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Neural Image Compression for Gigapixel
Histopathology Image Analysis

David Tellez*, Geert Litjens

, Jeroen van der Laak ™, and Francesco Ciompi

Abstract—We propose Neural Image Compression (NIC), a two-step method to build convolutional neural networks for gigapixel
image analysis solely using weak image-level labels. First, gigapixel images are compressed using a neural network trained in an
unsupervised fashion, retaining high-level information while suppressing pixel-level noise. Second, a convolutional neural network
(CNN) is trained on these compressed image representations to predict image-level labels, avoiding the need for fine-grained manual
annotations. We compared several encoding strategies, namely reconstruction error minimization, contrastive training and adversarial
feature learning, and evaluated NIC on a synthetic task and two public histopathology datasets. We found that NIC can exploit visual
cues associated with image-level labels successfully, integrating both global and local visual information. Furthermore, we visualized
the regions of the input gigapixel images where the CNN attended to, and confirmed that they overlapped with annotations from

human experts.

Index Terms—Gigapixel image analysis, computational pathology, convolutional neural networks, representation learning

1 INTRODUCTION

G IGAPIXEL images are three-dimensional arrays com-
posed of more than 1 billion pixels; these are common
in fields like Computational Pathology [1] and Remote Sens-
ing [2], and are often associated with labels at image level.
The fundamental challenge of gigapixel image analysis with
weak image-level labels resides in the low signal-to-noise
ratio present in these images. Typically, the signal consists
of a subtle combination of high- and low-level patterns that
are related to the image-level label, while most of the pixels
behave as distracting noise. Furthermore, the nature and
spatial distribution of the signal are both unknown, often
referred to as the what and the where problems, respectively.

1.1 The what and the where Problems

Researchers have addressed the challenge of gigapixel image
analysis by making different assumptions about the signal,
simplifying either the what or the where problem.

The most widespread simplification assumes that the sig-
nal is fully recognizable at a low level of abstraction, i.e., the
image-level label has a patch-level representation. This sim-
plification addresses the what problem by decomposing the
gigapixel image into a set of patches that can be indepen-
dently annotated. Typically, these patches are manually
annotated to perform automatic detection or segmentation
using a neural network, relegating the task of performing
image-level prediction to a rule-based decision model about
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the patch-level predictions [1], [3], [4], [5]. This assumption
is not valid for image-level labels that do not have a known
patch-level representation. Furthermore, patch-level anno-
tation in gigapixel images is a tedious, time consuming
and error-prone process, and limits what machine learning
models can learn to the knowledge of human annotators.

Other researchers have assumed that the signal can exist
at a low level of abstraction, but it is then not fully recogniz-
able, i.e., the image-level label has a patch-level representa-
tion that is unknown to human annotators. Furthermore,
the mere presence of these patches is enough evidence to
make a prediction at the image level, ignoring the spatial
arrangement between patches, thus solving the where prob-
lem. Making this assumption falls into the multiple-instance
learning (MIL) framework, which reduces the gigapixel
image analysis problem into detecting patches that contain
the true signal while suppressing the noisy ones [6], [7], [8],
[9], [10]. However, these methods can only take into
account patterns present within individual patches, neglect-
ing the potential relationships among them. More generally,
MIL techniques cannot exploit patterns present in higher
levels of abstraction since they ignore the spatial distribu-
tion among patches. This is also true for methods that
aggregate patch-level information by means of spatial pool-
ing [6], [11].

In this work, we do not make any assumptions about the
nature or spatial distribution of the visual cues associated
with image-level labels. We argue that convolutional neural
networks (CNN) are designed to solve the what and the
where problems simultaneously [12], and propose a method
to use them for gigapixel image analysis. However, feeding
CNNs directly with gigapixel images is computationally
unfeasible. Instead, we propose Neural Image Compression
(NIC), a technique that maps images from a low-level pixel
space to a higher-level latent space using neural networks.
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Fig. 1. Gigapixel neural image compression. Left: a gigapixel histopathology whole-slide image is divided into a set of patches mapped to a set of low-
dimensional embedding vectors using a neural network (the encoder). Center: these embeddings are stored keeping the spatial arrangement of the
original patches. Right: the resulting array is a compressed representation of the gigapixel image. M and N: size of the gigapixel image; P: size of
the square patches; C: size of the embedding vectors; and S: stride used to sample the patches. Typically: M = N = 50,000 and P = S = C = 128.

In this way, gigapixel images are compressed into a highly
compact representation, which can be used to train a CNN
using a single GPU for predicting any kind of image-level
label.

1.2 Neural Image Compression

Gigapixel NIC was designed to reduce the size of a giga-
pixel image while retaining semantic information by shrink-
ing its spatial dimensions and growing along the feature
direction (see Fig. 1). The method works by, first, dividing
the gigapixel image into a set of high-resolution patches.
Second, each high-resolution patch is compressed with a
neural network (the encoder) that maps every image into a
low-dimensional embedding vector. Finally, each embed-
ding is placed into an array that keeps the original spatial
arrangement intact so that neighbor embeddings in the
array represent neighbor patches in the original image.

NIC was inspired by cognitive mechanisms. Human
observers can describe complex visual patterns using only
a few words without needing to describe each individual
pixel. Similarly, the encoder can describe patches with low-
dimensional embedding vectors, ignoring superfluous
details. It is a powerful method that competes with classical
approaches in terms of compression rate [13]. Moreover, pre-
vious works on representation learning and transfer learning
have demonstrated that neural networks excel at extracting
features that can be exploited by other networks to solve a
variety of downstream tasks [14], [15], [16], [17]. This makes
NIC an ideal candidate for reducing the size of gigapixel
images before feeding a CNN.

