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a b s t r a c t 

Stain variation is a phenomenon observed when distinct pathology laboratories stain tissue slides that 

exhibit similar but not identical color appearance. Due to this color shift between laboratories, convolu- 

tional neural networks (CNNs) trained with images from one lab often underperform on unseen images 

from the other lab. Several techniques have been proposed to reduce the generalization error, mainly 

grouped into two categories: stain color augmentation and stain color normalization. The former simu- 

lates a wide variety of realistic stain variations during training, producing stain-invariant CNNs. The latter 

aims to match training and test color distributions in order to reduce stain variation. For the first time, we 

compared some of these techniques and quantified their effect on CNN classification performance using 

a heterogeneous dataset of hematoxylin and eosin histopathology images from 4 organs and 9 pathology 

laboratories. Additionally, we propose a novel unsupervised method to perform stain color normalization 

using a neural network. Based on our experimental results, we provide practical guidelines on how to use 

stain color augmentation and stain color normalization in future computational pathology applications. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Computational pathology aims at developing machine learning

ased tools to automate and streamline the analysis of whole-slide

mages (WSI), i.e. high-definition images of histological tissue sec-

ions. These sections consist of thin slices of tissue that are stained

ith different dyes so that tissue architecture becomes visible un-

er the microscope. In this study, we focus on hematoxylin and

osin (H&E), the most widely used staining worldwide. It high-

ights cell nuclei in blue color (hematoxylin), and cytoplasm, con-

ective tissue and muscle in various shades of pink (eosin). The

ventual color distribution of the WSI depends on multiple steps

f the staining process, resulting in slightly different color distri-

utions depending on the laboratory where the sections were pro-

essed, see Fig. 1 for examples of H&E stain variation. This inter-

enter stain variation hampers the performance of machine learn-

ng algorithms used for automatic WSI analysis. Algorithms that

ere trained with images originated from a single pathology lab-

ratory often underperform when applied to images from a dif-
∗ Corresponding author. 
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erent center, including state-of-the-art methods based on con-

olutional neural networks (CNNs) ( Goodfellow et al., 2016; Ko-

ura and Ishikawa, 2018; Veta et al., 2019; Sirinukunwattana et al.,

017 ). Existing solutions to reduce the generalization error in this

etting can be categorized into two groups: (1) stain color augmen-

ation , and (2) stain color normalization . 

.1. Stain color augmentation 

Stain color augmentation, and more generally data augmenta-

ion, has been proposed as a method to reduce CNN generalization

rror by simulating realistic variations of the training data. These

rtificial variations are hand-engineered to mimic the appearance

f future test samples that deviate from the training manifold. Pre-

ious work on data augmentation for computational pathology has

efined two main groups of augmentation techniques: (1) mor-

hological and (2) color transformations ( Liu et al., 2017; Tellez

t al., 2018 ). Morphological augmentation spans from simple tech-

iques such as 90 º rotations, vertical and horizontal mirroring, or

mage scaling; to more advanced methods like elastic deforma-

ion ( Simard et al., 2003 ), additive Gaussian noise, and Gaussian

lurring. The common denominator among these transformations

https://doi.org/10.1016/j.media.2019.101544
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.101544&domain=pdf
mailto:david.tellezmartin@radboudumc.nl
https://doi.org/10.1016/j.media.2019.101544
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Fig. 1. Example images from training and test datasets. Applications are indicated by colors and keywords: tumor detection in lymph nodes ( lymph ), colorectal cancer tissue 

classification ( crc ), mitosis detection ( mitosis ) and prostate epithelium detection ( prostate ). Training set images are indicated by the keyword rumc and black outline. The rest 

belong to test sets from other centers. Stain variation can be observed between training and test images. 
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is the fact that only the morphology of the underlying image is

modified and not the color appearance, e.g. Gaussian blurring sim-

ulates out of focus artifacts which is a common issue encountered

with WSI scanners. Conversely, color augmentation leaves morpho-

logical features intact and focuses on simulating stain color vari-

ations instead. Common color augmentation techniques borrowed

from Computer Vision include brightness, contrast and hue per-

turbations. Recently, researchers have proposed other approaches

more tailored to mimic specific H&E stain variations, e.g. by per-

turbing the images directly in the H&E color space ( Tellez et al.,

2018 ), or perturbing the principal components of the pixel val-

ues ( Bug et al., 2017 ). 

