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a b s t r a c t 

The immune system is of critical importance in the development of cancer. The evasion of destruction 

by the immune system is one of the emerging hallmarks of cancer. We have built a dataset of 171,166 

manually annotated CD3 + and CD8 + cells, which we used to train deep learning algorithms for auto- 

matic detection of lymphocytes in histopathology images to better quantify immune response. Moreover, 

we investigate the effectiveness of four deep learning based methods when different subcompartments 

of the whole-slide image are considered: normal tissue areas, areas with immune cell clusters, and areas 

containing artifacts. We have compared the proposed methods in breast, colon and prostate cancer tissue 

slides collected from nine different medical centers. Finally, we report the results of an observer study 

on lymphocyte quantification, which involved four pathologists from different medical centers, and com- 

pare their performance with the automatic detection. The results give insights on the applicability of the 

proposed methods for clinical use. U-Net obtained the highest performance with an F1-score of 0.78 and 

the highest agreement with manual evaluation ( κ = 0 . 72 ), whereas the average pathologists agreement 

with reference standard was κ = 0 . 64 . The test set and the automatic evaluation procedure are publicly 

available at lyon19.grand-challenge.org . 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The immune system is of critical importance in preventing

ancer development. The immune system can kill cells that are di-

iding uncontrollably, resulting in prevention of cancerous growth.

owever, cancers can have specific mutations that help it evade

his immune destruction, which is one of the hallmarks of cancer

evelopment ( Hanahan and Weinberg, 2011 ). As such, understand-

ng the ability of immune cells to prevent cancer development or

ill cancer cells is an active topic in cancer research. In partic-
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lar, recent advances in immunotherapy strategies ( Khalil et al.,

016; Rosenberg and Restifo, 2015; Xie et al., 2017 ) have further

ncreased the interest in understanding the mechanism of immune

esponse to cancer. One of the current hypotheses states that the

alance between lymphocytes, a subset of immune cells, with

ro- and anti-inflammatory function is important for disease pro-

ression ( Galon et al., 2006 ). Specifically, lymphocytes that occur

ithin the tumor area and with the tumor-associated stroma are of

nterest. These lymphocytes are called tumor infiltrating lympho-

ytes (TILs). Studies have shown that the presence of TILs is related

o patient prognosis after undergoing surgery or immunotherapy

 Coussens et al., 2013; Syn et al., 2017; Vánky et al., 1986 ). There-

ore, detection and quantification of lymphocytes has the potential
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Fig. 1. Examples of image regions used in this study, containing areas with a regular lymphocyte distribution (A), areas with lymphocyte clusters (B) and areas with artifacts 

or damaged tissue (C), where first row: stain artifacts; second row: ink; third row: tissue folds. Patches containing a single lymphocyte are depicted as well (D), in order to 

show the difference in appearance. 
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to provide biomarkers with strong prognostic and predictive power

for cancer progression and therapeutic efficacy ( Varn et al., 2017 ). 

An important tool to detect and quantify specific cell pop-

ulations in histopathology is immunohistochemistry (IHC). IHC

is a technique that allows to stain specific cell types, including

lymphocytes, by attaching a colored label to a specific antigen that

is expressed by a cell, making it distinguishable from other types

of cells. In the context of TILs, widely used immune cell markers

are CD3 (general T-cell markers) and CD8 (cytotoxic T-cell marker).

Both CD3 and CD8 are membrane markers, meaning that they

target an antigen in the cells’ membrane, resulting in a colored

ring in positive cells ( Fig. 1 ). 

To quantify the immune cells in immmunohistochemistry,

visual assessment via light microscopy is the standard approach

in research. This procedure requires training by pathologists and

suffers from inter- and intra-observer variability ( Klauschen et al.,

2018 ). The rise of digital pathology has fostered the development

of computer algorithms based on machine learning for the anal-

ysis of histopathology whole-slide images (WSI). These methods

have the potential to make the transition from subjective visual

estimation to reproducible accurate quantification of cells via au-

tomatic detection. Furthermore, moving from overall quantification

to detection of each lymphocyte in the slide allows analysis of

complex spatial patterns such as cell density distributions and

cell-to-cell interactions, which are currently not assessed due to

a lack of standardized methodology, time and difficulty in making

such assessment ( Klauschen et al., 2018 ). 

It is easy to show that a large variety of challenges are present

in tissue samples stained with lymphocyte markers, making de-

tection a non-trivial task. In this study, we define three different

types of areas containing T-cells that can be distinguished in CD3

and CD8 stained slides (see Fig. 1 (a)–(c)), namely (a) regular tissue

areas, which are areas with a regular lymphocyte distribution

without artifacts, damaged or large areas of cell clusters; (b)

lymphocyte cluster areas, which contain significant number of clus-

tered T-cells with vague cell boundaries; (c) artifact areas, which

include various types of staining artifacts, i.e., areas with a range of

non-specific stain, damaged regions or ink. Quantification of T-cells

is relatively straightforward in regions of category (a), whereas
 a
n categories (b) and (c) detection and accurate quantification

f lymphocytes can be very challenging. Such regions are often

ot considered or discussed in scientific literature ( Garcia et al.,

017 ) but are highly relevant for procedures that aim to fully

utomatically analyze immunohistochemistry. 

.1. Related work 

There has been a large corpus of methods for cell detection

n digital histopathology slides based on classical image analysis

nd machine learning approaches, such as morphological opera-

ions, region growing, analysis of hand-crafted features and image

lassifications. 

In recent years, deep learning ( LeCun, 2015 ) has brought a

evolution to the field of pattern analysis and machine learning,

y providing algorithms with the capacity to learn complex rep-

esentations from the raw data itself, achieving human and even

uper-human level performance in some fields, including medical

mage analysis ( Ehteshami Bejnordi et al., 2017; Esteva et al., 2017;

ulshan et al., 2016 ). A review on recent work on automated

etection of tumor-infiltrating lymphocytes was recently published

 Klauschen et al., 2018 ), which covers both classical and more

ecent machine learning approaches, including deep learning. 

