each stream processes patches from a specific view
of the candidate.

The architecture of the 2-D ConvNets was determined based
on a pilot study on a smaller dataset. On this dataset, several
hyper-parameters (i.e., number of layers, kernel size, learning
rate, number of views, fusion method) were optimized. Among
these hyper-parameters, we identified two most critical param-
eters to tune, namely (1) the number of views and (2) the fusion
method. These two parameters were further analyzed in experi-
ments on the full selected LIDC-IDRI dataset. Other parameters
were set to the best configuration found in the pilot study.

The used 2-D ConvNets consist of 3 consecutive convolu-
tional layers and max-pooling layers (see Fig. 2(b)). The input
of the network is a 64 x 64 patch. The first convolutional layer
consists of 24 kernels of size 5x 5 x 1. The second convo-
lutional layer consists of 32 kernels of size 3 x 3 x 24. The
third convolutional layer consists of 48 kernels of size 3 x 3
x 32. Each kernel produces a 2-D image output (e.g., 24 of
60 x 60 images after the first convolutional layer, which is de-
noted as 24@60 x 60 in Fig. 2(b)). Kernels may contain dif-
ferent matrix values that are initialized randomly and are up-
dated during training to optimize the classification accuracy.
The max-pooling layer is given by the maximum values in non-
overlapping windows of size 2 x 2 (stride of 2). This reduces the
size of patches by half (e.g., from 24@60 x 60 to 24@30 x 30
after the first max-pooling layer). The last layer is a fully con-
nected layer with 16 output units. Rectified linear units (ReLU)
[11] are used in the convolutional layers and fully connected
layers, where the activation « for a given input  is obtained as
a = max(0, z).

D. False Positive Reduction: Convnets Fusion

Three approaches for fusing multiple 2-D ConvNets are
investigated:

1) Committee-Fusion: One of the most commonly used fu-
sion method is by applying a committee-based combiner to the
output predictions of several ConvNets [10], [20]. The motiva-
tion is to divide the detection task of 3-D object into several sim-
pler 2-D detection tasks. We connected the output of the fully
connected layer of each stream to a classification layer that con-
sists of an additional fully connected layer with softmax acti-
vation function. The softmax function is a multinomial logistic
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regression that is given by o (&); = exp(z;)/ Zszl exp x, for
j = 1,..., K where K is the number of classes. Each stream
of ConvNets is trained separately using patches from a specific
view and the output predictions are combined using a product-
rule on the output probabilities [20], as shown in Fig. 2(c).

2) Late-Fusion: The late-fusion method [14], [30] concate-
nates the outputs of the first fully connected layers and connects
the concatenated outputs directly to the classification layer (see
Fig. 2(c)). With such method, the classification layer can learn
the 3-D characteristics by comparing the outputs of multiple
ConvNets. In this configuration, the parameters of the convo-
lutional layers for different streams are shared.

3) Mixed-Fusion: Mixed-fusion is a combination of the pre-
vious two approaches. Similar to Roth ez al. [17], multiple late-
fused ConvNets are implemented using a fixed number of or-
thogonal planes. Taking an advantage of having more views,
the prediction of the system is improved by combining multiple
late-fused ConvNets in a committee. We divide nine patches
into three independent sets; each set contains three different
patches. Although other methods can be used to compose these
sets of patches (e.g., random sets of triplanar patches), we at-
tempted to compare all fusion methods fairly by keeping the
same input information for each configuration.

E. Training

We performed evaluation in 5-fold cross-validation across
the selected 888 LIDC-IDRI cases. We split 888 cases into 5
subsets and kept the number of candidates on each subset sim-
ilar. For each fold, we used 3 subsets for training, 1 subset for
validation, and 1 subset for testing. One of the challenges of
using ConvNets is to efficiently optimize the weights of Con-
vNets given the training dataset. RMSProp [31], a learning al-
gorithm that adaptively divide the learning rate by a running
average of the magnitudes of recent gradients, is used to opti-
mize the model. The loss is measured by using cross-entropy
error and the weights are updated using mini-batches of 128 ex-
amples. Dropout [32] with a probability of 0.5 is implemented
on the output of the first fully connected layer as regularization.
Training is stopped when the accuracy on the validation dataset
does not improve after 3 epochs. We initialized the weights
using normalized initialization proposed by Glorot and Bengio
[33]. The biases were initialised with zero.