1.2. Stain color normalization 

Stain color normalization reduces stain variation by match-

ing the color distribution of the training and test images. Tradi-

tional approaches try to normalize the color space by estimating

a color deconvolution matrix that allows identifying the under-

lying stains ( Reinhard et al., 2001; Macenko et al., 2009 ). More

recent methods use machine learning algorithms to detect cer-

tain morphological structures, e.g. cell nuclei, that are associated

with certain stains, improving the result of the normalization pro-

cess ( Khan et al., 2014; Bejnordi et al., 2016 ). Deep generative mod-

els, i.e. variational autoencoders and generative adversarial net-

works ( Kingma and Welling, 2013; Goodfellow et al., 2014 ), have

been used to generate new image samples that match the tem-

plate data manifold ( Cho et al., 2017; Zanjani et al., 2018 ). More-

over, color normalization has been formulated as a style transfer

task where the style is defined as the color distribution produced

by a particular lab ( Bug et al., 2017 ). However, despite their suc-

cess and widespread adoption as a preprocessing tool in a vari-

ety of computational pathology applications ( Clarke and Treanor,

2017; Albarqouni et al., 2016; Janowczyk et al., 2017; Bándi et al.,

2019 ), they are not always effective and can produce images with

color distributions that deviate from the desired color template. In

this study, we propose a novel unsupervised approach that lever-

ages the power of deep learning to solve the problem of stain nor-

malization. We reformulate the problem of stain normalization as

an image-to-image translation task and train a neural network to

solve it. We do so by feeding the network with heavily augmented

H&E images and training the model to reconstruct the original im-

age without augmentation. By learning to remove this color varia-

tion, the network effectively learns to perform stain color normal-

ization in unseen images whose color distribution deviates from

that of the training set. 
.3. Multicenter evaluation 

Despite the wide adoption of stain color augmentation and stain

olor normalization in the field of computational pathology, the ef-

ects on performance of these techniques have not been system-

tically evaluated. Existing literature focuses on particular applica-

ions, and does not quantify the relationship between these tech-

iques and CNN performance ( Komura and Ishikawa, 2018; Wang

t al., 2015; Zhu et al., 2014; Veta et al., 2019 ). In this study, we

im to overcome this limitation by comparing these techniques

cross four representative applications including multicenter data.

e selected four patch-based classification tasks where a CNN was

rained with data from a single center only, and evaluated in un-

een data from multiple external pathology laboratories. We chose

our relevant applications from the literature: (1) detecting the

resence of mitotic figures in breast tissue ( Tellez et al., 2018 );

2) detecting the presence of tumor metastases in breast lymph

ode tissue ( Bándi et al., 2019 ); (3) detecting the presence of ep-

thelial cells in prostate tissue ( Bulten et al., 2019 ); and (4) dis-

inguishing among 9 tissue classes in colorectal cancer (CRC) tis-

ue ( Ciompi et al., 2017 ). All test datasets presented a substan-

ial and challenging stain color deviation from the training set, as

an be seen in Fig. 1 . We trained a series of CNN classifiers fol-

owing an identical training protocol while varying the stain color

ormalization and stain color augmentation techniques used during

raining. This thorough evaluation allowed us to establish a ranking

mong the methods and measure relative performance improve-

ents among them. 

.4. Contributions 

Our contributions can be summarized as follows: 

• We systematically evaluated several well-known stain color aug-

mentation and stain color normalization algorithms in order to

quantify their effects on CNN classification performance. 
• We conducted the previous evaluation using data from a total

of 9 different centers spanning 4 relevant classification tasks:

mitosis detection, tumor metastasis detection in lymph nodes,

prostate epithelium detection, and multiclass colorectal cancer

tissue classification. 
• We formulated the problem of stain color normalization as an

unsupervised image-to-image translation task and trained a

neural network to solve it. 

The paper is organized as follows. Sections 2 and 3 describe

he materials and methods thoroughly. Experimental results are
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xplained in Section 4 , followed by Sections 5 and 6 where the

iscussion and final conclusion are stated. 

. Materials 

We collected data from a variety of pathology laboratories for

our different applications. In all cases, we used images from the

adboud University Medical Centre (Radboudumc or rumc ) exclu-

ively to train the models for each of the four classification tasks.

mages from the remaining centers were used for testing purposes

nly. We considered RGB patches of 128x128 pixels extracted from

nnotated regions. Examples of these patches are shown in Fig. 1 .

he following sections describe each of the four classification tasks.

.1. Mitotic figure detection 

In this binary classification task, the goal was to accurately clas-

ify as positive samples those patches containing a mitotic figure

n their center, i.e. a cell undergoing division. In order to train the

lassifier, we used 14 H&E WSIs from triple negative breast can-

er patients, scanned at 0.25μm/pixel resolution, with annotations

f mitotic figures obtained as described in Tellez et al. (2018) . We

plit the slides into training (6), validation (4) and test (4), and ex-

racted a total of 1M patches. We refer to this set as mitosis-rumc . 

For the external dataset, we used publicly available data from

he TUPAC Challenge ( Veta et al., 2019 ), i.e. 50 cases of invasive

reast cancer with manual annotations of mitotic figures scanned

t 0.25μm/pixel resolution. We extracted a total of 300 K patches,

nd refer to this dataset as mitosis-tupac . 

.2. Tumor metastasis detection 

The aim of this binary classification task was to identify patches

ontaining metastatic tumor cells. We used publicly available WSIs

rom the Camelyon17 Challenge ( Bándi et al., 2019 ). This cohort

onsisted of 50 exhaustively annotated H&E slides of breast lymph

ode resections from breast cancer patients from 5 different cen-

ers (10 slides per center), including Radboudumc. They were

canned at 0.25μm/pixel resolution and the tumor metastases were

anually delineated by experts. 

We used the 10 WSIs from the Radboudumc to train the classi-

er, split into training (4), validation (3) and test (3), and extracted

 total of 300K patches. We refer to this dataset as lymph-rumc .

e used the remaining 40 WSIs as external test data, extracting

 total of 1.2M patches, and assembling 4 different test sets (one

or each center). We named them according to their center’s name

cronym: lymph-umcu, lymph-cwh, lymph-rh and lymph-lpe . 

