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Abstract. This paper addresses the hypothesis that artificially implanted
lung nodules from computed tomography exams (CT exams) into chest
radiographs can improve the performance of a computer aided detec-
tion system (CAD system). Twenty-four three-dimensional lung nodules
were segmented and projected in five directions, mimicking 120 X-rayed
nodules. The CAD system was tested by fivefold cross validation on a
publicly available database. The results were evaluated by a free-response
receiver operating characteristic analysis (FROC). It was found that the
performance of the CAD system trained with simulated nodules comes
close to the performance of state of the art CAD systems that are trained
with real nodules. The CAD system trained with real nodules did im-
prove by adding simulated nodules, but only when there were few real
nodules used for training.

1 Introduction

Chest radiography is often the first study performed on symptomatic patients
and on asymptomatic patients in screening. While it is a cost-effective imaging
tool it has the drawback that images are hard to interpret, even for trained ra-
diologists. After some decades of development computer aided detection (CAD)
is becoming a widespread tool in medical diagnosis to assist radiologists. It is
obvious that a radiologist in training improves when he has diagnosed more ra-
diographs with feedback, with different kinds of diseases, with abnormalities on
different locations, and under different circumstances. That is not very different
for CAD systems. A CAD system’s performance also improves when training
data are richer in content and amount. A CAD system must first of all be well-
designed, but it also needs to be trained with many normal and abnormal images
before it can be applied successfully. Many papers have been written about the
design of CAD systems [1,2,3,4], in most cases silently assuming that training
with a large training database is possible. Unfortunately though, large training
databases are rare. This paper describes the results of a feasibility study with
artificially implanted lung nodules to increase the size of training databases.
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Stratum Number

Obvious 12
Relatively obvious 38
Subtle 48
Very subtle 24
Extremely subtle 19

Total 141
Table 1. Subtlety rating of abnormal JSRT images.

A small number of three-dimensional lung nodules were segmented in CT
volumes. Projection of these volumes in different directions mimics X-rayed CT
nodules that can be implanted in chest radiographs. This way a training database
can be extended with abnormalities at will. Simulated nodules can for example
be placed at locations with few training data, e.g., at locations that are partly
obscured by other organs, for separately training the CAD system. They can be
systematically varied in size and/or contrast by scaling or placed on the edges
of ribs or just in between. To prove the concept, a single contrast and the real
projected size of the simulated nodules were used in this paper. Furthermore,
the location variation is limited by locations of contralateral real nodules on the
same radiograph.

The following describes the segmentation of CT nodules, the construction
of simulated nodules, the implanting of these simulated nodules in chest radio-
graphs, and the CAD system that is used to test the hypothesis that implanted
nodules can in principle improve CAD systems. An FROC analysis is used to
objectively evaluate the CAD system with differently enriched training data.

2 Materials and Methods

2.1 Databases

Chest Radiography Database. The publicly available database of the Sci-
entific Committee of the Japanese Society of Radiological Technology (JSRT,
Shiraishi et al. [5]) was used for training and testing the CAD system. The
performance of CAD systems on this database often serves as a benchmark for
comparison between CAD systems. At present, it is the only publicly available
database of chest radiographs of moderately large size with normals and proven
abnormals (lung nodules). The JSRT database consists of 247 Posterior-Anterior
PA chest radiographs, digitized at a spatial resolution of 175μm/pixel and 12
bit gray levels. 154 images contain exactly one pulmonary lung nodule; the other
93 images contain no lung nodules. Additionally, a publicly available database of
lung field segmentations of the JSRT-images was used. This database consists of
manually segmented unobscured lung fields (only the parts that are unobscured
by the diaphragm or heart), heart, and clavicles (van Ginneken et al. [6]). Thir-
teen images with lung nodules that were not part of the unobscured lung fields
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(a) JSRT nodules

Stratum Number

< 10 mm 33
≥ 10 mm and < 20 mm 82
≥ 20 mm 26

Total 141

(b) Simulated nodules

Stratum Number

< 10 mm 6
≥ 10 mm and < 20 mm 68
≥ 20 mm 43

Total 117

Table 2. Diameter of Lung Nodules. The total number of implanted CT
nodules is 117. The diameter of simulated nodules is defined by the diameter of
a disk with 95% of the total ‘mass’.

were removed from the dataset. Before features were computed the images were
downsampled to 350μm/pixel to speed up processing. Table 1 gives the subtlety
rating of the abnormal JSRT images and Table 2(a) gives the effective diameters
of the nodules in those images.