F. Data Augmentation

Optimization of ConvNets using an imbalanced dataset can
mislead the learning algorithm to local optima, where the pre-
dictions are biased toward the most frequent samples and over-
fitting occurs. Data augmentation is applied to prevent overfit-
ting by adding invariances to the existing dataset.

1) Training Data Augmentation: As the number of nodules is
much smaller than the number of non-nodules, augmentation is
only performed on nodules. This process is applied for training
and validation purposes. We translated the position of the can-
didates by 1 mm in each axis and scaled the patches to 40, 45,
50, and 55 mm. The translation is set to 1 mm in order to keep
the nodules (> 3 mm) to be captured properly in the patch. We
further balanced the dataset by randomly upsampling the candi-
dates from the nodule class.

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 5, MAY 2016

TABLE I
DETECTION SENSITIVITY OF CANDIDATE DETECTION ALGORITHMS

Total number of CT scans: 888

Total number of nodules: 1,186

False

Candidate Detected Sensitivity Positives FPs per
detection nodules (%) (FPs) scan
Solid 1,016 85.7 292,413 329.3
Subsolid 428 36.1 255,027 287.2
Large solid 377 31.8 41,816 47.1
Combined set 1,120 94.4 543,160 611.7
Reduced set 1,106 93.3 239,041 269.2

2) Test-Data Augmentation: Data augmentation on the
testing dataset has been shown to improve the performance
of ConvNets [11], [12]. It may also improve the robustness
of the system as candidates are evaluated on many possible
conditions, such as analyzing the input image at several scales.
Test-data augmentation (TDA) is performed on each candidate
(both nodule and non-nodule classes) by rescaling the patches to
40, 45, 50, and 55 mm, for which each of them is independently
processed by ConvNets-CAD. We obtained the final prediction
for each candidate by averaging predictions computed from the
augmented data. The final prediction given by an ensemble of
predictions is expected to provide complementary information
and therefore make the final prediction more accurate and
robust to variations of nodule size.

G. Evaluation

Two performance metrics were measured: 1) area under the
ROC curve (AUC) and 2) Competition Performance Metric
(CPM) [28], which measures the average sensitivity at seven
operating points of the FROC curve: 1/8, 1/4, 1/2, 1, 2, 4,
and 8 FPs/scan. AUC shows the performance of ConvNets on
classifying candidates as nodules or non-nodules while CPM
shows the performance of CAD at operating points that are
likely used in practice. It has to be noted that a system with
higher AUC score may not necessarily result in higher CPM.
We also computed the 95% confidence interval and the p-value
using bootstrapping with 1,000 bootstraps, as detailed in [34].
The p-value was defined as the probability of one performance
measure to be lower than the other, where the performance
measure was the detection sensitivity at 3.0 FPs/scan.

IV. EXPERIMENTAL RESULTS

A. Candidates Detection

The performance of individual candidate detection algo-
rithms, as well as the combined algorithm is shown in Table I.
When considered separately, the three approaches for solid,
subsolid and large candidate detection give sensitivity of
85.7%, 36.1% and 31.8%, respectively. After the three candi-
date detection algorithms are combined, a sensitivity of 94.4%
(1,120/1,186) is achieved. This shows that the three approaches
are complementary and that combination is a better baseline for
the false positive reduction. The reduced set indicates the set
of candidates after removing those given a low likelihood for
being nodules. The threshold is empirically set to 2.48 * 1077,
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Fig. 3. FROC curves of ConvNets architectures with different configurations. Dashed curves show the 95% confidence interval estimated using bootstrapping.
(a) different fusion configurations. (b) with and without test-data augmentation (TDA). (c) different number of views.

