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ABSTRACT

The number of mitotic figures per tumor area observed in hematoxylin and eosin (H&E) histological tissue
sections under light microscopy is an important biomarker for breast cancer prognosis. Whole-slide imaging
and computational pathology have enabled the development of automatic mitosis detection algorithms based
on convolutional neural networks (CNNs). These models can suffer from high generalization error, i.e. trained
networks often underperform on datasets originating from pathology laboratories different than the one that
provided the training data, mainly due to the presence of inter-laboratory stain variations. We propose a novel
data augmentation strategy that exploits the properties of the H&FE color space to simulate a broad range of
realistic H&E stain variations. To our best knowledge, this is the first time that data augmentation is performed
directly in the H&E color space, instead of RGB. The proposed technique uses color deconvolution to transform
RGB images into the H&E color space, modifies the H&E color channels stochastically, and projects them back
to RGB space. We trained a CNN-based mitosis detector on homogeneous data from a single institution, and
tested its performance on an external, multicenter cohort that contained a wide range of unseen H&E stain
variations. We compared CNNs trained with and without the proposed augmentation strategy and observed a
significant improvement in performance and robustness to unseen stain variations when the new color augmen-
tation technique was included. In essence, we have shown that CNNs can be made robust to inter-lab stain
variation by incorporating extensive stain augmentation techniques.
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1. INTRODUCTION

Mitosis is a crucial phase in the cell cycle of eukaryotic cells where a replicated set of chromosomes is divided into
two individual cell nuclei. These chromosomes are visible in hematoxylin and eosin (H&E) stained slides using
light microscopy and enable pathologists to identify mitotic figures, i.e. cell nuclei undergoing mitosis. Assessing
the number of mitotic figures per mm? is part of routine practice of grading breast cancer specimens’.

The recent introduction of whole-slide scanners in clinical pathology enables pathologists to make their
diagnoses on digitized slides. Moreover, it paves the way for image analysis algorithms like automated mitosis

Figure 1. Examples of mitotic figures with variable H&E stain. Top row: patches from the Radboudumc dataset used to
train the mitosis detector. Bottom row: patches from the TUPAC dataset used exclusively to test the mitosis detector.



Function Filters Size Stride

conv 32 3x3 1
conv 32 3x3 2
conv 64 3x3 1
conv 64 3x3 2
conv 128 3x3 1
conv 128 3x3 1
conv 256 3x3 1
conv 256 3x3 1
conv 512 14x14 1
dropout - - -
conv 2 1x1 1

Table 1. Architecture of the CNN.

detection. There have been several attempts to develop automatic mitosis detection methods and a number of
public challenges have been organized on the subject? ®.

The problem of high generalization error is particularly acute for automatic mitosis detection with con-
volutional neural networks (CNNs)® 7, i.e. trained networks often underperform on datasets originating from
pathology laboratories different than the one that provided the training data. The major factor causing this
phenomena is the inter-laboratory stain variability, where similar morphological structures present variable ap-
pearance in the color space, as illustrated in Figure 1.

Several solutions have been proposed to solve or cope with this problem: (1) building multicenter train-
ing datasets, (2) preprocessing training and testing images with stain standardization techniques®'°, and (3)
including data augmentation techniques during the model training'!>'2.

We argue that designing specific data augmentation strategies for H&E stained tissue images is the most
promising approach to reduce the generalization error of these networks, avoiding the elevated costs of assembling
a multicenter cohort, and effectively enforcing certain stain invariance into the trained models.

We propose a novel data augmentation algorithm that exploits the intrinsic properties of the H&E color space,
and mimics common artifacts that happen during the staining and scanning process. By employing this data
augmentation method, we were able to substantially improve the classification performance of a CNN trained for
mitosis detection on homogeneous data from our home institution, when tested on external data from multiple
centers.

2. METHODS
2.1 Datasets

In order to train the mitosis detector, we assembled a dataset of 27000 and 1 million patches of regions with and
without mitotic figures, respectively, extracted from 18 triple negative breast cancer whole-slide images from the
Radboud University Medical Center, and labeled it as the Radboudumc dataset. All whole-slide images were
stain standardized® to minimize stain variations that the detector could learn from.