Automatic cell detection in digitized histopathology tissue

ections can be tackled by many different approaches. However, in

he context of deep learning, we can define two main categories:

1) “learning to segment cells” (segmentation approach) and (2)

learning to regress cell location” (regression approach). 

earning to segment cells. This category contains methods that aim

t detecting cells by object segmentation, or in the form of patch

lassification. The location of cells is predicted by post-processing

f the segmentation map. In deep learning, patch classification is

ostly done by convolutional neural networks (CNN), and in par-

icular by fully-convolutional networks (FCN) ( Long et al., 2015 ),

hich can be efficiently used in segmentation tasks. Additionally,

uch of research on pixel classification methods in the context

f semantic segmentation in medical imaging relies on the U-Net

rchitecture or derivatives ( Ronneberger et al., 2015 ). 
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There has been a substantial amount of research on au-

omatic cell detection in histopathology images ( Chen, 2014;

arcia et al., 2017; Janowczyk and Madabhushi, 2016; Saltz et al.,

018; Xing and Yang, 2016; Xu et al., 2016 ). Most methods

re based on patch classification with convolutional networks

 Chen (2014) ; Garcia et al. (2017) ; Janowczyk and Madab-

ushi (2016) ; Saltz et al. (2018) ) or with an auto-encoder ar-

hitecture ( Xu et al. (2016) ). It should be noted, that most of those

ethods are developed for the analysis of H&E stained specimens

 Janowczyk and Madabhushi (2016) ; Saltz et al. (2018) ; Xing and

ang (2016) ). 

earning to regress cell location. This category contains methods

hat aim at predicting the location of cells directly, for example

y predicting the position of nuclei, or by predicting bounding

oxes that contain the entire cell. One way to formulate such

n approach with deep learning is by predicting the coordinates

f a cell directly as the output of a deep learning network. In

his context, the Locality Sensitive Method (LSM) proposed in

irinukunwattana et al. (2016) represents a seminal work in com-

utational pathology, where several types of nuclei in colon cancer

pecimens stained with H&E were both detected and classified.

or the detection part, the method used convolutional networks

o directly predict the location of target cells, instead of predicting

abels of input patches. Xie et al. (2015b) addressed the detection

f Ki67 + cells in neuroendocrine tumors with a system that

omputes a map of detected cells by using a structural regression

pproach based on FCN. A similar approach was proposed by

ie et al. (2015a) where network is learning an offset vector

eferring to cell locations. 

In the computer vision community, methods able to predict

ounding boxes of target objects have become very popular in

ecent years. The published methods strive to be both effective and

fficient. In particular, methods like Fast R-CNN ( Girshick, 2015 ),

aster R-CNN ( Ren et al., 2016 ) and You Only Look Once (YOLO)

 Redmon et al., 2015 ) have quickly become reference approaches

or object detection in natural images. Recently, improvements

oth in terms of accuracy and efficiency have been proposed for

OLO ( Redmon and Farhadi, 2016; Redmon and Farhadi, 2018 ).

owever, to the best of our knowledge, the only work on cell de-

ection in computational pathology using deep learning methods

hat predict bounding boxes is our recent work on lymphocyte

etection ( van Rijthoven et al., 2018; Swiderska-Chadaj et al.,

018 ), which also represents preliminary work of this paper. 

.2. Our contribution 

In this paper, we address the problem of automatic detection of

D3 + and CD8 + immune cells in a multi-center set of whole-slide

mages of breast, prostate and colon cancer using deep learning.

reliminary results of these research were presented in van Ri-

thoven et al. (2018) and Swiderska-Chadaj et al. (2018) . This paper

epresents a significant extension of previous work, which in-

ludes: pathologist evaluation, comparison of deep learning results

ith pathologist evaluation, large multicenter dataset, modification

f applied network architectures, analysis of the results at multiple

evels, as well as release of a web platform containing the test set

nd automatic evaluation procedure. In presented work we can

istinguish four main contributions.: 

First, we developed and compared four different deep learning

pproaches that address both the CD3 + and the CD8 + cell detec-

ion problem at whole-slide image level from different angles. In

articular, we developed methods based on “learning to segment

ells” based on the fully-convolutional networks ( Long et al., 2015 )

nd U-Net ( Ronneberger et al., 2015 ), as well as a methods to

learning to regress cell locations” based on You Only Look Once
pproach ( Redmon et al., 2015 ), and a locality sensitive method

 Sirinukunwattana et al., 2016 ). All methods were trained and val-

dated using exactly the same data sets and comparable amounts

f trainable parameters, in order to provide a fair overview of po-

ential and limitations of the considered approaches. Together with

verall performance, we also investigate and report the robustness

f each developed method in the presence of challenging areas,

herefore reporting detailed performance for the sub-categories de-

icted in Fig. 1 . Moreover, we stratify results based on medical cen-

ers, staining type (CD3, CD8) and organ (breast, colon, prostate). 

Second, in order to train and validate the considered deep

earning methods, we have built a unique dataset of 83 whole-

lide images collected from 9 different pathology laboratories in

he Netherlands, in which we selected 932 Region of Interests

ROIs) and manually annotated 171,166 lymphocytes in these ROIs.

o the best of our knowledge, this is by far the largest set of data

hat has been built in the context of developing and validating

eep learning methods for the detection of lymphocytes, which in

erms of ROIs represents an increase of 70x compared to previous

ork ( Garcia et al., 2017 ). Furthermore, differently from previous

ork, we specifically focus our attention and report results on

egions that are known to be challenging in the context of TIL

etection in IHC, namely regions containing dense clusters of

ymphocytes, regions with abundant background staining, and

egions with stain artifacts and ink, from which false positive

etections are known to originate. 