Computed Tomography Database. CT volumes in an anonymized database
from a lung cancer screening study were used. To minimize influence of inaccu-
rate segmentation in our simulations, only volumes with nodules that are not in
contact with large blood vessels were selected from this database. Twenty-four
lung nodules were annotated by a radiologist.

The CT volumes were acquired on a 16-slice Philips Brilliance scanner with
a slice thickness of 1 mm and a slice spacing of 0.7mm. The in-plane resolution
was between 0.6mm and 0.8mm.

2.2 Simulated Nodules from Computed Tomography

X-rayed CT Nodules. Twenty-four CT nodules were segmented using a
method by Kostis et al. [7]. This is basically a region growing algorithm with a
refinement by morphological operators. It leads to segmented nodule templates
that are rescaled to the resolution of the radiographs and placed in a box of
air (−1000 HU). Subsequently, nodules were projected along five randomly ori-
ented axes using simple orthogonal ray casting. This leads to 120 two-dimensional
CT intensity profiles. Three simulated nodules that looked unrealistic were not
used, resulting in 117 simulated nodules. Table 2(b) gives the sizes of the 117
simulated nodules. The last step is a conversion from the projected CT units
to radiograph units. This is done by a calibration obtained from studies with
both a CT exam and a radiography exam [8]. The calibration function is deter-
mined by measuring the intensities in corresponding regions of the radiographs
and the projected CTs. The intensities were measured in the heart, the spine,
and in the lungfields. A calibration function was constructed by fitting a third-
order polynomial to these data. It will not completely undo the effects of all
post-processing steps that manifactures apply, like edge detection or unsharp
masking, but it was adequate for the purpose of this study.
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(a) (b) (c) (d)

Fig. 1. Examples of Implanted Nodules. Fig.s 1(a) and 1(c) depict two
simulated nodules and Fig.s 1(b) and 1(d) depict parts of chest radiographs
with these nodules implanted.

Implanting X-rayed CT Nodules. The CAD system is trained with both
normal and abnormal images. We implanted exactly one simulated nodule in
the abnormal images. The location was chosen in the contralateral lung field of
the real nodule. (Remember that each abnormal image in the JSRT database
contains exactly one real nodule.) Hence, the total number of available lung nod-
ules for training (real and implanted) doubles. The vertical locations of the real
and implanted nodules are chosen approximately the same and also their hori-
zontal distances from the vertebral column are chosen approximately the same.
The reason for this careful choice of placement is that we test the hypothesis
that adding artificially implanted lung nodules to a training database improves
the performance of a CAD system. If locations were carelessly chosen, e.g., by
random placement, we might have impaired the CAD performance beforehand.

After projection of the CT nodules there is still one degree of freedom, namely
the orientation, which is chosen to be random.

141 simulated lung nodules are sampled from the set of 117 simulated nodules
with replacement and assigned to the 141 JSRT chest radiographs with a real
lung nodule. For a wide range of pixel values the pixel value is approximately
proportional to the thickness of tissue in film-screen radiography. Implanting
nodules is therefore nothing more than adding pixel values. Figure 1 depicts two
examples of simulated nodules.

2.3 CAD system

Local Direction Features. Detection is mainly based on two local direction
features features: the first measures whether the number of local gradients point-
ing to a common center is statistically larger than the expected number for ran-
dom gradients; the second measures whether local gradients are rotation sym-
metric.

If many gradient vectors are directed to a certain location this indicates that
a lung nodule may be present. To quantify such events we define the statistic

si,j =
{

1 − pi,j , if “hit”, (pixel j is oriented to pixel i)
−pi,j if “miss”.
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Fig. 2. Hit/Miss. A pixel j is oriented to pixel i when the line through rj with
orientation φj crosses a disk with radius R centered at pixel i.

A pixel j is oriented to pixel i, i.e., we speak of a “hit”, when the line through
the location of pixel j, denoted by rj , with orientation φj ∈ [0, π] crosses a disk
with radius R centered at ri (see Figure 2). This happens when

sinΔαi,j ≤ R

‖rj − ri‖ , (1)

where Δαi,j ∈ [0, π/2] is the acute angle between a line with orientation φj and
the line through ri and rj . The prior probability that a line through rj is oriented
to pixel i is given by pi,j . Assuming that the prior probability of orientations φj

is uniform on [0, π], we have

pi,j =
{

2

π arcsin R
‖rj−ri‖ , if ‖rj − ri‖ ≥ R,

1 otherwise.
(2)

A sum is computed by
Si =

∑
j∈Ni

si,j

where an annular neighborhood Ni with outer radius D and inner radius Dmin

is defined as

Ni =
{∀ rj ∈ R

2 |R < Dmin ≤ ‖rj − ri‖ ≤ D
}

.