TABLE II
STATISTICS ON THE NUMBER OF NODULES AND NON-NODULES IN THE
TRAINING DATASET. TO BALANCE THE DATASET, AUGMENTATION (AUG)
AND UPSAMPLING (UP) ARE PERFORMED ON NODULES

(Tigf;fé‘t’g Fold0  Fold 1 Fold2  Fold3  Fold 4
scans 428 522 574 629 511
nodule 528 669 713 773 635
- aug 57,552 72921 71717 84257 69215
- aug+up 143,838 143,796 143,739 142,823 142,927
non-nodule 143,838 143,796 143,739 142,823 142,927

which maintains 1,106 nodules (93.25%) with 239,041 FPs
(269.2 FPs/scan).

B. False Positive Reduction

Given a set of candidates, we constructed training datasets,
which are summarized in Table II. The performance benchmark
of different ConvNets configurations tested on the LIDC-IDRI
dataset is summarized in Table III. Given a set of candidates,
applying ConvNets for nodules/non-nodules classification task
yields an area under the ROC (AUC) score up to 0.996. An av-
erage sensitivity of 0.828 at seven operating points is achieved
using a late-fusion approach. We found that adding test-data
augmentation does not significantly improve the detection per-
formance (p-value = 0.46), as shown in Fig. 3(b). Combined
with candidate detection algorithm that detect 93.1% nodules at
269.2 FPs/scan, our proposed method achieves a sensitivity of
85.4% and 90.1% at 1 and 4 FPs/scan, respectively. When irrele-
vant findings described in Section II-A are included as false pos-
itives, the proposed method achieves a sensitivity of 78.2% and
87.9% at 1 and 4 FPs/scan, respectively (CPM score of 0.722).

The impact of two important parameters was observed:
1) fusing model and 2) number of views. Table III shows that
fully optimized fusing models (late-fusion) lead to a better de-
tection performance with a CPM score of 0.828, in comparison
with committee-fusion (CPM score of 0.780, p-value < 0.001)
and mixed-fusion (CPM score of 0.823, p-value = 0.029).

To assess the robustness of the CAD algorithms in the pres-
ence of contrast, we also evaluated the proposed CAD on dif-
ferent subsets of data that consist of: 1) contrast scans (N =
242) and 2) non-contrast scans (N = 646). For this purpose, we

TABLE III
PERFORMANCE BENCHMARK OF CONVNETS CONFIGURATIONS ON LIDC-IDRI
DATASET. THE BEST SCORE FOR EACH PERFORMANCE METRIC IS MARKED IN
BoLD. FOR COMPARISON PURPOSES, THE PERFORMANCE OF THE COMBINED
ALGORITHMS [3], [5], [27] IS INCLUDED

Configuration cl:lIcu\rlril:‘z AUC CPM
;(;Z‘r'jt‘}‘l‘fi ; 0.969 0.573
single-view 1 0.969 0.481

committee-fusion 3 0.981 0.696

9 0.987 0.780

late-fusion 3 0.987 0.742

9 0.993 0.827

mixed-fusion 3%3 0.996 0.824
TABLE IV

PERFORMANCE BENCHMARK OF CONVNETS ON CONTRAST SCANS (N = 242)
VS NON-CONTRAST SCANS (N = 646). TWO TRAINING DATASETS ARE
CONSIDERED: 1) BOTH CONTRAST AND NON-CONTRAST SCANS AND 2) ONLY
NON-CONTRAST SCANS. CPM SCORE IS USED AS THE PERFORMANCE METRIC