The encoder network can be trained using a wide variety of
techniques. In this work, we selected and compared repre-
sentative methods from three well-known families of unsu-
pervised representation learning algorithms: reconstruction
error minimization, contrastive training, and adversarial fea-
ture learning. First, autoencoders (AE) have been proposed
as a straightforward method to learn a compact representa-
tion of a given data manifold [12]. AEs are neural networks
that follow a particular encoder-bottleneck-decoder architec-
ture. They aim to reconstruct input images by minimizing a
reconstruction loss, e.g., the mean squared error (MSE). In
particular, we considered the case of the variational autoen-
coder (VAE), a powerful modification of the original AE
that relies on a probabilistic approach [18]. Second, we
investigated a discriminative model based on contrastive

training [16], [19], [20], [21]. This model senses the world via
an encoding network that maps images to embedding vec-
tors. By training this model to distinguish between pairs of
images with same or different semantic information, the
encoder is enforced to learn a compact representation of the
input data. Third, we investigated adversarial feature learn-
ing [14], [15], a training framework based on Generative
Adversarial Networks (GAN) [22]. GANs emerged as pow-
erful generative models that map low-dimensional latent
distributions into complex data. There is evidence that these
latent spaces capture some of the high-level semantic infor-
mation present in the data [23]. However, standard GAN
models do not support the reverse operation, i.e., mapping
data to the latent space. The Bidirectional GAN model
(BiGAN [14]) learns this mapping using an explicit encoding
network in the training loop. Intuitively, the encoder benefits
from all the high-level features which were fully automati-
cally discovered by the generator.

1.3 Gigapixel Image Analysis

Without any loss of generality, we applied our method to
two of the largest publicly available histopathology datasets
to demonstrate its effectiveness in real-world applications:
the Camelyon16 Challenge [4] and the TUPAC16 Chal-
lenge [3]. These datasets consist of gigapixel images of
human tissue acquired with brightfield microscopy at very
high magnification, also known as whole-slide images
(WSI). These WSIs were stained with hematoxylin and eosin
(H&E), the most widely used stain in routine histopathol-
ogy diagnostics, that highlights general tissue morphology
such as cell nuclei and cytoplasm. Each WSI is associated
with a single image-level label: the presence of tumor
metastasis for Camelyonl6, and the tumor proliferation
speed based on gene-expression profiling for TUPACI6.

A benefit of using a CNN for gigapixel image analysis is
that, once trained, the CNN’s areas of interest in the input
image can be visualized using gradient-weighted class-
activation maps (Grad-CAM) [24]. These saliency maps pro-
vide an answer to the where problem by locating visual cues
related to the image-level labels. Identifying visual evidence
for CNN predictions is of utmost importance in the medical
domain regarding algorithm interpretation and knowledge
discovery. For the first time, we performed this saliency anal-
ysis on gigapixel images and compared the resulting maps
with the patch-level annotations of an expert observer.
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1.4 Contributions

This work is an extension of our conference paper [25]. A
number of additions have been made: three new datasets,
an additional encoding method, the Grad-CAM analysis, a
new experiment at the patch level, a new experiment at
the image level, a more thorough evaluation using cross-
validation, and an independent test evaluation performed
by a third-party.

Our contributions can be summarized as follows:

e We propose Neural Image Compression as a method
to reduce gigapixel images to highly-compact repre-
sentations, suitable for training a CNN end-to-end to
predict image-level labels using a single GPU and
standard deep learning techniques.

e We compared several encoding methods that map
high-resolution image patches to low-dimensional
embedding vectors based on different unsupervised
learning techniques: reconstruction error minimization,
contrastive training, and adversarial feature learning.

e We evaluated NIC in three publicly available data-
sets: a synthetic set designed to evaluate the method;
and two histopathological breast cancer sets of
whole-slide images used to train the system to pre-
dict the presence of tumor metastasis and the tumor
proliferation speed.

e We generated saliency maps representing the CNN’s
areas of interest in the image in order to discover
and localize visual cues associated to the image-level
labels.

The paper is organized as follows: Sections 2 and 3
describe the methods in depth; Materials and experimental
results are described in Section 4; the discussions and con-
clusions are stated in Sections 5 and 6, respectively.

2 NEURAL IMAGE COMPRESSION

Let us define w € RMV*3 ag the gigapixel image (e.g., a
WS to be compressed, with M rows, N columns, and three
color channels (RGB). In order to compress w into a more
compact representation «', two steps were taken. First, ®
was divided into a set of high-resolution patches X = {z;;}
with z;; € R””*3, sampled from the ith row and jth col-
umn of an uniform grid of square patches of size P using a
stride of S throughout w. Second, each z;; was compressed
independently from each other, generating a set of low-
dimensional embedding vectors of length C' at each spatial
location on the grid: Y = {e;;} with ¢;; € R”.

We formulated the task of mapping high-entropy X into
low-entropy Y as an instance of an unsupervised represen-
tation learning problem, and parameterized this mapping

function with a neural network E so that X =Y. By sliding
E throughout all ij spatial locations, @ was compressed into

o' with a total volume reduction of F' = 3 % More formally

w € RM*Nx3 Ew/ c R%{X%XC. (1)

We investigated several unsupervised encoding strategies
for learning F. Three of the most well-known and accessible
methods in unsupervised image representation learning
were selected. In all cases, neural networks were trained to
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Fig. 2. Variational Autoencoder. Top: the encoder maps a patch to an
embedding vector depending on a noise vector while the decoder recon-
structs the original patch from the embedding vector. Bottom: pairs of
real and reconstructed patch samples using C' = 128.

solve an auxiliary task and learn E as a by-product of the
training process. Note that none of the studied methods
required the use of manual annotations. Network architec-
tures and training protocols are detailed in the Supplemen-
tary Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2019.2936841, accompanying this paper.

2.1 Variational Autoencoder

Two networks are trained simultaneously, the encoder E
and the decoder D. The task of E is to map an input patch «
into a compact embedded representation e, and the task of
D is to reconstruct = from e, producing «'. In this work, we
used a more sophisticated version of AE, the variational
autoencoder [18]. The encoder in the VAE model learns to
describe = with an entire probability distribution instead of
a single vector (Fig. 2). More formally, E outputs u € R¢
and o € RY, two embeddings representing the mean and
standard deviation of a normal distribution such that

e=u+ooOn, 2)

with  n~ N(0,1)
multiplication.