Third, in order to assess the performance of developed methods

ith respect to experienced pathologists, we designed an observer

tudy and involved four pathologists from four different medical

enters. We report the results of the comparison of the best deep

earning method and the pathologists. 

Last, we made the 441 ROIs of the test set and an evaluation

etric for LYmphocyte detectiON (LYON) publicly available at

yon19.grand-challenge.org . This allows the scientific community

o compare the performance of other approaches with the results

resented in this paper using exactly the same test set and the

ame evaluation procedure. This is the first publicly available

est set to assess the performance of lymphocyte detection in

mmunohistochemistry. 

. Materials 

hole-slide images. For this study, we collected 83 glass slides of

reast (33 slides), prostate (22 slides), and colon (28 slides) cancer

pecimens from nine different medical centers in the Netherlands.

ll slides were stained with an antibody against CD3 or CD8. In

rder to introduce stain variability, tissue samples were stained in

he local lab of the nine participating medical centers. In this way,

e covered a wide range of staining protocols and provide our

eep learning models with an heterogeneous appearance of tissue

amples. Slides were subsequently digitized using a Pannoramic 250

lash II scanner (3DHistech, Hungary), resulting in WSIs with a pixel

ize of 0.24 μm/px (magnification 20x) . 

anual annotations. In order to train and validate deep learning

ethods, approximately 11 regions of interest (ROI) per WSI were

elected by a trained human analyst, with the aim of making

xhaustive annotations of lymphocytes in each ROI ( Fig. 2 ). For

his task, the in-house developed open-source ASAP software

 Litjens et al., 2018 ) was used. Selected regions were distributed

cross the areas of interest: (1) areas with regular lymphocyte

istribution, (2) clustered cells, and (3) staining or tissue artifacts

see Fig. 1 ). Within the selected ROIs, lymphocytes were manually

nnotated exhaustively. Annotations were made by three human

nalysts (E 1 , E 2 and E 3 ) trained to execute this task. A set of

ocations {( x , y )} corresponding to the center of the nucleus of
l l 

http://lyon19.grand-challenge.org
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Fig. 2. Example of manually annotated lymphocytes in ROIs of a WSI, where: A- whole slide image with marked on a yellow annotated ROIs with cells and on green ROIs 

with artifacts; B and C - zoomed areas where manually annotated cells are marked in yellow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Example of target map generated from the annotation of a location ( x l , y l ) 

in the input patch that contains one lymphocyte. This target map is used to train 

U-Net and the FCN, where r B = 2 . 4 μm is the radius of the cell body; r M = 2 . 88 μm 

is the radius of the whole cell. 
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each lymphocyte was established, where l = 1 , . . . , N. As a result,

N = 171,166 lymphocytes in 932 ROIs were annotated, which were

used as reference standard. 

Datasets. The 83 whole-slide images were divided into a training

(n = 37), validation (n = 6) and test set (n = 40). Training and val-

idation slides were selected from two medical centers, whereas

the independent set of test slides was created using data from

eight centres. Data from one lab was shared across two training

and test, but care was taken that the same patient did not appear

in both sets. The validation set contained two images of each

considered organ (breast, colon, prostate), one stained with CD3

and one stained with CD8. The test set contained fifteen images of

colon cancer and breast cancer, and ten images of prostate cancer,

with the same proportion of slides stained with CD3 and CD8. 

3. Learning to detect lymphocytes 

Two categories of cell detection methods based on deep learn-

ing techniques were investigated, namely learning to segment

cells and learning to regress cell location . For each category, two

different approaches for lymphocyte detection were developed:

(1) patch classification using a fully-convolutional network, and

(2) semantic segmentation using U-Net, for “learning to segment

cells”; (3) bounding box detection based on the YOLO network,

and (4) prediction of cell center locations by the LSM network, for

“learning to regress cell location”. 

3.1. Learning to segment cells 

We formulate the pixel classification problem as a multi-class

problem. For each provided lymphocyte location ( x l , y l ), a target

map with three classes was generated ( Fig. 3 ). For each manually

annotated location ( x l , y l ), regions approximating the cell body and

the membrane of each lymphocytes were defined, with radii r B and

r M 

, respectively (see Fig. 3 ). Additionally, we also considered the

background class. The value of r M 

was determined based on the

average diameter of a lymphocyte, which is in the range of 6–8

μm . The values of r M 

and r B were established as 2.88 μm and 2.4 μm

respectively. This target map is used in the learning procedure of

both FCN and U-Net. 
CN: Fully Convolutional Networks. The FCN architecture we used

n this paper contains twelve convolutional layers. The first two

ayers are interleaved with pooling layers to improve spatial in-

ariance. Every convolutional layer is followed by a rectified linear

nit, except the last layer where a softmax nonlinearity is applied.

raining was done using the mask depicted in Fig. 3 as a 3-class

roblem. 

At inference time, a dense prediction is obtained by means

f the shift-and-stitch technique ( Long et al., 2015; Sermanet

t al., 2014 ), which allows to prevent loss of resolution due to

he pooling layers. In practice, the implementation described in

ong et al. (2015) is used to efficiently produce results identical

o shift-and-stitch using filter dilation : all layers D i with stride

 i > 1 are applied using now stride ˆ s i = 1 , and filters of subsequent

ayers L j (both convolutional and pooling, j > l ) are dilated by a

actor ˆ d j = 

∏ 

i< j s i . As a result, a likelihood map at the resolution

f the input image is obtained. 