.3. Prostate epithelium detection 

The goal of this binary classification task was to identify

atches containing epithelial cells in prostate tissue. We trained

he classifier with 25 H&E WSIs of prostate resections from the

adboudumc scanned at 0.5 μm/pixel resolution, with annotations

f epithelial tissue as described in Bulten et al. (2019) . We split this

ohort into training (13), validation (6) and test (6), and extracted

 total of 250 K patches. We refer to it as prostate-rumc . 

We used two test datasets for this task. First, we selected

0 H&E slides of prostate resections from the Radboudumc

ith different staining and scanning conditions, resulting in

ubstantially different stain appearance (see prostate-rumc2 in

ig. 1 ). This test set was manually annotated as described

n Bulten et al. (2019) and named prostate-rumc2 . We extracted

5 K patches from these WSIs. Second, we used publicly avail-

ble images from 20 H&E slides of prostatectomy specimens with

anual annotations of epithelial tissue obtained as described
n Bulten et al. (2019) and Gertych et al. (2015) . We extracted 65K

atches from them and named the test set prostate-cedar . 

.4. Colorectal cancer tissue type classification 

In this multiclass classification task, the goal was to distinguish

mong 9 different colorectal cancer (CRC) tissue classes, namely:

1) tumor, (2) stroma, (3) muscle, (4) lymphocytes, (5) healthy

lands, (6) fat, (7) blood cells, (8) necrosis and debris, and (9) mu-

us. We used 54 H&E WSIs of colorectal carcinoma tissue from the

adboudumc scanned at 0.5 μm/pixel resolution to train the classi-

er, with manual annotations of the 9 different tissue classes. We

plit this cohort into training (24), validation (15) and test (15), ex-

racted a total of 450 K patches, and named it crc-rumc . 

We used two external datasets for this task. First, a set of 74

&E WSIs from rectal carcinoma patients with annotations of the

ame 9 classes, as described in Ciompi et al. (2017) . We extracted

5K patches and refer to this dataset as crc-labpon . Second, we

sed a publicly available set of H&E image patches from colorectal

arcinoma patients ( Kather et al., 2016 ). Annotations for 6 tissue

ypes were available: (1) tumor, (2) stroma, (3) lymph, (4) healthy

lands, (5) fat, and (6) blood cells, debris and mucus. We extracted

,K patches in total, and refer to this dataset as crc-heidelberg . 

.5. Multi-organ dataset 

For the purpose of training a network to solve the problem of

tain color normalization , we created an auxiliary dataset by aggre-

ating patches from mitosis-rumc, lymph-rumc, prostate-rumc and

rc-rumc in a randomized and balanced manner. We discarded all

abels since they were not needed for this purpose. We preserved

 total of 500 K patches for this set and called it the multi-organ

ataset. 

. Methods 

In this study, we evaluated the effect in classification perfor-

ance of several methods for stain color augmentation and stain

olor normalization . This section describes these methods. 

.1. Stain color augmentation 

We assume a homogeneous stain color distribution φtrain for

he training images and a more varied color distribution φtest for

he test images. Note that it is challenging for a classification

odel trained solely with φtrain to generalize well to φtest due to

otential stain differences among sets. To solve this problem, stain

olor augmentation defines a preprocessing function f that trans-

orms images of the training set to present an alternative and more

iverse color distribution φaugment : 

train 

f −→ φaugment (1) 

n the condition that: 

(φaugment ⊇ φtrain ) ∧ (φaugment ⊇ φtest ) (2) 

n practice, heavy data augmentation is used to satisfy Eq. (2) . In

rder to simplify our experimental setup, we grouped several data

ugmentation techniques into the following categories attending to

he nature of the image transformations. Examples of the resulting

ugmented images are shown in Fig. 2 . 

Basic . This group included 90 ◦ rotations, and vertical and hori-

ontal mirroring. 

Morphology . We extended basic with several transformations

hat simulate morphological perturbations, i.e. alterations in shape,

exture or size of the imaged tissue structures, including scanning
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Fig. 2. Summary of the data augmentation techniques and datasets used in this study, organized in columns and rows respectively. Patches on the leftmost column depict 

the original input images and the rest of patches are augmented versions of them. Augmentations performed in the grayscale color space are depicted on the right for one 

sample dataset only. Basic augmentation is included in all cases. 
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artifacts. We included basic augmentation, scaling, elastic defor-

mation ( Simard et al., 2003 ), additive Gaussian noise (perturbing

the signal-to-noise ratio), and Gaussian blurring (simulating out-

of-focus artifacts). 

Brightness & contrast (BC) . We extended morphology with ran-

dom brightness and contrast image perturbations ( Haeberli and

Voorhies, 1994 ). 

Hue-Saturation-Value (HSV) . We extended the BC augmentation

by randomly shifting the hue and saturation channels in the HSV

color space ( Van der Walt et al., 2014 ). This transformation pro-

duced substantially different color distributions when applied to

the training images. We tested two configurations depending on

the observed color variation strength, called HSV-light and HSV-

strong . 

Hematoxylin-Eosin-DAB (HED) . We extended the BC augmenta-

tion with a color variation routine specifically designed for H&E

images ( Tellez et al., 2018 ). This method followed three steps.