We trained the VAE model by optimizing the following
objective:

and © denoting element-wise

VVAE(‘T7 n, 6E7 0D) =

21}9%1[ (x—D(E(:c,n)))2 +y(1+10g02_uz_02)}

Reconstruction error KL divergence

(3)

with y as a scaling factor, and 6 and 6p as the parameters of
E and D, respectively. Note that we optimized 6z and 6 to
minimize both the reconstruction error between the input
and output data distributions, and the KL divergence
between the embedding distribution and the normal
N(0,1) distribution.

This procedure results in a continuous latent space
where changes in the embedding vectors are proportional
to changes in the input data and vice-versa, effectively
retaining semantic knowledge present in the input space.

2.2 Contrastive Training

We assembled a training dataset composed of pairs of
patches z = {z"), (®} where each pair = was associated
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Fig. 3. Contrastive training. Top: pairs of patches are extracted from gig-
apixel images. Pairs labeled as same originate from the same spatial
location whereas different are extracted from either adjacent locations or
different images. Bottom: scheme of a Siamese network trained for
binary classification using the previous pairs.

with a binary label y. Each label described whether the
patches had been extracted from the same or a different loca-
tion in a given gigapixel image, with y =1 and y =0,
respectively. We trained a two-branch Siamese network [20]
to solve this classification problem (Fig. 3).

We applied heavy data augmentation on all patches as
indicated in [26], i.e., rotation, color augmentation, bright-
ness, contrast, zooming, elastic deformation, and added
Gaussian noise. Due to the strong augmentation, patches
from the same location looked substantially different in a
highly non-linear fashion while keeping a similar overall
structure (semantic), see examples in Fig. 3. Patches from the
different class were extracted from two distributions: 75 per-
cent of them corresponded to non-overlapping adjacent loca-
tions (i.e., neighboring patches) where most of the visual
features were shared, and the remaining 25 percent were
sampled from different WSIs. Note that we included more of
the neighboring different pairs to increase the difficulty of the
classification task, forcing the network to extract higher-level
features. The same data augmentation was applied to other
encoders as well to ensure a fair comparison.

2.3 Bidirectional Generative Adversarial Network
The BiGAN setup consists of three networks: a generator G,
a discriminator D, and an encoder E (Fig. 4). G maps a
latent variable z ~ A(0,1) to generated images «’

z ~N(0,1) € ]chac/ e RP*Px3 (4)

whereas ' maps images 2 sampled from the true data dis-
tribution &X' to embeddings e

E
x ~X € RPPS8 Zee RE, 5)

During training, the three networks play a minimax game
where the discriminator D tries to distinguish between actual
or generated image-embedding pairs, ie., {z,e} and {z', 2}
respectively, while G and E try to fool D by producing
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Fig. 4. Adversarial Feature Learning. Top: three networks play a mini-
max game where the discriminator distinguishes between actual or gen-
erated image-embedding pairs, while the generator and the encoder fool
the discriminator by producing increasingly more realistic images and
embeddings. Bottom: real and generated patch samples using C' = 128.

increasingly more realistic images z' and embeddings e
closer to NV(0, 1). More formally, we optimized the following
objective function:

Veican(z, 2,0q,0p,0p) =

= ra%lmgx [log [D(x’i(f)/)] +log [1 — D(g(/z_)/, z)]},

e !

(6)

with ¢, 0, and 0 representing the parameters of G, E, and
D, respectively.

The authors of BIGAN theoretically and experimentally
demonstrate that G and £ learn an approximate inverse
mapping function from each other, producing an encoding
network E that learns a powerful low-dimensional repre-
sentation of the image world inherited from G, suitable for
downstream tasks such as supervised classification [14].

3 GIGAPIXEL IMAGE ANALYSIS

In this section, we describe a method to train a CNN to pre-
dict image-level labels directly from compressed gigapixel
images. Furthermore, we analyzed the location of visual
cues associated with the image-level labels.

3.1 Feeding a CNN with Compressed

Gigapixel Images

We consider a dataset of gigapixel images Q = {w;}? that

. . My .
were compressed into ' = {@/} | with ] € R5*5*C using

Eq. (1). In order to train a standard CNN on a dataset like Q,
we set the depth of the convolutional filters of the input layer
to be equal to the code size C used to compress the images.

We hypothesized that such a CNN can learn to detect
highly discriminative features by exploiting two comple-
mentary sources of information from )': (1) the global context
encoded within the spatial arrangement of embedding vec-
tors, and (2) the local high-resolution information encoded
within the features of each embedding vector.

3.2 Preventing Overfitting
Note that in this setup, despite its gigapixel nature, each
compressed image ) constitutes a single training data
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point. Most public datasets with gigapixel images and their
respective image-level labels consist only of a few hundred
data points [3], [4], increasing the risk of overfitting. The
steps taken to prevent this effect are enumerated below.

First, we extended the training dataset Q by taking spatial
crops of size R x R x C' from o), drastically increasing the
total number and variability of the samples presented to the
CNN [27]. During training, we randomly sampled the loca-
tion of the center pixel of these crops. During testing, we
selected T crops uniformly distributed along the spatial
dimensions of , and averaged the predictions of the CNN
across them [27]. Without any loss of generality, we applied
this method to histopathology WSIs. As WSIs often contain
large empty areas with no tissue, we detected the tissue
regions [28] and sampled crops proportionally to the distance
to background to accelerate the training, so that areas with
higher tissue density were sampled more often. Similarly, test
crops were sampled from locations where tissue was present.

The second measure taken to prevent overfitting was a
simple augmentation at image level (i.e., 90-degree rotation
and mirroring), encoding each image 8 times. This augmen-
tation was carried out during testing as well, averaging the
predictions of the CNN across them.