In order to obtain the final detection result, likelihood maps are

ost-processed by smoothing with a Gaussian filter ( σ = 1 μm ) and

ubsequently detecting local maxima within a neighbourhood of

.9 μm . These values were established based on typical lymphocyte

ize. 
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Table 1 

Overview of parameters for each developed approach. CP: contraction path of 

U-Net model; SGD: stochastic gradient descent; CCR: categorical crossentropy; 

BCR: binary crossentropy; NM: Nesterov Momentum. Note that the number of 

trainable parameters for U-Net is reported separately for the feature extraction 

and for the segmentation part. 

FCN U-Net YOLLO LSM 

Trainable parameters 7M 8M(CP 4M) 6M 4M 

Input size (px) 284X284 256x256 256x256 27x27 

Output size (px) 1x1 256x256 256x256 27x27 

Dropout factor 0 0.25 - 0.5 

Optimizer ADAM SGD ADAM NM 

Loss function CCR CCR yolo loss BCR 

Learning rate 0.0001 0.0005 0.00005 0.05 

Batch size 32 1 4 32 

Input pixel size ( μm ) 0.24 0.49 0.49 0.49 
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-Net. In our study, we extended the original U-Net

 Ronneberger et al., 2015 ) architecture by adding a spatial dropout

ayers between convolutional layers, with the aim of reducing over-

tting. In order to train the U-Net, we used target segmentation

asks as the one depicted in Fig. 3 . The output of the U-Net net-

ork is post-processed using the same algorithm as for the FCN. 

.2. Learning to regress cell location 

We developed two methods for predicting the location of lym-

hocytes, namely YOLLO (You Only Look at Lymphocyte Once) and

SM. In particular, a recently presented optimization of the YOLLO

ethod, tailored to detect lymphocytes in immunohistochemically

tained whole-slide images is used. 

OLLO: You Only Look atLymphocytes Once. We adapted the origi-

al YOLO architecture for the problem of lymphocyte detection in

HC ( van Rijthoven et al., 2018 ). YOLLO processes an image by first

ividing it into a grid, and then predicting bounding boxes that

hould contain lymphocytes for each grid cell. For each bounding

ox, the network outputs a confidence level C , which is a measure

f how sure the model is that a lymphocyte is captured by that

ounding box, instead of background. 

The loss function presented in Redmon and Farhadi (2016) was

nitially used for training, which was simplified as proposed in

an Rijthoven et al. (2018) . A prediction was considered correct

f the predicted bounding box had an intersection over union

IoU) ≥ 0.5 with a true bounding box. During inference, predicted

ounding boxes with overlap are considered as detecting the same

ymphocyte. Therefore, non-maximum suppression is applied in

rder to keep only one prediction per lymphocyte at test time. The

utput confidence C of the selected bounding box is considered as

he lymphocyte score. 

SM: Locality Sensitive Method. The goal of the locality sensitive

ethod presented in Sirinukunwattana et al. (2016) is to learn

 mapping function F from a 2D input domain (i.e., an image

atch) I ( x, y ) to M output locations ( x m 

, y m 

), which correspond

o locations of centers of lymphocytes, as well as a likelihood

arameter h m 

for each location: { x m 

, y m 

, h m 

} = F(I(x, y )) , for

 = 1 , . . . , M. In this way, M represents the maximum number of

ymphocytes that are expected to be found in an input patch I ( x,

 ), and the output variable h m 

allows to control the likelihood

f each predicted location to contain an actual lymphocyte. If a

atch contains T lymphocytes and T < M , then some values of h m 

ill be ≈ 0. Differently from Sirinukunwattana et al. (2016) , we

mplemented a spatially constrained layer that predicts an output

ap which has the same size as the input patch. 

The output of the network is a 2D map of Gaussian-like

rofiles that indicate the predicted locations of lymphocytes.

n order to improve the robustness of predictions, as in

irinukunwattana et al. (2016) , we process each input patch

ultiple times and accumulate the predicted profiles. For this

urpose, we shifted the patch from its central position n s = 4

imes per image dimension, therefore accumulating (n s + 1) 2 = 25

redictions per patch. The final set of locations ( x, y ) of predicted

ymphocytes is extracted by detecting local maxima on prediction

aps. The value of the maximum is used as lymphocyte score. 

.3. Model parameters 

Methods were developed using both Tensorflow ( Abadi et al.,

015 ) and Keras ( Chollet et al., 2015 ), or Theano ( Al-

fou et al. (2016) ) and Lasagne ( Dieleman et al., 2015 ). All methods

ere trained in a supervised fashion using exactly the same ROIs
rom the same training and validation slides. All network archi-

ectures were designed in order to have a comparable amount of

rainable parameters. We considered each approach as consisting

f several parts, where one was considered as the main component

or learning data representation, and the rest was a model-specific

nd a task-specific component. Applied architectures were de-

igned in order to actually have a comparable number of trainable

arameters in the part of the model that is mostly responsible

or learning data representation. The contraction path of U-Net

4M) was used as a reference and the architecture of all other

odels was adapted to have a representation learning component

omparable to the one of U-Net. The difference in the final num-

er of trainable parameters is related to the final layers of each

odel (number and size of convolutional layers, pooling layers or

patial constrained layers), which represent the model-specific and

ask-specific components. During training, the performance of each

etwork on the validation set were monitored. Hyperparameters

input image size, loss function, optimizer, batch size, learning

ate, dropout factor) were optimized for each network indepen-

ently. This is needed because no default set of hyperparameters

xist that is optimal for all different architectures. 

.4. Training deep learning models 

Applied deep learning models were trained in an end-to-end

ashion using an individual hyperparameter optimization to obtain

he best possible F1-score on the validation set. The overview of

arameters is presented in Table 1 . The input tiles were in the

GB color scale with pixel size of 0.49 μm for U-Net, YOLLO and

SM methods, and with pixel size of 0.24 μm for FCN method. The

ame image augmentation techniques, including modification of

rightness, contrast, saturation, rotation and noise adding, were

pplied for each network. 