Training dataset test: contrast test: non-contrast

all 0.847 0.818
non-contrast 0.840 0.807
TABLE V

PERFORMANCE BENCHMARK OF CAD SYSTEMS ON ANODEO09
DATASET. THE PERFORMANCE OF CONVNETS-CAD USING
TwoO DIFFERENT SETS OF CANDIDATES ARE INCLUDED

Method (SCCISI{Z)
ConvNets-CAD (solid set) 0.637
ISICAD [3] 0.632
MS5L [35] 0.619
ConvNets-CAD (reduced set) 0.598
lungCAM [35] 0.564
FlyerScan [4] 0.552
Pisa team [36] 0.293
Philips [6] 0.231
FujitaLab [6] 0.212

trained the system with two different datasets: 1) dataset with
both contrast and non-contrast scans (888 scans) and 2) dataset
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TABLE VI
SUMMARY OF RECENTLY PUBLISHED CAD SYSTEMS USING LIDC-IDRI AS DATASET. CAD SYSTEMS EVALUATED ON OTHER DATASET ARE ALSO
INCLUDED FOR COMPLETENESS. NUMBER OF SCANS, REFERENCE STANDARD CRITERIA, AND NUMBER OF NODULES USED FOR VALIDATION ARE
LiSTED. NOTE THAT THE LIDC-IDRI DATASET HAS CHANGED OVER-TIME, WHICH PARTLY EXPLAINS WHY GROUPS HAVE USED DIFFERENT
SUBSETS FOR THEIR EXPERIMENTS. THE REPORTED PERFORMANCE AT ONE OR TWO OPERATING POINTS IS PROVIDED

slice nodu}es agree- o
CAD systems Year # scans thickness size ment # nodules sensitivity (%) / FPs/scan
(mm) levels
LIDC-IDRI dataset
Proposed system - 888 <25 >3 atleast 3 1,186 90.1 /4.0 854/1.0
LungCAM (Torres et al. [35]) 2015 949 - >3 at least 2 1,749 80.0 / 8.0 -
van Ginneken et al. [20]) 2015 865 <25 >3 atleast 3 1,147 76.0 / 4.0 73.0/ 1.0
Brown et al. [37] 2014 108 0.5-3 >4 atleast 3 68 75.0/2.0 -
Choi and Choi [38] 2013 58 0.5-3 3-30  at least 1 151 953/23 -
Tan et al. [39] 2013 360 - >3 at least 4 - 83.0/4.0 -
Teramoto and Fujita [40] 2013 84 0.5-3 5-20  at least 1 103 80.0/4.2 -
Cascio et al. [41] 2012 84 1.25-3 >3 atleast 1 148 97.0/6.1 88.0/2.5
Guo and Li [42] 2012 85 1.25-3 >3 atleast 3 111 80.0 /7.4 75.0/2.8
Other datasets
Jacobs et al. [5] 2014 109 1 >5 - 114 80.0 /1.0 -
Zhao et al. [43] 2012 400 1.0 >3 - 151 96.7/1.9 -
Golosio et al. [44] 2009 23 1.25 >3 - 45 71.0 / 4.0 -
Murphy et al. [3] 2009 813 1 >3 - 1,525 80.0 /4.2 -
Enquobahrie et al. [45] 2007 250 2.5 >4 - 395 94.0/ 7.1 -
with only non-contrast (646 scans). Table IV shows that the 1.0
system trained with both contrast and non-contrast scans al- ool |
ways achieves better performance, even on a dataset withonly | .0 oo
non-contrast scans. 08 1
The performance of the proposed ConvNets-CAD system 0.7 3
in terms of Free-response Receiver Operating Characteristic o6l |

(FROC) curve is depicted in Fig. 3(a). We also show a consis-
tent improvement of the performance of ConvNets when more
views are considered in the architecture, as shown in Fig. 3(c).