Additionally, we used a publicly available, multicenter dataset consisting of exhaustively annotated breast
cancer tumor regions®, labeled as the TUPAC dataset. These images were not stain standardized and were used
exclusively to evaluate whether our mitosis detector can generalize to unseen stain variations.
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Figure 2. Multiple versions of the same mitotic patch modified with data augmentation routines. The first row corresponds
to the novel color stain augmentation technique. Image enhancement includes brightness, contrast and color intensity
changes. The Combination row includes rotation and mirroring additionally to the rest of the augmentation techniques.

2.2 Mitosis detector

We trained a CNN to classify whether a given tissue patch depicted a mitotic figure in its center or not. Given the
large class imbalance found in the Radboudumc dataset, it was necessary to identify highly informative negative
samples to train an effective mitosis classifier, i.e. negative examples that resembled positive ones, where the
network could learn the most.

We proceeded similarly as stated in®. First, we built an easy training dataset by including all positive
patches and a number of uniformly sampled negative patches, and trained an auxiliary network with it. Second,
we evaluated all negative patches with this auxiliary network, obtaining a prediction probability for each of them.
Finally, we built a difficult training dataset by selecting all positive images, and a number of negative patches
sampled proportionally to their probability of being mitosis, so that harder samples were chosen more often.

We trained a second and definitive CNN on the difficult dataset to effectively distinguish between mitotic
and non-mitotic H&E patches. During training, we applied several techniques to augment the dataset on-the-fly,
preventing overfitting and improving generalization, that are described in detail in the following section.

Both CNNs, the auxiliary and the final one, were trained to minimize the cross-entropy loss of the network
outputs with respect to the patch labels, using stochastic gradient descent with Adam optimization and mini-
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Figure 3. Diagram describing the color stain augmentation algorithm: (1) a RGB patch is transformed to H&E+R color
space; (2) each stain channel is individually perturbed with a random factor a; and bias 8;; and (3) the resulting channels
are merged and transformed back to RGB color space.

batch of 64 samples. Their architecture is depicted in Table 1. To prevent overfitting, an additional L2 term was
added to the network loss, with a factor of 1 x 107°. Furthermore, the learning rate was exponentially decreased
from 1 x 1073 to 3 x 10~ through 20 epochs, defining an epoch as a set of iterations where all unique training
samples were sampled once.

2.3 Data augmentation

We implemented several data augmentation routines tailored for H&E histopathology imaging that can be
grouped in three categories attending to the feature invariance enforced during the network training, illustrated
in Figure 2.

Morphology invariance. We exploited the fact that mitotic figures can have variable shape and size by
augmenting the training patches with rotation, vertical and horizontal mirroring, scaling, elastic deformation'?,
and image translation around the central pixel.

Stain invariance. In H&E stain, hematoxylin and eosin are two chemical compounds that dye cell nuclei
in blue, and the rest of structures in multiple shades of pink, respectively. The intensity of each color channel
is dependent on multiple factors of the staining procedure in the lab. Unfortunately, these two color channels
cannot be captured individually with regular slide scanners, instead, RGB images are taken. We used a novel
approach to simulate a broad range of realistic H&E stained images by retrieving and modifying the intensity
of the hematoxylin and eosin color channels directly (branded as color stain augmentation), as illustrated in the
first row of Figure 3.

First, we transformed each patch sample from RGB to H&E color space using a method based on color
deconvolution'*. Second, we modified each channel i individually, i.e. hematoxylin (H.), eosin (E.,) and
residual (Rcp), with random factors «; and biases §; taken from two uniform distributions with ranges [0.95,
1.05] and [-0.05, 0.05], respectively. Finally, we combined and projected the resulting color channels back to
RGB.

Additionally, we simulated further alternative stains by modifying image brightness, contrast and color in-
tensity (from grayscale to full-color) using standard image enhancement routines, as illustrated in the fourth row
of Figure 3.