Finally, we designed a CNN architecture aimed at reduc-
ing the number of parameters present in the model. In par-
ticular, all convolutional layers were set to use depthwise
separable convolutions, a type of convolution that reduces
the number of parameters while maintaining a similar level
of performance [29].

3.3 Visualizing Visual Cues Related to
Image-Level Labels

The problem of feature localization is of utmost relevance
for gigapixel image analysis: visual cues related to the
image-level labels are often sparse and positioned in arbi-
trary locations within the image. For the purpose of identi-
fying the location of these visual cues, we applied the
Gradient-weighted Class-Activation Map (Grad-CAM)
algorithm [24] to our trained CNN.

Given a compressed gigapixel image «', its associated
image-level label y, and a trained CNN, Grad-CAM performs
a forward pass over ' to produce a set of J intermediate
three-dimensional feature volumes fj(-k), with j and k indi-
cating the jth and kth convolutional layer and feature map,
respectively. Subsequently, it computes the gradients of f;m
with respect to y for a fixed convolutional layer. It averages
the gradients across the spatial dimensions and obtains a set of
gradient coefficients yém, indicating how relevant each feature
map is for the desired output y. Finally, it performs a weighted

sum of the feature maps ff” using the gradient coefficients )/5-]">
J

W9 =3 FO4, o
=1

We applied the visualization method to the first convolu-
tional layer (k=1) in order to maximize the heatmap
resolution.

4 EXPERIMENTS AND RESULTS

We conducted a series of experiments to evaluate the perfor-
mance of gigapixel NIC. First, we evaluated NIC in synthetic

Fig. 5. Example of an image from the synthetic dataset. Left: ground
truth mask depicting the tilted and non-tilted rectangles that simulate
lesions in grey and white, respectively. Center: image containing instan-
ces of MNIST digits; classes are defined by the rectangles or selected
randomly. Right: all digits within the tilted rectangle boundary (in green)
belong to the same class (number two), which corresponds to the image
label as well.

data to gain an understanding of the method and how its
hyper-parameters affect performance. Second, we applied
the method to several public histopathological datasets.

4.1 Materials

In this work, a synthetic dataset and three histopathology
cohorts from different sources were used for supervised
and unsupervised training at patch and image level;
patients and WSIs were unique across all cohorts.

4.1.1  Synthetic Dataset

We developed and tested NIC with a synthetic dataset
that mimicked the task of end-to-end WSI analysis before
deploying it with real WSIs. As a substitute for WSIs, a set
of images T = {t;} with ¢, € R**Z were used, each one
associated with a dense pixel-level ground truth mask
M = {m;}, where m,; € R4A*E and an image-level scalar
label Y = {y;}.

To emulate global patterns in the images (e.g., tumor
lesions), we defined two rectangles within each mask placed
at random locations and characterized by their own orienta-
tion: one was either vertically or horizontally oriented
(non-tilted); the other was tilted either 45 or 135 degrees
(tilted). Each rectangle was associated to a randomly
selected MNIST [30] digit class. To emulate local patterns
(e.g., cells), instances of MNIST digits were placed through-
out the images at random locations. The class of these
instances was determined by their spatial position, i.e.,
belonging to a certain rectangle class if placed within the
boundaries of a rectangle or otherwise randomly selected.
The label of each image was defined by the class of the tilted
rectangle, with the non-tilted rectangle acting as a distrac-
tion. See Fig. 5 for an example image.

Note that, in order to solve this classification task, NIC
had to detect the tilted rectangle and its class without access
to the ground-truth masks. Moreover, the method must
combine local and global information, i.e., exploiting the
local features that identify digit instances’ classes while rec-
ognizing their global spatial arrangement to detect the
orientation of the rectangle.
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We downsampled MNIST digits to 9 x 9 pixels, defining
a patch size P =9 and stride S =9 pixels. WSIs are typi-
cally 50000 x 50000 pixels in size, with patch sizes of
128 x 128 pixels covering structures composed of a few
cells. We mimicked this image-patch ratio by using an
image size of A = B = 3600 pixels, and inserted 25,920 digit
instances per image (0.2 percent of the total possible loca-
tions). Rectangle size randomly ranged from 1,800 pixels to
36 pixels (Iong side). This reduced image size enabled us
to run more thorough experiments than what we could do
with histopathological data.

A total of 50,000 images with balanced labels were cre-
ated across the 10 digit classes: 2,500 to generate patches to
train the encoders, 22,500 to train the NIC CNN (with 75
and 25 percent for training and validation), and 25,000 as an
independent test set for the NIC CNN.

4.1.2 Camelyon16 Histopathology Dataset

The Camelyon16 [4] dataset is a publicly available multicen-
ter cohort that consists of 400 sentinel lymph node H&E
WSIs from breast cancer patients. Reference standard exists
in two forms: fine-grained annotations of metastatic lesions
and image-level labels indicating the presence of tumor
metastasis in each slide. Sixty WSIs from the original train-
ing set were set aside to train encoders at patch level. The
remaining WSIs were combined with the original test set
(n=340) to train and evaluate a classification model using
image-level labels only.

4.1.3 TUPAC16 Histopathology Dataset

The TUPAC16 [3] dataset was used, consisting of 492 H&E
WHSIs from invasive breast cancer patients. It is a publicly
available cohort with WSIs from The Cancer Genome
Atlas [31] where each WSl is associated with a tumor prolifer-
ation speed score, an objective measurement that takes into
account the RNA expression of 11 proliferation-associated
genes [32]. We set aside 40 WSIs from this set to train
encoders at patch level. The remaining WSIs (n=452) were
used to train and evaluate a regression model using image-
level labels only. Additionally, 321 test WSIs with no public
ground truth available were used to perform an independent
evaluation.