First, it disentangled the hematoxylin and eosin color channels by

means of color deconvolution using a fixed matrix. Second, it per-

turbed the hematoxylin and eosin stains independently. Third, it

transformed the resulting stains into regular RGB color space. We

tested two configurations depending on the observed color varia-

tion strength, called HED-light and HED-strong . 

During training, we selected the value of the augmentation

hyper-parameters randomly within certain ranges to achieve stain

variation. We tuned all ranges manually via visual examination.

In particular, we used a scaling factor between [0.8, 1.2], elastic

deformation parameters α ∈ [80, 120] and σ ∈ [9.0, 11.0], additive

Gaussian noise with σ ∈ [0, 0.1], Gaussian blurring with σ ∈ [0, 0.1],

brightness intensity ratio between [0.65, 1.35], and contrast inten-

sity ratio between [0.5, 1.5]. For HSV-light and HSV-strong , we used

hue and saturation intensity ratios between [ −0 . 1 , 0 . 1] and [ −1 , 1] ,

respectively. For HED-light and HED-strong , we used intensity ra-

tios between [ −0 . 05 , 0 . 05] and [ −0 . 2 , 0 . 2] , respectively, for all HED

channels. 
2  
.2. Stain color normalization 

Stain color normalization reduces color variation by transform-

ng the color distribution of training and test images, i.e. φtrain and

test , to that of a template φnormal . It performs such transforma-

ion using a normalization function g that maps any given color

istribution to the template one: 

(φtrain 

g −→ φnormal ) ∧ (φtest 
g −→ φnormal ) (3)

By matching φtrain and φtest , the problem of stain variance van-

shes and the model no longer requires to generalize to unseen

tains in order to perform well. We evaluated several methods that

mplement g (see Fig. 3 ), and propose a novel technique based on

eural networks. 

Identity . We performed no transformation on the input patches,

erving as a baseline method for the rest of techniques. 

Grayscale . In this case, g transformed images from RGB to

rayscale space, removing most of the color information present in

he patches. We hypothesized that this color information is redun-

ant since most of the signal in H&E images is present in morpho-

ogical and structural patterns, e.g. the presence of a certain type

f cell. 

Deconv-based . We followed the color deconvolution approach

roposed by Macenko et al. (2009) . This method assumes that the

ematoxylin and eosin stains are linearly separable in the optical

ensity (OD) color space, as opposed to RGB space. This method

nds the two largest singular value directions using singular value

ecomposition, and projects the OD pixel values onto this plane.

his procedure allows to identify the underlying hematoxylin and

osin stain vectors, and use them to perform color deconvolution

n a given image to decompose the RGB image into its normalized

ematoxylin and eosin components. 

LUT-based . We implemented an approach that uses tissue mor-

hology to perform stain color normalization ( Bejnordi et al.,

016 ). This popular method has been used by numerous re-
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Fig. 3. Visual comparison of the stain color normalization techniques used in this study. Rows correspond to the different tested techniques and columns to datasets, with 

green for lymph , blue for mitosis , yellow for prostate and red for colorectal . (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 4. Network-based stain color normalization. From left to right: patches from 

the training set are transformed with heavy color augmentation and fed to a neural 

network. This network is trained to reconstruct the original appearance of the input 

images by removing color augmentation, effectively learning how to perform stain 

color normalization. 
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earchers in recent public challenges ( Bándi et al., 2019; Bejnordi

t al., 2017 ). It detects cell nuclei in order to precisely characterize

he H&E chromatic distribution and density histogram for a given

SI. First, it does so for a given template WSI, e.g. an image from

he training set, and a target WSI. Second, the color distributions

f the template and target WSIs are matched, and the color cor-

espondence is stored in a look-up table (LUT). Finally, this LUT is

sed to normalize the color of the target WSI. 

Style-based . Bug et al. (2017) proposed to use a neural network

o perform stain color normalization based on the idea of style

ransfer. They transform the color distribution of RGB images by

sing feature-aware normalization, a mechanism that shifts and

cales intermediate feature maps based on features extracted from

he input image. This feature extractor is an ImageNet ( Deng et al.,

009 ) pre-trained network, while the rest of the model is trained

o reconstruct PCA-augmented histopathology images. We used the

uthors’ implementation of the method and retrained the model

sing images from the multi-organ dataset. 

Network-based . We developed a novel approach to perform stain

olor normalization based on unsupervised learning and neural

etworks (see Fig. 4 ). We parameterized the normalization func-

ion g with a neural network G and trained it end-to-end to re-

ove the effects of data augmentation. Even though it is not pos-

ible to invert the many-to-many augmentation function f , we can

earn a partial many-to-one function that maps any arbitrary color

istribution φaugment to a template distribution φnormal : 

augment 
G −→ φnormal (4) 
c  
Since G can normalize φaugment ( Eq. (4) ), and φaugment is a su-

erset of φtrain and φtest ( Eq. (2) ), we conclude that G can effec-

ively normalize φtrain and φtest ( Eq. (2) ). 

We trained G to perform image-to-image translation using the

ulti-organ dataset. During training, images were heavily aug-

ented and fed to the network. The model was tasked with re-

onstructing the images with their original appearance, before aug-

entation. We used a special configuration of the HSV augmen-

ation where we kept the color transformation only, i.e. did not

nclude basic, morphology and BC . We used the maximum inten-

ity for the transformation hyper-parameters, i.e. hue, saturation

nd value channel ratios between [ −1 , 1] . The strength of this

ugmentation resulted in images with drastically different color

istributions, sometimes compressing all color information into

rayscale. In order to invert this complex augmentation, we hy-

othesized that the network learned to associate certain tissue

tructures with their usual color appearance. 