The FCN training was performed using the Adam optimization

lgorithm and the Categorical Cross Entropy loss function. The

atch size was 32 with input patches of size 284x284 pixels.

he learning rate was set to 0.0 0 01 with decay of 0.75 when no

mprovement on validation loss was observed for 25 consecutive

pochs, which resulted in 45,0 0 0 mini-batch iterations. 

The U-Net was optimized using stochastic gradient descent

ith a categorical cross entropy loss function. The batch size was

et to 1, with input patch size of 256x256 pixels. The training was

erformed by 100 epochs of 200 mini-batches with a learning

ate equal to 0.0 0 05. The YOLLO method was trained with Adam

ptimization technique and the yolo loss function. The sampling

trategy as proposed in van Rijthoven et al. (2018) was not applied

n this paper, in order to keep the YOLLO method comparable with

he other presented methods. The batch size was set to 4 with the

nput patch size of 256x256. The training was performed for 200

pochs with a learning rate equal to 0.0 0 0 05. Additionally, the
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Table 2 

Detection performance of developed deep learning algorithms on 

the test set. Bold indicates the best method in terms of F1-score. 

Area type Method F1-score Precision Recall 

FCN 0.71 0.69 0.74 

LSM 0.74 0.63 0.90 

Regular tissue YOLLO 0.78 0.70 0.88 

U-Net 0.82 0.83 0.81 

FCN 0.71 0.80 0.64 

LSM 0.70 0.76 0.65 

Cell clusters YOLLO 0.79 0.77 0.81 

U-Net 0.81 0.87 0.77 

FCN 0.47 0.35 0.73 

LSM 0.25 0.14 0.84 

Artifacts YOLLO 0.19 0.11 0.86 

U-Net 0.47 0.34 0.77 

FCN 0.69 0.67 0.70 

LSM 0.63 0.52 0.80 

All areas YOLLO 0.64 0.51 0.85 

U-Net 0.78 0.76 0.79 
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bounding box size of YOLLO, was determined based on the average

size of a lymphocyte and was established as 12 pixels (5,88 μm ) for

a pixel size of 0.49 μm , and parameters of the loss function were

set to λcoord = 5 and λnoob j = 1 . For effective elimination of unsure

and redundant boxes, thresholds for object confidence and non

maximum suppression were set to 0.2 and 0.1, respectively. For

the LSM approach, the parameters of the spatial constraints layer

were set to d = 4 and M = 2 . 

The LSM network was trained with Nesterov Momentum opti-

mization algorithm and Binary Crossentropy as the loss function.

The batch size was set to 32 for the 27x27 input images. The

training was performed for 10 0 0 epochs with a learning rate equal

to 0.05. 

4. Observer study 

In order to assess the potential clinical applicability of the pro-

posed deep learning methods for cell detection, we designed an

observer study to compare the performance of our best-performing

automatic algorithm with pathologists on the task of lymphocyte

quantification. However, counting all cells in whole-slide images is

generally not done by pathologists. Therefore, we limited the task

to visual estimation of the amount of stained lymphocytes within

given regions of interest, which more closely mimics how IHC is

used in clinical practice. 

For this purpose, we designed a web-based user interface in

which all the ROIs belonging to the 40 WSIs in the test set were vi-

sualized. Subsequently we asked four pathologists (MS, AP, JP, MA),

each from a different medical center, to visually assess the amount

of stained lymphocytes in each ROI. Each region was categorized

into one of the seven following classes: (a) no stained lymphocyte,

(b) 1–5 stained lymphocyte(s), (c) 6–10 stained lymphocytes, (d)

11–20 stained lymphocytes, (e) 21–50 stained lymphocytes, (f)

51–20 0 stained lymphocytes, (g) > 20 0 stained lymphocytes. All

pathologists independently scored all ROIs in the test set. 

5. Experimental results 

In this section, we first report the quantitative results of the

comparison of four developed automatic cell detection algorithms

in terms of F1-score and FROC analysis. FROC is similar to ROC

analysis, except that the false positive rate on the x-axis is re-

placed by the number of false positives per image. The FROC is

more appropriate for detection tasks as it more naturally deals

with false negatives (e.g. limited sensitivity), whereas the ROC

does not account for the ’not found’ category ( Moskowitz, 2017 ).

Second, we analyze the inter-observer variability in estimating the

amount of lymphocytes by the pathologists. Finally, we compare

the best performing automatic detection algorithm with human

performance. In all cases, manual annotations of lymphocytes as

described in Section 2 were used as a reference standard, both for

cell detection and for cell counting. 

5.1. Hit criterion 

In order to address the evaluation of cell detection perfor-

mance, we defined a hit criterion by considering a circular area of

radius r = 4 μm centered on each manually annotated cell location

as a valid region for the detection of that specific lymphocyte. The

value of r was established based on the typical radius of lympho-

cytes. If a detected cell is at a valid distance from the reference

standard, it is counted as a true positive, otherwise it is counted

as a false positive. If a manually annotated cell was not detected,

it was regarded as a false negative. Based on these criteria, the

following metrics were computed: Precision, Recall, F1-score and

the Free-response Receiver Operating Characteristic (FROC) curve. 
.2. Lymphocyte detection 

erformance of automatic cell detection. The four developed deep

earning algorithms were applied to all ROIs of the 40 WSIs in the

est set. In total, 441 ROIs covering areas between 0.2 mm 

2 and

3.8 mm 

2 (on average 12 mm 

2 ) were exhaustively annotated in the

est set. 

Detection performance was first evaluated in terms of F1-score.

erformance was computed both for all ROIs and for subsets of

OIs belonging to different types of areas, namely (a) regular

reas, (b) cells clusters, (c) artifacts and damaged tissue. Quanti-

ative results are presented in Table 2 , and qualitative results are

epicted in Fig. 4 . 