C. Comparison With Existing CAD

We applied the proposed CAD system on scans from com-
pletely independent ANODEQ9 dataset. The predictions were
submitted to the ANODEQ9 evaluation system and performance
were evaluated. Two sets of candidates were used. The first set
(reduced set) contains candidates obtained by combining the
candidate detection approaches described in Section III-A. The
second set (solid set) contains candidates only from ISICAD [3],
a subset of (solid) candidates that is used in the first set of can-
didates. The motivation is to evaluate if the ConvNets, which
is the main contribution of our work, can achieve better per-
formance in comparison with conventional feature extraction
method, given the same candidates. We used the ConvNets with
the late-fusion approach and the test-data augmentation to com-
pute the nodule probability. Although we have shown that the
usage of TDA does not significantly improve the performance
in LIDC-IDRI dataset, we found that it substantially improves
the detection performance when the ConvNets are applied to the
independent dataset, ANODEOQ9.

Table V shows the scores of the proposed ConvNets-CAD
in comparison with other CAD systems in ANODEQ9. When
only considering solid nodules candidates, the proposed
ConvNets-CAD achieves the CPM score of 0.637, which
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Fig. 4. FROC of CAD systems on DLCST dataset. The dataset contains 612
baseline scans with 898 annotated nodules.

outperforms other CAD systems. When TDA was not applied,
a CPM of 0.492 was achieved using the same set of candidates.
The scores of the other CAD systems are obtained either from
ANODEOQ09 website or from published articles if their scores
are not available on the website [35].

To put the proposed CAD in a broader context, we reported
the performance of existing CAD systems that use the LIDC-
IDRI dataset for development in Table VI.

The evaluation on the independent DLCST dataset confirms
that the proposed system achieves a good detection sensitivity
of 76.5% at 6 FPs/scan, which is 94.0% of nodules detected by
the candidate detection algorithm (Fig. 4), and outperforms the
best performing CAD system in ANODEO09.
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False negatives at 4 FPs/scan

Fig. 5. Examples of lesions detected or missed by CAD system. Each column shows one lesion represented in patches viewed from different angles. The left
set of lesions are nodules detected at 1 FP/scan. The middle set of lesions are false positives detected at 1 FP/scan. The right set of lesions are nodules missed at
4 FPs/scan. Most of the missed nodules are underrepresented in the current dataset.

V. DISCUSSION

In this study, a novel pulmonary nodule detection CAD
system using a multi-view convolutional network is proposed.
Compared to published CAD systems that are evaluated on
the publicly available LIDC-IDRI dataset, our proposed CAD
system achieves comparable or better performance, indicating
the potential of using ConvNets instead of using engineered fea-
tures and classification as the false positive reduction stage (see
Table VI). We also show that the proposed system is better than
our previous CAD system that applies the off-the-shelf Over-
Feat network trained on million natural images of ImageNet
dataset [20]. It suggests that training ConvNets specifically for
the task at hand is crucial. The possibility of learning features
from training dataset allows the network to learn classifying
objects with a high degree of variation, which is suitable for the
problem of pulmonary nodule detection.

We applied a combination of multiple candidate detection al-
gorithms to localize suspicious lesions. Table I shows that com-
bining multiple candidate detection algorithms boosts the detec-
tion sensitivity from 85.7% to 93.3% while maintaining a sim-
ilar number of false positives.A high detection sensitivity of the
candidate detection algorithm is important as it determines the
upper-bound quality of the CAD system. It is worth noting that
subsolid and large nodules represent a small group of nodules.
However, they both add important subsets of nodules that are
more likely to be cancerous.

Fig. 3(c) shows that incorporating more views in the archi-
tecture allows the network to achieve better performance. When
all nine views are used, the FROC curve approaches the plateau
at above 4 FPs/scan. This suggests that combining multiple
views can be an effective approach for classifying 3-D objects,
since simpler filters and fewer voxels are used compared to the
isotropic 3-D volume (64 x 64 x 64 voxels). Following this

trend, we expect that adding more views may slightly improve
performance further. Experiments on different methods for
fusing multiple 2-D ConvNets streams show that optimizing
the combiner together with other parts of the network gives the
best performance. This strategy allows the network to better
learn the morphology of candidates from different perspec-
tives, reducing errors caused by ambiguous information. As an
example, vessels may be classified as nodules when the CAD
system only processes one of its views. As a consequence,
committee-fusion, which is commonly used in other works
[10], [20], is sub-optimal for our architecture.