We used an architecture inspired by U-Net ( Ronneberger et al.,

015 ), with a downward path of 5 layers of strided convo-

utions ( Springenberg et al., 2014 ) with 32, 64, 128, 256 and

12 3x3 filters, stride of 2, batch normalization (BN) ( Ioffe and

zegedy, 2015 ) and leaky-ReLU activation (LRA) ( Maas et al., 2013 ).

he upward path consisted of 5 upsampling layers, each one com-

osed of a pair of nearest-neighbor upsampling and a convolu-

ional operation ( Odena et al., 2016 ), with 256, 128, 64, 32 and

 3x3 filters, BN and LRA; except for the final convolutional layer

hat did not have BN and used the hyperbolic tangent (tanh) as ac-

ivation function. We used long skip connections to ease the syn-

hesis upward path ( Ronneberger et al., 2015 ), and applied L2 reg-

larization with a factor of 1 × 10 −6 . 

We minimized the mean squared error (MSE) loss using

tochastic gradient descent with Adam optimization ( Kingma and

a, 2014 ) and 64-sample mini-batch, decreasing the learning rate

y a factor of 10 starting from 1 × 10 −2 every time the validation

oss stopped improving for 4 consecutive epochs until 1 × 10 −5 . Fi-

ally, we selected the weights corresponding to the model with

he lowest validation loss during training. 

Convergence to average solutions is a known effect with bottle-

eck architectures trained with MSE loss. Note, however, that our

etwork-based normalization architecture includes long skip con-

ections between the downward and the upward paths. These skip

onnections allow the model to copy spatial structures from the in-
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Fig. 5. Constellations of internal and external datasets analyzed in this work. Each data point represents the mean and standard deviation pixel intensity of all image patches 

in a particular dataset in the HSV color space (hue and saturation in the x and y axis, respectively). Note how normalization methods tend to cluster the color distribution 

of the datasets, whereas color augmentation does the opposite. Color augmentation plot (bottom-right): patches from internal images are transformed with different color 

augmentation methods (grey points representing the original internal and external datasets are shown as reference). 
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put images to the output images with ease, and utilize the rest of

the model to modify style-related color features. Since there is no

bottleneck effect, i.e., the model has all the information necessary

to reconstruct the input image, image reconstructions are highly

accurate and do not show any blurriness in practice. 

3.3. Color analysis 

In order to understand how stain color augmentation and stain

color normalization influenced the color differences between in-

ternal ( rumc ) and external datasets (rest), we analyzed the image

patches in the HSV color space. We measured the mean and stan-

dard deviation pixel intensity along the hue and saturation dimen-

sions, and plotted the results in a 2D plane, comparing images pro-

cessed with the color normalization and augmentation techniques

analyzed in this work (see Fig. 5 ). We confirmed the clustering ef-

fect of normalization algorithms, and the scattering effect of aug-

mentation methods. 

3.4. CNN classifiers 

In order to measure the effect of stain color augmentation and

stain color normalization , we trained a series of identical CNN clas-

sifiers to perform patch classification using different combinations

of these techniques. For training and validation purposes, we used

the rumc datasets described in Section 2 . 

The architecture of such CNN classifiers consisted of 9 layers of

strided convolutions with 32, 64, 64, 128, 128, 256, 256, 512 and

512 3x3 filters, stride of 2 in the even layers, BN and LRA; followed

by global average pooling; 50% dropout; a dense layer with 512

units, BN and LRA; and a linear dense layer with either 2 or 9 units

depending on the classification task, followed by a softmax. We

applied L2 regularization with a factor of 1 × 10 −6 . 

We minimized the cross-entropy loss using stochastic gradi-

ent descent with Adam optimization and 64-sample class-balanced

mini-batch, decreasing the learning rate by a factor of 10 starting

from 1 × 10 −2 every time the validation loss stopped improving

for 4 consecutive epochs until 1 × 10 −5 . Finally, we selected the
eights corresponding to the model with the lowest validation loss

uring training. 

. Experimental results 

We conducted a series of experiments in order to quantify

he impact in performance of the different stain color augmenta-

ion and stain color normalization methods introduced in the previ-

us section across four different classification tasks. We trained a

NN classifier for each combination of organ, color normalization

nd data augmentation method under consideration. In the case

f grayscale normalization, we only tested basic, morphology and

C augmentation techniques. We conducted 152 different experi-

ents, repeating each 5 times using different random initialization

or the network parameters, accounting for a total of 760 trained

NN classifiers. 

.1. Evaluation 

We evaluated the area under the receiver-operating characteris-

ic curve (AUC) of each CNN in each external test set. In the case

f multiclass classification, we considered the unweighted average,

.e. we calculated the individual AUC per label (one-vs-all) and av-

raged the resulting values. We reported the mean and standard

eviation of the resulting AUC for each experiment across five rep-

titions in Table 1 . 