Overall, F1-scores were in the range of 0.71-0.82 for regular

issue areas. The FCN and LSM approaches achieved F1-score

alues in range 0.71-0.74. The highest performances were achieved

y U-Net and YOLLO with F1-scores of 0.82 and 0.78 respectively.

n the presence of clusters of cells, F1-scores were in the range of

.70-0.81, while in the presence of artifacts, lower F1-score values

ere observed, in the range of 0.19-0.47. The best result for all

nalyzed regions was achieved with the U-Net approach (F1-score

f 0.78). It should be noted that results for YOLLO and U-Net

pproaches were similar for regular ROIs and ROIs with clustered

ells. The U-Net approach seems to work considerably better than

OLLO and LSM approaches in the presence of artifacts (F1-score

f 0.47). Table 2 and Figs. 4 –6 present results for each of the

onsidered approaches. The Bland-Altman plots ( Fig. 6 ) visualize

n agreement between deep learning models and manual anno-

ations. We can observed that U-Net achieved the highest result

F1-score equal 0.82) for regular tissue areas, and relatively high

1-scores were also obtained for difficult areas such as cell clusters

highest F1-score of 0.81) and artifacts (highest F1-score of 0.47). 

Moreover, results were stratified based on medical centers

 Table 3 ), staining types ( Table 4 ) and organs ( Table 5 ). In all

ases, we computed the average, the maximum difference and the

tandard deviation of F1-scores across multiple settings (i.e., labs,

tainings, organs). Low standard deviation and max difference are

ndicators of robustness of a method across different settings. We

an observe that the standard deviation (SD) for medical centers

s in a range of 0.08-0.17, where the best result was achieved by

he U-Net method (SD = 0.08). Other methods (FCN, YOLLO and

SM) had a higher SD (in a range 0.14-0.17). Results for different

taining types (CD3, CD8) present a high robustness across all

pproaches (SD value was in a range 0.01-0.05). Results stratified
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Fig. 4. Presentation of the deep learning methods’ performance on the test slides, where: green- manually annotated cells, yellow- detected cells. Notice that U-Net method 

achieved the best performance for all areas, and we can observe the most accurate cell detection for all categories (A). YOLLO method achieved the lower F1-score for 

artifact areas, where we can observe many false positive detections (B5). LSM and FCN got the lower performance for clustered cell areas, where we can observe many 

missing detections (C3, D3). 
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Fig. 5. FROC curves for DL models for the test set, where: A. FROC-curve for all tissue areas; B. FROC-curves for individual tissue areas. 

Fig. 6. Bland-Altman plot for deep learning models and manual annotations (reference standard) for the test set, where: A. plot for Manual and U-Net; B. plot for Manual 

and Yollo; C. plot for Manual and LSM; D. plot for Manual and FCN. Notice the superior performance of the U-Net method, with the smaller standard deviation range and 

smaller number of outliers. 

 

 

 

 

 

 

 

 

w  

p  

 

(  

a  

a  

(  

(  

s

 

h  

H  
based on organs (colon, breast, prostate) also showed fairly good

performance for all methods, with SDs in the range of 0.02-0.09.

In all cases the U-Net approach was the most robust, with an SD

equal to 0.08, 0.01 and 0.02 for medical centers, staining types

and organs, respectively. As a result, the U-Net approach has been

used in the comparison with human performance, where we refer

to it as the “automatic method”. 

5.3. Lymphocyte assessment 

In order to get insight into the effectiveness of the developed

algorithms to perform automated analysis in clinical practice,
e compared the performance of the automatic method to four

athologists in categorizing ROIs based on number of lymphocytes.

We used the weighted linear Cohen’s Kappa score to measure

1) the agreement among pathologists, computed as the average

greement (Kappa κ) between each pair of pathologists; (2) the

greement between each pathologist and the reference standard,

3) the agreement between pathologists and automatic results,

4) the agreement between automatic results and the reference

tandard. 

The results of this analysis are reported in Table 6 . We found

igh agreement among pathologists, with an average κ of 0.76.

owever, slightly lower agreement is found when comparing
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Table 3 

Results per medical center: Detection performance of developed deep learning algorithms on the test set. Where: ∗- data from centers participated in the 

training process, MD- max difference between labs, AVG- average value, STD- standard deviation. Bold indicates the best method. 

Lab id 

U-Net FCN YOLLO LSM 

F1-score Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score Recall Precision 

All Labs 0.78 0.79 0.76 0.69 0.70 0.67 0.64 0.85 0.51 0.63 0.80 0.52 

Lab 1 ∗ 0.76 0.78 0.75 0.72 0.76 0.68 0.63 0.84 0.50 0.63 0.78 0.53 

Lab 2 0.66 0.54 0.87 0.64 0.51 0.85 0.64 0.61 0.67 0.66 0.68 0.64 

Lab 3 0.82 0.86 0.77 0.64 0.68 0.61 0.69 0.93 0.55 0.66 0.91 0.52 

Lab 4 0.58 0.88 0.43 0.27 0.31 0.24 0.26 0.94 0.15 0.29 0.88 0.17 

Lab 5 0.74 0.90 0.62 0.54 0.65 0.47 0.60 0.95 0.44 0.53 0.92 0.37 

Lab 6 0.70 0.83 0.60 0.62 0.81 0.50 0.32 0.90 0.20 0.38 0.87 0.24 

Lab 7 0.83 0.89 0.77 0.61 0.62 0.60 0.70 0.93 0.57 0.68 0.85 0.57 

Lab 8 0.81 0.77 0.86 0.74 0.70 0.79 0.77 0.83 0.71 0.71 0.77 0.65 

AVG 0.74 0.60 0.58 0.57 

STD 0.08 0.14 0.17 0.14 

MD 0.25 0.47 0.51 0.42 

Table 4 

Results per staining type: Detection performance of developed deep learning algorithms on the test set. Where: MD- max difference between labs, AVG- average 

value, STD- standard deviation. Bold indicates the best method. 