4.1.4 Rectum Histopathology Dataset

The Rectum dataset is a publicly available set of 74 H&E WSIs
from rectal carcinoma patients [33]. Manual annotations of
9 tissue classes were made by an expert: blood cells, fatty
tissue, epithelium, lymphocytes, mucus, muscle, necrosis,
stroma, and tumor. The slides were randomized and orga-
nized into ten equal partitions at patient level, five of which
were used for training, one for validation, and four for test-
ing. This dataset was used to train and evaluate encoders at
patch level only. We extracted a balanced distribution of
15K, 852, and 4K patches per class from the training, valida-
tion, and test slides, respectively.

4.1.5 Data Preparation

Regarding the synthetic dataset, one million pairs of patches
were extracted to train the encoders, augmented with

scaling and elastic deformation. To avoid creating a dataset
of empty patches, the probability of sampling a patch con-
taining a white pixel was twice of that of an empty patch.

All WSIs in this study were preprocessed with a tissue-
background segmentation algorithm [28] in order to exclude
areas not containing tissue from the analysis. Furthermore,
all images were analyzed at 0.5 u m/pixel resolution.

A set of patch datasets were assembled to train and eval-
uate each of the encoding networks described in Section 2
using the set of images that we set aside from each cohort:
60 WSIs from Camelyon16, 40 from TUPACI6, and all from
Rectum. Each of these subcohorts were divided into training,
validation, and test partitions.

The contrastive dataset was created by extracting an equal
amount of patches from each source (i.e., Camelyonle,
TUPAC16, and Rectum) and merged into 50,000 and 25,000
patch pairs for training and validation, respectively. The
non-contrastive dataset was then created by randomizing all
individual patches within the contrastive dataset.

The supervised-tumor dataset was created by extracting
50,000, 10,000, and 50,000 patches from the set of 60 Camel-
yonl6 WSIs for training, validation, and testing, respectively.
Finally, the supervised-tissue dataset consisted of the Rectum
training, validation, and test sets containing 131,000, 8,000,
and 35,000 patches, respectively. Note that the patches in the
supervised-tumor dataset and supervised-tissue dataset test sets
did not undergo any augmentation. The fine-grained tumor
annotations were used to sample a balanced distribution of
tumor and non-tumor patches in the supervised-tumor dataset
and 9-class patches in the supervised-tissue dataset.

4.2 Experimental Results on Synthetic Data

The contrastive encoder was trained using the pairs of patches
described in Section 4.1.5. The VAE and BiGAN encoders
were subsequently trained using these same patches,
concatenating and shuffling them along the pair dimension.
Finally, a supervised encoder was trained with MNIST digits
to serve as an oracle feature extractor. Once the encoders
were trained, all images were encoded to produce a different
embedded representation for each encoding configuration.
Network architectures and training protocols are detailed in
the Supplementary Material, available online, accompanying
this paper.

We explored different values for the method hyper-
parameters (e.g., code size and stride) using the synthetic
data, and evaluated the accuracy of each resulting CNN in
the independent test set. We analyzed how this perfor-
mance was affected by the size of the simulated lesion, i.e.,
the size of the tilted rectangle. Results are summarized in
Fig. 6. Overall, the contrastive encoder achieved the best per-
formance among the unsupervised techniques, very close to
that of the oracle, followed by the VAE and BiGAN
encoders. This trend was maintained when analyzing the
impact of the lesion size. We found out that the method’s
performance degraded quickly when the size of the target
lesion was smaller than 10 percent of the image size (see
Fig. 6a).

Additionally, the performance impact of the code size
used to compress the images was assessed (Fig. 6b). It was
observed that larger code sizes generally improved perfor-
mance, a result that was more evident for less accurate
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Fig. 6. Experimental results with synthetic data and image-level labels. Default hyper-parameter choice unless specified otherwise is: supervised
encoder, code size 16, stride 9 pixels, and usage of 100 percent of training data.

encoding methods like VAE and BiGAN. Subsequently, dif-
ferent stride values were tested using the oracle encoder
and a code size of 16: it was found that a smaller stride, pro-
ducing embedded images with larger spatial resolution,
resulted in hampered performance (Fig. 6d). Finally, the
impact of training data size in performance was analyzed
using the oracle encoder with code size 16 and stride 9
(Fig. 6¢). These results indicate that NIC required in the
order of thousands of images to perform well, a requisite
that is rarely met in real histopathological datasets.

In our last experiment, we applied Grad-CAM to visual-
ize the regions of the input images that were responsible for
the CNN prediction (see Fig. 7). Remarkably, the network
seemed to be able to discern between background noise and
the rectangular patterns. Upon visual inspection, the CNN
generally focused on the tilted rectangle, the one responsible
for the image-level label. We applied a simple general-pur-
pose post-processing routine to denoise the heatmaps and
reject spurious activity. We measured the Jaccard similarity
coefficient per image between the post-processed heatmap
and the ground truth maps, and obtained 0.612 on average
across test images.

4.3 Training of Encoders

Due to the computationally expensive nature of experiment-
ing with gigapixel WSIs, we only tested a subset of the
hyper-parameters that we explored with synthetic data. We

__- lAO
I <& :

- - 0.0

Fig. 7. Grad-CAM visualization applied to randomly selected synthetic
test images. Left images within the pairs correspond to the ground truth
masks (unseen by the model), and right ones to the saliency heatmaps.
Note that areas corresponding to the grey tilted rectangles (responsible
for the image-level labels) are highly salient with respect to the rest of
the image.

selected their values using the following heuristics. We
used P =128, a common patch size used in the Computa-
tional Pathology literature [28], with a stride of the same
size S = 128 to perform non-overlapping patch sampling.
We selected R = 400 to obtain crops corresponding to typi-
cal sizes of gigapixel WSIs (50,000 x 50,000 pixels) and
T =10 as done in the literature [27]. Finally, we selected
C =128 to perform our experiments using a single GPU.
Network architectures and training protocols are detailed in
the Supplementary Material, available online.

We trained the contrastive encoder with the contrastive
dataset, and the VAE and BiGAN models with the non-
contrastive dataset. Note that these datasets contained the
exact same image patches, ensuring a fair comparison
among encoders. No manual annotations were required in
this process. We trained a supervised baseline encoder for
breast tumor classification using the supervised-tumor dataset,
and a supervised baseline encoder for rectum tissue classifi-
cation using the supervised-tissue dataset.