In order to establish a global ranking among methods, shown

n the rightmost column in Table 1 , we performed the following

alculation. We converted the AUC scores into ranking scores per

est set column, and averaged these scores along the dataset di-

ension to obtain a global ranking score per method. Note that

e performed an average across ranking scores, rather than AUC

cores, following established procedures ( Demšar, 2006 ). Data in

able 1 and the raw AUC scores are provided in machine-readable

ormat as Supplementary Material to this article. 
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Table 1 

Experimental results ranking stain color augmentation and stain color normalization methods. Values correspond to AUC scores, except for the last column, averaged across 5 repetitions with standard deviation shown between 

parenthesis. Each column represents a different external test dataset, with the last column Ranking indicating the position of each method within the global benchmark, computed as described in Section 4.1 . Normalization 

methods: Network is our proposal; Style is from Bug et al. (2017) ; LUT is from Bejnordi et al. (2016) ; and Deconvolution is from Macenko et al. (2009) . 

Normalization Augmentation lymph-cwh lymph-lpe lymph-rh lymph-umcu mitosis-tupac prostate-rumc2 prostate-cedar crc-labpon crc-heidelberg Ranking 

Identity HED-light 0.952(0.004) 0.976(0.001) 0.946(0.009) 0.968(0.004) 0.996(0.001) 0.957(0.001) 0.879(0.011) 0.973(0.002) 0.895(0.002) 1.2(0.4) 

Style HED-light 0.961(0.002) 0.953(0.004) 0.952(0.001) 0.972(0.004) 0.991(0.003) 0.925(0.003) 0.879(0.006) 0.975(0.001) 0.917(0.003) 2.8(0.7) 

Network HSV-light 0.946(0.006) 0.962(0.001) 0.941(0.002) 0.965(0.004) 0.992(0.001) 0.957(0.000) 0.872(0.013) 0.980(0.001) 0.900(0.003) 3.9(1.9) 

Network HED-light 0.949(0.005) 0.968(0.001) 0.942(0.002) 0.963(0.004) 0.989(0.003) 0.958(0.001) 0.862(0.011) 0.980(0.001) 0.906(0.003) 4.1(1.6) 

Identity HSV-strong 0.955(0.003) 0.965(0.004) 0.929(0.002) 0.973(0.003) 0.988(0.003) 0.945(0.009) 0.886(0.005) 0.977(0.001) 0.902(0.003) 4.7(1.7) 

Network HSV-strong 0.953(0.002) 0.964(0.003) 0.946(0.002) 0.964(0.005) 0.991(0.003) 0.951(0.002) 0.852(0.006) 0.975(0.002) 0.894(0.005) 6.6(0.9) 

Network HED-strong 0.956(0.003) 0.959(0.002) 0.940(0.003) 0.965(0.004) 0.985(0.005) 0.943(0.003) 0.861(0.009) 0.974(0.002) 0.916(0.003) 7.9(1.9) 

Identity HED-strong 0.950(0.005) 0.959(0.005) 0.936(0.007) 0.957(0.007) 0.992(0.002) 0.945(0.003) 0.872(0.005) 0.967(0.003) 0.920(0.005) 8.1(2.8) 

Style HSV-strong 0.953(0.004) 0.956(0.004) 0.940(0.003) 0.959(0.007) 0.986(0.004) 0.932(0.005) 0.878(0.003) 0.976(0.001) 0.917(0.004) 9.0(2.6) 

Style HSV-light 0.940(0.011) 0.960(0.004) 0.944(0.007) 0.926(0.012) 0.992(0.001) 0.958(0.002) 0.852(0.008) 0.974(0.001) 0.921(0.003) 9.4(3.6) 

Style HED-strong 0.955(0.002) 0.949(0.004) 0.936(0.003) 0.954(0.005) 0.982(0.005) 0.942(0.002) 0.884(0.004) 0.975(0.000) 0.925(0.003) 9.9(1.2) 

Grayscale BC 0.956(0.003) 0.962(0.003) 0.935(0.005) 0.961(0.002) 0.989(0.002) 0.939(0.004) 0.851(0.002) 0.972(0.000) 0.884(0.003) 12.2(1.2) 

Deconvolution HSV-strong 0.955(0.003) 0.936(0.008) 0.941(0.004) 0.943(0.009) 0.991(0.001) 0.865(0.010) 0.867(0.004) 0.961(0.002) 0.928(0.001) 13.9(1.9) 

LUT HED-strong 0.934(0.006) 0.941(0.006) 0.925(0.006) 0.963(0.005) 0.989(0.002) 0.945(0.002) 0.871(0.005) 0.956(0.002) 0.945(0.001) 14.0(2.2) 

Deconvolution HED-strong 0.942(0.003) 0.962(0.003) 0.897(0.006) 0.967(0.003) 0.993(0.002) 0.827(0.018) 0.853(0.006) 0.969(0.001) 0.927(0.002) 14.4(1.2) 

LUT HSV-strong 0.923(0.009) 0.939(0.003) 0.928(0.005) 0.947(0.008) 0.987(0.002) 0.949(0.003) 0.862(0.007) 0.962(0.002) 0.940(0.002) 17.0(2.0) 

Network BC 0.944(0.003) 0.950(0.003) 0.903(0.003) 0.934(0.006) 0.983(0.005) 0.953(0.003) 0.869(0.009) 0.981(0.001) 0.881(0.005) 17.4(1.5) 

Identity HSV-light 0.888(0.013) 0.951(0.009) 0.942(0.004) 0.930(0.023) 0.962(0.015) 0.949(0.001) 0.905(0.005) 0.976(0.000) 0.894(0.003) 17.4(2.9) 