The first feature, the concentration feature, is defined as

g1 =
Si

std {Si} =

∑
j∈Ni

si,j√∑
j∈Ni

pi,j (1 − pi,j)
. (3)

The normalization std {Si} in the denominator is computed by assuming that
all orientations at j ∈ Ni are uniformly distributed and statistically indepen-
dent. For random orientations this feature is zero, and only when orientations
systematically have a common center at i (or the opposite, not one is oriented
to i) it deviates significantly from zero.
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(a) X-location (b) Y-location (c) Heart border (d) Lung border

Fig. 3. Location Features within the Unobscured Lungs Fields.

The second feature takes the symmetricity of orientation patterns into ac-
count. Each neighborhood Ni is divided into K directional bins, i.e., like a
pie (K = 24 is used). For each bin the statistic Si is computed as before, but
now with Ni replaced by the region of one piece of the pie. When Si > 0 for
all bins, there is evidence that the pattern of orientations is symmetric around
pixel i. The second feature, the concentration symmetricity feature, is defined as

g2 =
n+ − Ki√

Ki/4
, (4)

where Ki ≤ K is the number of bins at pixel i, and n+ ∈ [0, Ki] is the number
of bins with positive Si. The number of bins is variable as pixels close to the
breast or image boundary are excluded if they do not contain enough pixels. The
denominator is the standard deviation of n+ when all orientations are uniformly
distributed and statistically independent, i.e., when n+ is a binomial random
variate (with sample size K = 24 and probability p = 1/2 that bin i has a
positive statistic Si).

Note that when the summations above are computed for a certain upper
radius D, it takes little effort to compute the summations for a somewhat larger
upper radius. This means that g1 and g2 can be computed efficiently for all
encountered radii D in a rectangular grid of pixels. Instead of using g1 and g2

for fixed upper radius D, we use the multi-scale features after computing them
as a function of D

G1 = max
D

{g1 (D)} (5)

and
G2 = max

D
{g2 (D)} . (6)

Before determining the maxima the functions gi (D) are smoothed.

Location Features. Because nodules are not uniformly distributed over the
lungs and, more importantly, because the local direction features suffer from the
vessels near the heart, four location features are added: the relative X- and Y-
coordinates within the pixel’s unobscured lung field (computed by the cumulative
area horizontally or vertically); the relative distance to the heart; and the relative
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distance to the border of the unobscured lung fields (see Figure 3). The four
location features are normalized between zero and one.

Classifier. We used a three-layer feedforward neural network with sigmoid
transfer functions and one hidden layer to classify feature vectors. The num-
ber of input nodes was equal to the length of the feature vector. The number of
nodes in the hidden layer was five and one output node was used. The network
is trained by the backpropagation algorithm.

The neural network output was computed on regularly spaced grid loca-
tions (the grid spacing was 2.8 mm) in all testing images and thresholded local
maxima of the resulting output images were further analyzed. A local maximum
of an output image was considered a true-positive (TP) when its location was
less than 2.5 cm from the center of any annotated lesion, otherwise the local
maximum was considered a false-positive (FP). This criterion was proposed by
Hardie et al. [4].

In most CAD systems a second stage is employed in which candidate nod-
ules detected in the first stage are segmented and classified with more features.
This study is limited to investigating the use of simulated nodules in the initial
detection stage.

Training and Testing. Lung nodule images in the JSRT database are clas-
sified into six strata according to the degrees of subtlety shown, ranging from
“obvious” to “extremely subtle” and “no lung nodules (normals)” (taken from
Shiraishi et al. [5]). The numbers of images per degree of subtlety are given in
Table 1. Stratified fivefold cross-validation was used to partition the dataset into
training sets and testing sets.