The evaluation on the ANODEQ9 dataset confirms that the
proposed CAD system generalizes well on unseen data and
performs accurately compared to other existing systems. When
ConvNets are applied to a similar set of candidates as detected
by the solid nodule detection algorithm ISICAD [3], a CPM
score of 0.637 is achieved and is ranked first in ANODEOQ9,
outperforming ISICAD with a CPM score of 0.632. However,
when candidates from the combined algorithm are used, the
proposed system only achieves a CPM score of 0.598, outper-
formed by two systems: ISICAD [3] and M5L [35]. The reason
for the deteriorated performance is the fact that the population
of nodules on ANODEOQ9 and that on LIDC-IDRI are different.
ANODEO09 dataset was randomly selected from a screening
trial program to represent a screening scenario [6] while the
LIDC-IDRI dataset was selected to capture the full spectrum of
scans and nodules [21]. As a consequence, ANODEO9 contains
very few subsolid nodules and large nodules and additional
candidates only contribute to more false positives. It is also
worth noting that ISICAD [3], M5L [35], and lungCAM [35]
were trained using a data set containing scans from the same
data source of the ANODEOQ9 study.

Additional experiments on screening cases from DLCST
shows that the majority of nodules among candidates remains
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correctly detected even at low FPs/scan. This shows that the
proposed algorithm based on ConvNets performs consistently
well as the false positive reduction step of CAD system. Al-
though combining algorithms improves the sensitivity of the
given candidate detectors, 18.7% of the annotated nodules
remain undetected. Improvement of the candidate detection
algorithm can substantially increase the overall performance of
CAD systems, which is planned as future work.

Examples of detected nodules, false positives, and false neg-
atives are shown in Fig. 5. Note that the system is able to detect
nodules with a large variety of morphological characteristics.
Fig. 5(b) shows examples of false positives. We observed that a
substantial number of false positives detected at 1 FP/scan are
actually nodules (first and second column) that were missed by
all four radiologists. This is a problem as all nodules are required
to be detected for follow-up in screening scenario. Adding CAD
systems in reading processes is expected to improve the annota-
tion of lung nodules. Osteophytes (third column), which are im-
portant for quantification of spinal abnormalities, are also found
as false positives. Other typical false positives include nodular-
like structures, large vessels, mediastinal structures, and scar-
ring. At 4 FPs/scan, most of undetected nodules are subsolid
nodules or nodules with irregular shape, which are underrepre-
sented in the training set. Further data balancing on nodule cat-
egories is expected to significantly improve the performance.

The ConvNets framework is implemented using Theano [46],
[47]. The computation time of ConvNets for a scan with on av-
erage 300 candidates per scan is 1 second on a standard PC with
a GPU GeForce GTX TITAN X. The average training time are
315 seconds, 980 seconds, and 3,465 seconds for ConvNets with
1 view, 3 views, and 9 views, respectively.

In the context of using the CAD system for lung cancer
screening, the performance in terms of sensitivity should be
improved. Several suggestions are proposed for future works.
Information from 3-D input data could be exploited to train the
ConvNets, even though this would increase the network com-
plexity. Another interesting direction that might also improve
performance is by adding features that could not be extracted
from patches (e.g., context features).

VI. CONCLUSION

We have presented a CAD system for pulmonary nodule
detection in CT scans based on multi-view convolutional
networks. We have shown that the proposed ConvNets-CAD
achieves good results for the nodule detection task. The
promising results and the low computation time make the
ConvNets-CAD highly suited to be used as a decision aid in a
lung cancer screening scenario.
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