LUT HED-light 0.914(0.011) 0.926(0.011) 0.923(0.006) 0.932(0.019) 0.993(0.001) 0.948(0.003) 0.852(0.021) 0.966(0.003) 0.940(0.002) 17.9(2.2) 

LUT HSV-light 0.894(0.006) 0.936(0.006) 0.921(0.003) 0.942(0.007) 0.987(0.002) 0.951(0.002) 0.860(0.010) 0.971(0.002) 0.945(0.002) 19.2(1.2) 

LUT BC 0.925(0.025) 0.948(0.027) 0.853(0.016) 0.790(0.061) 0.985(0.004) 0.951(0.004) 0.848(0.018) 0.973(0.003) 0.924(0.005) 21.3(3.3) 

Style BC 0.949(0.005) 0.858(0.031) 0.938(0.001) 0.411(0.065) 0.987(0.004) 0.949(0.006) 0.764(0.047) 0.946(0.002) 0.903(0.005) 23.3(2.2) 

Deconvolution HSV-light 0.942(0.004) 0.930(0.009) 0.913(0.023) 0.961(0.002) 0.982(0.005) 0.850(0.019) 0.840(0.009) 0.958(0.006) 0.917(0.002) 23.5(1.0) 

Network Basic 0.944(0.003) 0.954(0.007) 0.887(0.010) 0.959(0.004) 0.969(0.005) 0.905(0.006) 0.815(0.019) 0.977(0.002) 0.855(0.006) 23.6(1.4) 

Network Morphology 0.939(0.010) 0.949(0.006) 0.890(0.012) 0.950(0.009) 0.980(0.006) 0.913(0.011) 0.823(0.022) 0.977(0.001) 0.868(0.002) 23.9(1.1) 

Deconvolution HED-light 0.930(0.005) 0.912(0.015) 0.916(0.005) 0.948(0.006) 0.982(0.002) 0.816(0.011) 0.834(0.004) 0.970(0.003) 0.927(0.005) 25.4(2.3) 

Deconvolution Morphology 0.951(0.003) 0.938(0.006) 0.849(0.021) 0.951(0.008) 0.993(0.002) 0.754(0.027) 0.749(0.037) 0.903(0.008) 0.865(0.015) 27.7(0.6) 

Grayscale Morphology 0.943(0.010) 0.820(0.021) 0.922(0.005) 0.941(0.011) 0.991(0.006) 0.910(0.009) 0.816(0.005) 0.929(0.006) 0.813(0.009) 27.7(1.2) 

Style Morphology 0.935(0.011) 0.725(0.082) 0.934(0.002) 0.361(0.113) 0.992(0.004) 0.918(0.006) 0.754(0.006) 0.873(0.010) 0.890(0.006) 28.6(2.4) 

Grayscale Basic 0.940(0.007) 0.692(0.064) 0.926(0.010) 0.938(0.019) 0.992(0.001) 0.882(0.008) 0.661(0.039) 0.934(0.002) 0.798(0.006) 30.0(0.6) 

Deconvolution BC 0.942(0.004) 0.896(0.008) 0.682(0.044) 0.949(0.005) 0.989(0.006) 0.794(0.021) 0.792(0.028) 0.930(0.007) 0.872(0.004) 30.4(1.2) 

LUT Morphology 0.898(0.007) 0.920(0.007) 0.801(0.021) 0.874(0.025) 0.969(0.008) 0.895(0.013) 0.803(0.007) 0.939(0.006) 0.906(0.006) 32.6(1.4) 

Deconvolution Basic 0.919(0.015) 0.896(0.038) 0.810(0.081) 0.902(0.026) 0.993(0.001) 0.753(0.006) 0.791(0.009) 0.903(0.003) 0.836(0.008) 32.8(0.7) 

Style Basic 0.918(0.002) 0.334(0.133) 0.926(0.004) 0.124(0.041) 0.991(0.003) 0.865(0.025) 0.723(0.024) 0.863(0.020) 0.857(0.010) 33.6(1.0) 

LUT Basic 0.908(0.010) 0.894(0.030) 0.809(0.022) 0.772(0.072) 0.951(0.009) 0.906(0.011) 0.741(0.018) 0.930(0.014) 0.890(0.013) 34.6(0.8) 

Identity BC 0.899(0.006) 0.634(0.100) 0.741(0.016) 0.177(0.047) 0.906(0.034) 0.936(0.006) 0.704(0.060) 0.684(0.009) 0.761(0.012) 36.2(0.4) 

Identity Morphology 0.811(0.026) 0.671(0.099) 0.673(0.027) 0.214(0.174) 0.986(0.006) 0.374(0.191) 0.602(0.023) 0.569(0.028) 0.720(0.009) 37.2(0.7) 

Identity Basic 0.811(0.009) 0.563(0.309) 0.790(0.047) 0.406(0.375) 0.965(0.009) 0.631(0.178) 0.624(0.053) 0.556(0.057) 0.701(0.028) 37.6(0.5) 
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4.2. Effects of stain color augmentation 

Results in Table 1 show that stain color augmentation was cru-

cial to obtain top classification performance, regardless of the stain

color normalization technique used (see top-10 methods). More-

over, note that including color augmentation, either HSV or HED ,

was key to obtaining top performance since using BC augmenta-

tion alone produced mediocre results. We did not find, however,

any substantial performance difference between using HED or HSV

color augmentation. Similarly, we found that strong and light color

augmentations achieved similar performance, with a slight advan-

tage towards light . Heavy augmentation is known to reduce perfor-

mance on images similar to those in the training set. However, we

found less than 1% average performance reduction on the internal

test set across organs. Regarding non-color augmentation, i.e. basic,

morphology and BC, BC obtained the best results across almost all

stain color normalization setups, followed by morphology and basic

augmentation, as expected. 