Let us call the set with testing images S20 (20% of all normal and abnormal
JSRT images) and the disjoint set with training images S80 (80% of all normal
and abnormal JSRT images). The pixel classifier is trained with the set S80 (with
existing and implanted lung nodules) and tested with the disjoint set S20 (only
with existing lung nodules). This is repeated with circulating sets S20 until
all images have been tested, i.e., five times. The five sets S80 are randomized
once and remain the same in all experiments thereafter. The only thing that
differs between experiments are the regions of interest (ROI), comprising the
set of pixels used for training. When a nodule, irrespectively whether it is a
real or a simulated nodule, is not to be used in a certain experiment then it
is removed from the ROI. This is done by removing all pixels in a disk with a
diameter of 4 cm centered at the nodule’s location from the ROI. When Nreal

real nodules and Nimplanted simulated nodules are to be used for training then
all nodules are blanked, except the real nodules in the first Nreal images and
the simulated nodules in the following Nimplanted images. Of course, the ROIs of
the testing sets S20 are not manipulated at all. For experiments with a constant
of Nreal + Nimplanted lung nodules in the training set, the only thing that may
be varied is the relative amount of implanted lung nodules in the training sets,
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i.e., the blanked nodules; The sets of training and test images remain the same
under all conditions.

3 Experimental Results

Location Features and Local Direction Features. The main experiment is
performed with different numbers of real nodules and simulated nodules. For this
experiment all six features are included. The results, evaluated by a free-response
receiver operating characteristic analysis (FROC; [9]), are given in Figure 4.

In the next section a control experiment is performed to test whether these
results can be explained by the way the simulated nodules were implanted.

Location Features. To show that the previous results cannot be explained
by the locations of the implanted lung nodules alone, a control experiment is
performed with only location features. The results are given in the FROC curves
of Figure 5. Evidently, the curves lie much lower than the curves in Figure 4(a)
(e.g., at one FP per image the sensitivity drops from 0.56 to 0.14 for the real
nodules). This proves that the previous results cannot be explained by location
features alone. In other words, the morphology of the simulated nodules adds
something essential.

The slight difference between the two curves can be explained as follows.
Although the relative locations of the implanted nodules are the same as the
relative locations of the real nodules, the distances to the heart and the distances
to the unobscured lung border, also two location features, are not.

4 Discussion

Conclusion. This paper presents the preliminary results of a study with im-
planted lung nodules for the purpose of training CAD systems. The hypothesis
that a CAD system improves with artificially added X-rayed CT nodules is con-
firmed. Even when no real nodules are in the training set, the performance of the
CAD system is reasonably high, certainly if one considers that only twenty-four
three-dimensional CT nodules form the basis of the implants. The sensitivity of
the CAD system trained with 100 simulated nodules was 0.51 at one FP per
image. The best results reported to date were obtained by Hardie et al. [4].
With the same criterion for TPs, they found a sensitivity of 0.56 at one FP
per image (tenfold cross validation on the JSRT database). The CAD system
they used was however trained with more than 100 abnormal images, but more
importantly it included an extra classifier for candidate lung nodules, an extra
step that was omitted here.

Future Work. In an extended CAD scheme the candidate nodules are further
processed in a subsequent, second classifier. It will be investigated whether such
a CAD schemes will increase the performance (which is already relatively high).
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Fig. 4. FROC analysis of a CAD system with Location Features and
Local Direction Features. Figure 4(a) shows the FROC curves when the
CAD system is either trained with either Nreal = 100 real nodules or with
Nimplanted = 100 simulated nodules. Figure 4(b) shows aggregated results for
other numbers of real and simulated nodules by integrals over the FROC curves
with respect of log

10
(FPs per image) from 0.1 to 4 FPs per image. Notably, the

red points at Nreal = 0 and 100 are the aggregate performances of Figure 4(a).

Third International Workshop on Pulmonary Image Analysis -147-



10−1 100 101
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPs per image

se
ns

iti
vi

ty

100 simulated nodules
100 real nodules

Fig. 5. FROC analysis of a CAD system with Location Features only.
The CAD system is either trained with Nreal = 100 real nodules or with
Nimplanted = 100 simulated nodules.

Probably more than twenty-four CT nodules (the number used in the current
study) are required to capture the more subtle properties that nodules may
possess.

The locations of implants were realistic locations in this work, because it
is our believe that the location of a nodule is critical for its detection. This
assumption will be investigated. If it is true that locations of implants are criti-
cal for training then a generic, smooth distribution of nodule locations may be
constructed from a database of real nodules.

It would be very interesting to see whether CAD results improve when chest
radiographs are split in different parts, and each trained with a different classifier.
The first thing that comes in mind are the occluded regions, the heart, the
clavicles, and the diaphragm, but one can also use different classifiers for half-
occluded on non-occluded nodules by the ribs. When implanted nodules cannot
be distinguished from real nodules then availability of trained data is not an
issue anymore.
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