Augmentation Radboudumc TUPAC

None 0.612 0.156
Rotation (R) 0.653 0.032
Color stain (C) 0.590 0.417
Scaling (S) 0.606 0.199
Elastic deformation (E) 0.616 0.187
Image enhancement (H) 0.606 0.198
Blurring (B) 0.598 0.170
Additive Gaussian noise (G) 0.608 0.154
Combined RSEB 0.653 0.018
Combined RCSEB 0.642 0.412
Combined RCSEHBG 0.628 0.613

Table 2. Quantitative impact of data augmentation. Each row represents a CNN trained with a different augmentation
strategy and shows its classification performance on two datasets: the Radboudumec dataset (similar to the training dataset)
and the TUPAC dataset (completely unseen). Image enhancement includes brightness, contrast and color intensity shifts.
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Figure 4. Qualitative analysis of the impact of using color stain augmentation. Numerical results indicate predicted
probabilities for several mitotic patches with identical morphology but different stain appearance. Predictions in blue are
produced by the RSEB CNN (trained without color stain augmentation), and predictions in green are produced by the
RCSEB CNN (trained with color stain augmentation).

Artifact invariance. We mimicked the out of focus artifact of whole-slide scanners with a Gaussian filter
with stochastic sigma (also known as blurring), and added Gaussian noise to decrease the signal-to-noise ratio
of the images, mimicking image quality related artifacts.

3. RESULTS

Quantitative impact of data augmentation. In order to further understand the role of data augmentation
in the context of mitosis detection, we trained several instances of the final CNN with identical training protocol
except for the data augmentation routines used during training. In particular, we tested how each component
of the augmentation method, and some combinations of them, influenced the CNN’s ability to detect mitotic
figures in external, unseen data with different stain, namely the TUPAC dataset. We measured the maximum
F1l-score obtained by each network on this dataset and reported the values on Table 2. For completeness, we
also reported there the maximum F1-score obtained in the validation set of the Radboudumc dataset.

The proposed color stain augmentation algorithm was crucial to decrease the generalization error observed
when applying the trained CNN to external data. In particular, the performance of the model on the external
TUPAC dataset improved when this technique was used both alone, and combined with other augmentation
strategies.

Qualitative impact of data augmentation. Table 2 reveals that our color stain augmentation routine
provided a major boost in performance on external data, i.e. images with significantly different H&E stain. We
inspected and compared the predicted probabilities generated by two different CNNs when applied to a small
set of patches exhibiting identical morphology but different stain, included in Figure 4. These two networks
corresponded to RSEB and RCSEB on Table 2, noticing that the second one was trained using our novel color
stain augmentation technique.



Figure 4 illustrates that the network trained without color stain augmentation (RSEB) was unable to correctly
classify patches with identical morphology but different stain appearance. The network trained with color stain
augmentation (RCSEB) exhibited a higher degree of invariance to stain changes, suggesting that it had effectively
learned to ignore this feature when discerning whether a patch contained a mitotic figure or not.

4. DISCUSSION & CONCLUSION

The novel color stain augmentation routine proposed in this work is crucial to decrease the generalization error
observed when applying the trained CNN to external data. The performance of the classifier on the TUPAC
dataset improves when this technique is used alone and in conjunction with other data augmentation strategies.

It is worth noticing that the best result is obtained when all the augmentation techniques are combined
together, suggesting that the lack of generalization exhibited by some of the networks tested in the previous
section could be due to not only stain variance but to other factors such as morphological differences and the
presence of artifacts in the test images.

We have shown that using the proposed data augmentation strategy enabled our trained CNN to perform
well on a large variety of H&E stains not present on the training dataset in the context of mitosis detection.
We argue that this strategy could be extended to other applications in computational pathology, potentially
reducing the need for stain standardization and the use of expensive multicenter cohorts for training purposes.

To our best knowledge, this is the first time that data augmentation is performed directly in the H&E color
space, instead of RGB, in the context of mitosis detection with CNNs. We propose a novel data augmentation
algorithm that exploits the properties of the H&E color space and simulates a broad range of realistic H&E
stain variations. By using this method, we were able to substantially improve the classification performance of
a CNN trained on homogeneous data from our home institution, when tested on external data from multiple
centers with a variety of unseen H&E stain variations. As such, we have shown that CNNs can be made robust
to inter-lab stain variation by incorporating extensive stain augmentation techniques.
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