It is widely recognized that color-based features can be
very informative in histopathology image analysis [34], [35],
[36]. Therefore, we included an additional encoding function
to capture color information from the raw input by averaging
the pixel intensity across spatial dimensions from input RGB
patches. It provided a simple yet effective baseline to com-
pare with more sophisticated encoding mechanisms.

This entire training process resulted in 6 encoding net-
works used in subsequent experiments: the mean-RGB base-
line, VAE encoder, contrastive encoder, BiGAN encoder,
supervised-tumor baseline, and supervised-tissue baseline.

4.4 Comparing Encoding Performance

Due to the lack of a common evaluation methodology for
unsupervised representation learning, we compared the
performance of these 6 encoders when used as fixed feature
extractors for related supervised classification tasks. We
defined two tasks: (1) discerning between tumor and non-
tumor patches on the supervised-tumor dataset (Task-1), and
(2) performing 9-class tissue classification on the supervised-
tissue dataset (Task-2). For each task, we trained an MLP on
top of each encoder with frozen weights and reported the
accuracy metric for each test set.

Results in Table 1 highlight several observations. First,
VAE, contrastive, and BiGAN performed better than the
lower baseline for both Task 1 and Task 2, stressing their
ability to describe complex patterns beyond simple features
related to color intensity. Second, the VAE encoder obtained
a higher performance than the contrastive one, particularly
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TABLE 1
Patch-Level Classification Performance (Accuracy)
Camelyon Rectum

Encoder Tumor Blood Fat Epith Lymph Mucus Muscle Necro Strom Tumor Global
VAE 0.799(0.004) 0.602(0.034) 0.735(0.154) 0.556(0.006) 0.811(0.018) 0.623(0.125) 0.823(0.014) 0.170(0.018) 0.768(0.008) 0.667(0.000) 0.639(0.010)
Contrastive 0.789(0.004) 0.304(0.018) 0.966(0.003) 0.502(0.005) 0.850(0.014) 0.240(0.011) 0.609(0.006) 0.140(0.010) 0.595(0.005) 0.476(0.014) 0.520(0.002)
BiGAN 0.806(0.022) 0.738(0.034) 0.879(0.059) 0.627(0.000) 0.899(0.008) 0.802(0.055) 0.796(0.002) 0.769(0.021) 0.601(0.066) 0.770(0.010) 0.765(0.013)
Mean-RGB  0.772(0.001)  0.736(0.000) 0.635(0.355) 0.202(0.049) 0.385(0.068) 0.720(0.270) 0.904(0.008) 0.030(0.028) 0.668(0.039) 0.252(0.000) 0.504(0.022)
Sup.-tumor  0.855(0.001) 0.578(0.090) 0.896(0.005) 0.400(0.007) 0.981(0.004) 0.868(0.021) 0.507(0.061) 0.494(0.049) 0.467(0.027) 0.618(0.019) 0.646(0.008)
Sup.-tissue  0.800(0.006) 0.835(0.003) 0.958(0.008) 0.832(0.029) 0.935(0.010) 0.937(0.026) 0.940(0.002) 0.906(0.005) 0.863(0.009) 0.934(0.002) 0.904(0.000)

Task-1 and Task-2 in the text refer to columns Camelyon-Tumor and Rectum-Global. Reporting mean and standard deviation using two random weight

initializations.

for Task 2. Third, the BiGAN encoder achieved the best per-
formance among all the unsupervised methods, with a rela-
tively large margin for the more complex Task 2 with
respect to the runner-up VAE model. Furthermore, the
BiGAN encoder obtained the best result for 5 out of 9 classes
in Task 2, and it achieved the first or second best result for 8
out of 9 classes among the unsupervised models. Remark-
ably, BiGAN succeeded at classifying patches from challeng-
ing tissue classes such as blood cells and necrotic tissue.

4.5 Predicting the Presence of Metastasis
at Image Level

In this experiment, we trained a CNN to perform binary
classification on compressed gigapixel WSIs from the Camel-
yonl6 cohort, identifying the presence of tumor metastasis
using image-level labels only. Due to the limited amount of
images in this cohort (340 WSIs), we divided the dataset
into four equal-sized partitions and performed four rounds
of cross-validation using two partitions for training, one for
validation and one for testing, rotating them in each round.
We trained a different CNN classifier for each encoder, i.e.,
mean-RGB, VAE, contrastive, BIGAN, and the upper baseline
supervised-tumor. We reported the area under the receiver
operating characteristic (AUC) on three evaluation sets.

The first evaluation set (All) concatenated all samples in
each of the hold-out partitions. Note that each hold-out par-
tition was evaluated by a different CNN that had never
seen the data. The second evaluation set (Test) was a subset
of All that matched the official test set of the Camelyonlé
Challenge, used for comparison with the public leader-
board. The third evaluation set (Macro) used the same WSIs
as in Test but considering only those that presented a macro
metastasis as positive labels, i.e., a tumor lesion larger than

TABLE 2

Predicting the Presence of Metastasis at WSI Level (AUC)
Encoder All Test Macro
VAE 0.661(0.007)  0.671(0.008)  0.634(0.003)
Contrastive 0.608(0.001)  0.651(0.016)  0.606(0.012)
BiGAN 0.725(0.009)  0.704(0.030)  0.720(0.010)
Mean-RGB 0.582(0.006)  0.578(0.016)  0.585(0.014)
Supervised-tumor  0.760(0.002) 0.771(0.002)  0.914(0.000)

Reporting mean and
initializations.