4.3. Effects of stain color normalization 

According to results in Table 1 , overall top performance was

achieved without the use of color normalization. This piece of ev-

idence suggests that color normalization is not a necessary con-

dition to achieve high classification performance in histopathology

images. However, we observed that color normalization generally

produced classifiers that were more robust to different color aug-

mentation techniques, e.g., Identity normalization performance di-

minished with HSV-light augmentation whereas Network normal-

ization exhibited a high performance regardless of the color aug-

mentation used. 

We did not find any substantial performance difference be-

tween neural network based normalization algorithms, Network

and Style . Nevertheless, we observed that none of the classical

approaches, LUT or Deconvolution , surpassed the performance of

Grayscale . We hypothesize that these classical normalization meth-

ods can hide certain useful features from the images, resulting in

added input noise that can affect classification performance. 

Additionally, we measured the extra time required to normalize

a regular whole-slide image composed of 50 , 0 0 0 × 50 , 0 0 0 RGB

pixels. We found LUT-based to be the fastest taking 21.8 min, fol-

lowed closely by network-based with 26.0 min, and the slower

deconv-based and style-based taking 111.2min and 217.8min, respec-

tively, excluding I/O delays. 

5. Discussion 

Our experimental results indicate that stain color augmentation

improved classification performance drastically by increasing the

CNN’s ability to generalize to unseen stain variations. This was true

for most of the experiments regardless of the type of stain color

normalization technique used. Moreover, we found HSV and HED

color transformations to be the key ingredients to improve perfor-

mance since removing them, i.e. using BC augmentation, yielded a

lower AUC under all circumstances; suggesting that inter-lab stain

differences were mainly caused by color variations rather than

morphological features. Remarkably, we observed hardly any per-

formance difference between HSV or HED , and strong or light vari-

ation intensity. 

Based on these observations, we concluded that CNNs are

mostly insensitive to the type and intensity of the color augmen-

tation used in this setup, as long as one of the methods is used.

However, CNNs trained with simpler stain color normalization tech-

niques exhibited more sensitivity to the intensity of color augmen-

tation, i.e. they required a stronger augmentation in order to per-

form well. Finally, the fact that experiments with grayscale images
chieved mediocre performance was an indication that color pro-

ided useful information to the model. The worst performance was

chieved with morphology and identity configurations, which was

n indication that color information can act as noise when no aug-

entation is used, increasing overfitting and generalization error

ue to stain variation. 

Regarding stain color normalization , we found that the best

erforming method did not use any normalization. This result

hallenged the common assumption that color normalization is

 necessary step to achieve top classification performance in the

istopathology setting; especially considering that color normal-

zation added a computational overhead that can substantially re-

uce the overall classification speed. Neural network based meth-

ds, both Network and Style , achieved similar high performance

n the benchmark, supporting the idea of reformulating the prob-

em of stain color normalization as an image-to-image translation

ask. 

Furthermore, we observed that all stain color normalization

echniques obtained a poor performance when no color augmen-

ation was used (below that of Grayscale with BC ). We hypothe-

ize that even in the case of excellent stain normalization, color

nformation can serve as a source of overfitting, worsening with

uboptimal normalization. We concluded that using the stain color

ormalization methods evaluated in this paper without proper stain

olor augmentation is insufficient to reduce the generalization error

aused by stain variation and results in poor model performance. 

Due to computational constraints, we limited the type and

umber of experiments performed in this study to patch-based

lassification tasks, ignoring other modalities such as segmenta-

ion, instance detection or WSI classification. However, we believe

his limitation to have little impact in the conclusions of this study

ince the problem of generalization error has identical causes and

ffects in other modalities. In order to reduce the number of exper-

ments, we avoided quantifying the impact of individual augmenta-

ion techniques, e.g. scaling augmentation alone, but grouped them

nto categories instead. Similarly, we limited the hyper-parameters’

anges to certain set of values, e.g. light or strong stain augmenta-

ion intensity. Nevertheless, according to the experimental results,

e believe that testing a wider range of hyper-parameter values

ould not alter the main conclusions of this study. 

. Conclusion 

For the first time, we quantified the effect of stain color aug-

entation and stain color normalization in classification perfor-

ance across four relevant computational pathology applications

sing data from 9 different centers. Based on our empirical evalua-

ion, we found that any type of stain color augmentation , i.e. HSV or

ED transformation, should always be used. In addition, color aug-

entation can be combined with neural network based stain color

ormalization to achieve a more robust classification performance.

n setups with reduced computational resources, color normaliza-

ion could be omitted, resulting in a negligible performance reduc-

ion and a substantial improvement in processing speed. Finally,

e recommend tuning the intensity of the color augmentation to

ight or strong in case color normalization is enabled or disabled ,

espectively. 
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