Staining 

U-Net FCN YOLLO LSM 

F1-score Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score Recall Precision 

CD3 0.78 0.79 0.77 0.71 0.72 0.70 0.66 0.84 0.54 0.64 0.77 0.56 

CD8 0.76 0.78 0.73 0.62 0.65 0.60 0.60 0.87 0.46 0.60 0.87 0.46 

AVG 0.77 0.67 0.63 0.62 

STD 0.01 0.05 0.03 0.02 

MD 0.02 0.09 0.06 0.04 

Table 5 

Results per organ type: Detection performance of developed deep learning algorithms on the test set. Where: MD- max difference between labs, AVG- 

average value, STD- standard deviation. Bold indicates the best method. 

Organ 

U-Net FCN YOLLO LSM 

F1-score Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score Recall Precision 

breast 0.78 0.88 0.70 0.62 0.69 0.56 0.55 0.92 0.39 0.56 0.87 0.41 

colon 0.80 0.74 0.86 0.73 0.67 0.79 0.75 0.80 0.71 0.70 0.76 0.65 

prostate 0.76 0.74 0.77 0.73 0.74 0.72 0.68 0.82 0.58 0.67 0.76 0.60 

AVG 0.78 0.69 0.66 0.64 

STD 0.02 0.05 0.09 0.06 

MD 0.04 0.11 0.20 0.14 

Table 6 

Assessment of methods agreement with using the weighted linear 

Cohen’s Kappa metric ( κ). 

κ

Agreement among pathologists (Average) 0.76 

Pathologist 1 vs. Manual reference standard 0.64 

Pathologist 2 vs. Manual reference standard 0.66 

Pathologist 3 vs. Manual reference standard 0.58 

Pathologist 4 vs. Manual reference standard 0.67 

Pathologists vs. Manual reference standard (Average) 0.64 

Automatic vs. Manual reference standard 0.72 

Automatic vs. Pathologists (Average) 0.57 
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athologists with the reference standard ( κ ∈ [0.58, 0.67]). At the

ame time, a high agreement is observed between automatic de-

ection and the reference standard ( κ 0.72), which is on the same

evel as the average agreement between pathologists. Moreover,

omparison with the reference standard shows higher agreement

or the automatic method ( κ = 0.72) than for the pathologist eval-

ation (average κ = 0.64). The lowest agreement result (average κ
 0.57) is observed between automatic method and pathologists,

ut is generally still considered reasonable agreement. 

Finally, we broke down the analysis of the agreement by

nvestigating the “per-class” and overall accuracy at assessing lym-
hocytes for both pathologists and automatic method. The results

re reported in Table 7 . Pathologists can accurately distinguish

reas without lymphocytes (class 0) from areas with lymphocytes,

ith a performance that is superior to the automatic method

0.87 vs. 0.30 class accuracy). This is mainly due to the presence

f false positives detected by the automatic method. On the other

and, the computer outperforms pathologists at detecting the

resence of small numbers of lymphocytes (classes 1–5 and 6–10),

lthough still suffering from the presence of false positives, and

how a trend of increasing performance when increasing numbers

f lymphocytes are present (0.92 accuracy for the “ > 200 lympho-

ytes” class). Is should be noted, that agreement values increase

robably due to the increase of the range of possible values

etween the different categories (the agreement increases when

he interval of each category is larger) for both, both pathologists

nd automatic evaluation. 

. Discussion 

Most of the research on automatic cell detection published

o far is based on data from a single center. A key strength of

he presented study is the use of a multi-center cohort. In our

esearch, the test set includes slides from eight different medical

enters, where data from seven centers were not used to train

utomatic algorithms. This allowed us to assess the robustness of
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Table 7 

Sensitivity at estimating the number of lymphocytes as compared to counting based on 

manual annotations. Results of four pathologists (P 1 -P 4 ) and of an automatic algorithm 

are reported. The average sensitivity over all pathologists is also reported to ease the 

comparison with the automatic method. Bold indicates best method. 

Predicted labels 

0 1–5 6–10 11–20 21–50 51–200 > 200 All 

P 1 0.78 0.11 0.25 0.15 0.32 0.71 0.54 0.41 

P 2 0.96 0.17 0.20 0.15 0.27 0.58 0.73 0.44 

P 3 0.78 0.28 0.15 0.20 0.32 0.48 0.35 0.37 

P 4 0.96 0.33 0.25 0.15 0.55 0.65 0.43 0.47 

Average 0.87 0.22 0.21 0.16 0.37 0.60 0.51 0.42 

Auto 0.30 0.44 0.30 0.35 0.54 0.76 0.92 0.52 
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the proposed deep learning methods. In Table 3 detailed results

are reported for each of the centers involved in the study. The

highest generalization capacity, as well as the highest robustness

across different laboratories was achieved by the U-Net model,

where standard deviation and the maximum difference in terms

of F1-score across laboratories were respectively 0.08 and 0.25.

The method that showed the least robustness to different staining

was the YOLLO approach, where the standard deviation was 0.17

and the maximum difference in F1-score across centers was 0.51.

The same holds across organ (breast, colon, prostate) and staining

type (CD3, CD8) ( Tables 4 and 5 ). 

Another unique characteristic of the data set established in this

work is the large amount of manually annotated cells (171,166

lymphocytes). To the best of our knowledge, this is the largest set

of manually annotated lymphocytes to date, which represents an

increase of 70x compared to the amount of manually annotated

cells used in recent work ( Garcia et al., 2017 ). 