standard deviation using two random weight

2 mm. The macro labels were only available for the Camel-
yonlé6 test set. The Macro set was relevant to evaluate how
the method performed with lesions visible at low resolution.
Results in Table 2 demonstrate that the method presented
in this work is an effective technique for gigapixel image
analysis using image-level labels only. Regarding the All
evaluation set, BiIGAN achieved a remarkable performance
of 0.716 AUC, with a relative difference from the supervised
baseline of only 6 percent. The contrastive and VAE models
also surpassed the lower baseline, but obtained substantially
lower performance scores compared to BiGAN. Regarding
the Test set, the BiGAN encoder obtained a lower perfor-
mance of 0.674 AUC. In the Macro set, the performance gap
between the supervised baseline and the BiGAN encoder
increased substantially from 0.095 to 0.184. The state-of-the-
art in Camelyon16 obtained 0.9935 AUC in the Test set using
accurate pixel-level annotations to train their model.
Additionally, we analyzed the performance of our
method as a function of the lesion size in the All test set. The
lesion size is a measurement determined by pathologists
taking the distribution of tumor cell clusters within a WSI
into account. Since this annotation was not available for all
WSIs, we approximated it by computing the radius of an
hypothetical circle with an area composed of all pixels
annotated as tumor in each WSI. Results in Fig. 8 indicated

Impact of lesion size in performance
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Fig. 8. Experimental results with respect to lesion size in Camelyon16 all
test set using multiple encoders. Solid lines: average probability of sam-
ples with positive labels; dashed lines: average probability of samples
with negative labels (no lesion).
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Impact of hyper-parameters in performance
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Fig. 9. Hyper-parameter value analysis performed in Camelyon16 data
using the supervised encoder. Evaluated on unseen images from the
first data partition out of the 4-fold cross-validation sets. Left: varying
code size using a fix stride of 128 pixels; center: varying stride while
using a fix code size of 128 elements; and right: varying the number of
WSis used during training.

that our method’s performance degraded with small tumor
lesions across most encoders, in line with the results
obtained with synthetic data. Furthermore, we experi-
mented with different hyper-parameters such as code size,
stride, and training data size using the supervised encoder
(Fig. 9). We found that performance improvements might
be gained from careful hyper-parameter tuning of the code
size and stride parameters. Moreover, there seemed to be a
weak but positive correlation between model performance
and training data size.

4.6 Predicting Tumor Proliferation Speed at Image
Level

In this experiment, we trained a CNN to perform a regres-
sion task on compressed gigapixel WSIs from the TUPACI16
cohort, predicting the tumor proliferation speed based on
gene-expression profiling. We performed 4-fold cross-
validation as in the previous experiment, and reported the
Spearman correlation between the predicted and the true
scores of two evaluation sets.

The first evaluation set (All) concatenated all samples in
each of the hold-out partitions. The second evaluation set

Contrastive

Mean-RGB

Supervised Reference

TABLE 3
Predicting Tumor Proliferation Speed at WSI Level
(Spearman Corr.)

Encoder All Test
VAE 0.419(0.004) -
Contrastive 0.390(0.006) -
BiGAN 0.522(0.001) 0.558(0.001)
Mean-RGB 0.238(0.020) -

Supervised-tumor 0.427(0.014) -

Reporting mean and standard deviation using two random
weight initializations.

(Test) matched the test set used in the TUPAC16 Challenge,
whose ground truth is not public. Using the encoder that
obtained the highest performance, we evaluated each WSI
in Test four times using each of the CNNs trained during
cross-validation and submitted the average score per slide.
Our predictions were independently evaluated by the chal-
lenge organizers, ensuring a fair and independent compari-
son with the state of the art.

The results in Table 3 showed that BiGAN achieved the
highest performance with a 0.521 Spearman correlation.
Remarkably, this score was superior to that of any other unsu-
pervised or supervised encoder. In addition, we obtained a
score of 0.557 on the TUPAC16 Challenge test set, superior to
the state-of-the-art for image-level regression with a score of
0.516. Note that the first entry of the leaderboard used an
additional set of manual annotations of mitotic figures, thus it
cannot be compared with our setup.

4.7 Visualizing where the Information Is Located
We conducted a qualitative analysis on the trained CNNs to
locate the spatial position of visual cues relevant in predicting
the image-level labels. We applied the Grad-CAM algorithm
to the CNNs trained for both tasks at image level. For the
tumor metastasis prediction task, we compared the saliency
maps with fine-grained manual annotations. Figs. 10 and 11
include the results for a few samples; the results for the
remaining WSIs can be found in the Supplementary Material,
available online. Note that each WSI was evaluated by a CNN
that had not yet seen the image (hold-out partition).

Fig. 10 shows that the mean-RGB baseline model lacked
the ability to focus on specific tissue regions, suggesting

Reference,

b &

) -y~

Reference

Supervised Image

Supervised

Fig. 10. Grad-CAM visualization applied to several WSIs from Camelyon16. Top: the first five images represent the saliency maps for CNNs trained
with 5 different encoders, respectively. The sixth and seventh images are the reference standard (manual annotations) and RGB thumbnail of the
WSI, respectively. Dark blue represents low saliency, whereas yellow indicates high saliency. Bottom-left: failure case where the BiIGAN model failed
to recognize the tumor area. Bottom-right: failure case where the BiIGAN model attended to a region with no tumor cells.
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Mean-RGB Contrastive

Supervised Image

Fig. 11. Grad-CAM visualization applied to a sample case from TUPAC16. The first five images represent the saliency maps for CNNs trained with
five different encoders, respectively. The last image is an RGB thumbnail of the WSI. Dark blue represents low saliency, whereas yellow indicates

high saliency.

that it was unable to learn discriminative features from
image-level labels. The VAE and contrastive models exhib-
ited a suboptimal behavior, scattering attention all over the
image. Remarkably, the BiGAN model seemed to focus on
tumor regions only, discarding empty areas, fatty tissue,
and healthy dense tissue. It showed a strong discriminative
power to discern between tumor and non-tumor regions,
even though the CNN had access to image-level labels only.
For completeness, we also included the supervised-tumor
baseline that also exhibited a focus on tumor regions. Nev-
ertheless, these heatmaps are often difficult to interpret and
cannot be used for a more quantitative analysis. Failure
cases can be seen in the bottom part of Fig. 10, where the
CNN highlighted non-tumorous regions.