We also specifically look at areas with cell clusters and ar-

tifacts. Previous work has mostly focused on cell detection in

regular tissue areas. This leads to an optimistically biased result,

and makes it hard to assess usefulness of methods for the analysis

of whole-slide images. As an example, the worst and best method

on regular tissue areas have a difference of 0.11 in F1-score,

whereas in areas with artifacts the difference is 0.28. 

In this paper, four different deep learning techniques were

applied to lymphocyte detection. Results show that all methods

achieved performance in a range 0.63–0.78 of F1-score for all

tissue areas. The best lymphocyte detection was observed in the

regular tissue areas, where F1-score was in a range 0.71–0.82.

Nonetheless, large differences between methods are observed

for clustered cells and artifact areas. Cells in clusters were dis-

tinguished well by YOLLO and U-Net methods (F1-score in the

range 0.79–0.81). However, artifact areas were a challenge for all

considered approaches, where the lowest results were observed

(F1-score in the range 0.19–0.47). An alternative to deal with areas

with artifacts is to perform a pre-processing, step, for example

by applying convolutional networks specifically trained to detect

artifacts. This might be able to remove most of the artifacts from

consideration. 

Despite the fact that the LSM method was originally designed

to perform cell detection ( Sirinukunwattana et al. (2016) ), in our

experiments we observed lower performance than what was

reported in the original paper. A key difference is that we focus on

lymphocytes, compared to several different classes in the original

paper. Most of the classes in the original paper (e.g. epithelial

cells) do not cluster together in the same manner as lymphocytes.

Furthermore, the membranous nature of the CD3 and the CD8

staining makes it challenging to see the boundaries of closely

clustered cells, in contrast to the H&E stain used in the original

paper. 
The application of the three-class cell mask method, that was

sed for FCN and U-Net, makes it easier to separate cells and

ccurately localize the cell centers, which was much more difficult

n the case of binary masks. The multi-class cell mask was inspired

y biology, and developed based on analysis of stained lympho-

ytes (see Fig. 3 ). This is a novel approach for cell detection, which

eads to correct cell center detection using neural networks. This

pproach could further be improved by using segmentations of

ell nuclei to derive the borders and the center instead of a circle

ith predetermined radius. 

Another aspect that can be taken into account is the time-

fficiency of proposed approaches. The number of parameters and

omplexity of the model, as well as post-processing operations

ave a direct impact on the computation time of a single patch

nd consequently of a whole-slide image. The average time of a

ingle tile classification (size 256x256 pixels) by U-Net and YOLLO

ethods is 25ms and 17ms, respectively. Both methods need

ost-processing operations, which take additional time. However,

n this paper we did not optimize the post-processing pipelines

or computation time. 

The algorithms developed in this paper open doors to new

tudies on evaluating the number of tumor infiltrating lympho-

ytes. Moreover, proposed solutions could be applied to other

issue and staining types. Preliminary studies show that lym-

hocytes are correctly detected for slides stained with CD45RO

nd FoxP3. This would make the proposed solution independent

rom tissue type (organ) and IHC staining method, resulting in

 spectrum of possible applications. The reference standard used

n this study are manual annotations of lymphocytes (see Fig. 2 ).

t should be noted, that the task of manual annotation is time-

onsuming and tedious. In practice, it means that the references

tandard is biased by subjectivity in manual annotations made by

bservers, and it is not perfect. A better reference standard could

e obtained when annotations from multiple experts are available

nd are combined, as for example done in public challenges on

etection of mitotic figures (AMIDA13, TUPAC16). 

Four pathologists with experience in visual estimation of

ymphocytes inside of each ROI were involved in the presented

bserver study. The agreement among pathologists (average value)

s Kappa = 0.76, which is classified as an excellent agreement

y Fleiss (1981) and as a substantial agreement by Landis and

och (1977) . It should be noted that the main task that pathol-

gists have to perform is visual estimation, rather than cell

ounting. On the one hand this makes the task less time consum-

ng, but on the other hand it makes it less objective, therefore

ubject to inter-observer variability. In particular, areas such as

lustered cells or weakly stained regions can be challenging for

 task purely based on visual assessment. The observer study

hows that, compared to the reference standard, the automated

ethod achieves a higher Kappa score than the average over
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he pathologists. Detailed analysis of evaluation results for both

ethods show differences for the ”no- lymphocytes” class, where

he automatic evaluation performs less well than the pathologists

n the study. This results from single false positive detection in

he automatic evaluation, leaving room for improvement on the

utomatic cell detection method. Nonetheless, for other classes,

specially for a high immune-cell density the automatic method is

ore accurate than pathologists. 

. Conclusion 

In this study the effectiveness of a deep learning approaches

as investigated for automatic detection of lymphocytes in im-

unohistochemically stained tissue sections of breast, colon and

rostate cancer. We tested four algorithms for the problem of auto-

atic immune cells detection, and found that especially the U-Net

ased approach performs well and even exceeds the performance

f human observers for this task. Moreover, we evaluated the clin-

cal impact of the developed methods by performing an observer

tudy with four pathologists and comparing their performance

ith automatic detection. Achieved results show that deep learn-

ng techniques can be applied to detect positively stained cells in

mmunohistochemistry, with great promise for immuno-oncology.

he fact that we can now reliably quantify these cells opens an

venue of research in which we relate immune cell quantities

o tumor progression and treatment response. Furthermore, the

echnique is not limited to CD3 and CD8 stained images and could

eadily be applied to other immunohistochemistry markers, such

s CD45RO or FOXP3, or other cell membrane markers. 

Finally, we made the test set and an evaluation metric publicly

vailable. This allows the scientific community to compare the

erformance of other approaches with the results presented in

his paper using exactly the same test set and the same evaluation

rocedure. 
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