Regarding Fig. 11, a similar trend to the one found in the
previous task was observed for all encoders: the BIGAN model
focused on very specific regions of the WSIs that seemed
compatible with active tumor regions. The supervised-tumor
baseline focused on irrelevant areas, in line with its poor per-
formance for this task.

5 DiIscussSION

Our experimental results support the hypothesis that visual
cues associated with weak image-level labels can be exploited
by our method, integrating information from global structure
and local high-resolution visual cues. Furthermore, we have
shown that this methodology is flexible and completely label-
agnostic, delivering relevant results for both classification
and regression tasks in synthetic as well as histopathological
data. It emerges as a promising strategy to tackle the analysis
of more challenging image-level labels that are closely related
to patient outcome, e.g., overall survival and recurrence-free
survival. Gigapixel NIC paves the way for leveraging existing
computer vision algorithms that could not be applied in the
gigapixel domain until now, such as image captioning (useful
to generate written clinical reports), visual question answer-
ing, image retrieval (to find similar pathologies), anomaly
detection, and generative modeling [37], [38], [39], [40], [41].
A key assumption in our method was that high-resolution
image patches could be represented by low-dimensional
highly compressed embedding vectors. We analyzed several
unsupervised strategies to achieve such a compression and
found that the BiGAN encoder, trained using adversarial fea-
ture learning, was superior to all other methods across all
experiments with histopathological data. We believe that this
relative improvement with respect to the VAE and contrastive
methods is explained by intrinsic algorithmic differences
among the methods. In particular, the VAE model relies on

minimizing the MSE objective, which is a unimodal function
that fails to capture high-level semantics; it focuses on recon-
structing low-level pixel information instead, wasting embed-
ding capacity. On the other hand, the contrastive encoder uses
the embedding capacity more efficiently, but its performance
is driven by the design of the hand-engineered contrastive
task. Remarkably, the BiGAN model learns an encoder
that fully automatically inverts a complex mapping between
the latent space and the image space. By doing so, the
encoder benefits from all the high-level features and seman-
tics already discovered by the generator, producing very
effective discriminative embedding vectors. Furthermore,
BiGAN achieved the best classification accuracy on the
challenging blood, mucus, and necrotic tissue classes that
rarely appear in the Camelyonl6 and TUPAC16 WSIs. We
hypothesize that the adversarial method can model these rare
data modes more effectively than the contrastive or VAE
approaches. Nevertheless, we believe that the choice of
encoder may be data-dependent, since the contrastive encoder
outperformed the other approaches in the synthetic dataset.

We trained a CNN to predict the breast tumor prolifera-
tion speed based on gene-expression profiling, a label asso-
ciated with unknown visual cues. Our method succeeded in
finding and exploiting these patterns in order to predict
expected tumor proliferation speed, surpassing the current
state-of-the-art for image-level based methods. This shows
that our method constitutes an effective solution to deal
with gigapixel image-level labels with unknown associated
visual cues. Moreover, our method could be used in future
works to effectively mine datasets with thousands of giga-
pixel images [11]; other automatically generated labels from
immunohistochemistry, genomics, or proteomics can be tar-
geted, and visual patterns beyond the knowledge of human
pathologists may be discovered.

For the first time, the regions of a gigapixel image that a
trained CNN attends to when predicting image-level labels
were visualized, and the effect of different encoding meth-
ods was compared. We discovered that only the CNNs
trained with images compressed with the BiGAN encoder
and the supervised-tumor baseline were able to attend to
regions of the image where tumor cells were present. The
fact that the BIGAN model simultaneously learned to delimit
metastatic lesions and identify tumor features within the
patch embeddings validates our hypothesis that CNNs are
an effective method for analyzing gigapixel images, i.e., since
they can exploit both global and local context.

We targeted the presence of tumor metastasis in breast
lymph nodes and showed that the BiGAN setup performed
similarly to the supervised baseline. However, our best-
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performing algorithm was still inferior to that of the Camel-
yonl6 leadingboard (0.9935 AUC using accurate pixel-level
annotations). This performance gap is likely due to two fac-
tors. First, the majority of the images marked as positive
contain tumor lesions comprised of only a few tumor cells
(i.e., micro-metastasis), becoming almost undetectable with
the compression setup tested in this work (see Fig. 8). Sec-
ond, the lack of training data (only a few hundred training
images) may lead the CNN into the overfitting regime.

We acknowledge several limitations of our method. For one,
it requires a substantial amount of I/O throughput and storage
due to the need to write compressed WSI representations to
disk before training, and repetitively read them to assemble
mini-batches during training. This computational burden pre-
vented us from performing a wide hyper-parameter value
search, which may have resulted in a suboptimal parameter
selection. Second, it was also observed that the method’s per-
formance was proportional to lesion size. In particular, it strug-
gled to detect micro-metastasis in Camelyon16 data, i.e., tumor
lesions smaller than 2 mm, limiting the applicability of NIC to
tasks with large lesions.

This method can be extended in multiple ways. More
sophisticated encoders may improve the low-dimensional
representation of the image patches [16], [42]. Incorporating
attention mechanisms may make it easier for the CNN to
attend to relevant regions for the image-level labels [43],
improving the detection of small lesions. Finally, gradient
checkpointing [44] could be used to backpropagate the
training signal from the image-level labels towards the
encoder weights.

6 CONCLUSION

Our method for gigapixel neural image compression was
able to distill relevant information into compact image rep-
resentations. The fact that a CNN could be trained using
these alternative learned representations opens opportuni-
ties to use other methods: gigapixel images are no longer
considered as low-level pixel arrays, but operate in a higher
level of abstraction. In this work, we showed examples of
classification, regression, and visualization performed in a
latent space learned by a neural network. These positive
results enable performing more advanced gigapixel applica-
tions in the latent space, such as data augmentation, genera-
tive modeling, content retrieval, anomaly detection, and
image captioning.
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