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Abstract
The 2019 manuscript by the Special Interest Group on Digital Pathology and Image Analysis of the Society of Toxicologic pathology
suggested that a synergism between artificial intelligence (AI) and machine learning (ML) technologies and digital toxicologic
pathology would improve the daily workflow and future impact of toxicologic pathologists globally. Now 2 years later, the authors
of this review consider whether, in their opinion, there is any evidence that supports that thesis. Specifically, we consider the
opportunities and challenges for applying ML (the study of computer algorithms that are able to learn from example data and
extrapolate the learned information to unseen data) algorithms in toxicologic pathology and how regulatory bodies are navigating
this rapidly evolving field. Although we see similarities with the “Last Mile” metaphor, the weight of evidence suggests that tox-
icologic pathologists should approach ML with an equal dose of skepticism and enthusiasm. There are increasing opportunities for
impact in our field that leave the authors cautiously excited and optimistic. Toxicologic pathologists have the opportunity to
critically evaluate ML applications with a “call-to-arms” mentality. Why should we be late adopters? There is ample evidence to
encourage engagement, growth, and leadership in this field.
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The “Last Mile” metaphor was first used by the early

land-based telecommunications industry1 to describe the dif-

ficulty of connecting end-user homes and businesses to the

main telecommunication network. One of the main barriers

was the cost of installing and maintaining this infrastructure,

because it could only be amortized over 1 subscriber, com-

pared to many customers in the main trunks of the network.

Other challenges of “Last Mile” delivery included ensuring

transparency with the customer; following guidelines from

local, state, and federal regulatory agencies; increasing effi-

ciency of the workflow; and improving infrastructure support-

ing the network. Interestingly, these 4 challenges overlap with

common ones we currently face as toxicologic pathologists

when confronted with the notion of applying machine learn-

ing (ML)2 in the digital histopathology space. In this review,

we highlight both published medical pathology examples and

our personal experiences to date with ML applications in

toxicologic pathology, which indicate that we are starting to

overcome some of the “Last Mile” challenges. As most of us

work in a highly regulated environment and are at least cau-

tious about implementing new approaches or technology

because of the perceived burden of qualification or Good

Laboratory Practice (GLP) validation, we also share personal

thoughts on early qualification and validation efforts and the

challenges therein.

In our opinion, and as pointed to in the 2019 Special Interest

Group manuscript,3 a continued rapid growth in each of the 3

key ingredients of ML: (1) massive computer power, (2) big

data and (3) inherent knowledge, has fueled accelerated use of

artificial intelligence (AI) and ML in almost all areas of sci-

ence. More and larger partnerships between AI scientists and

medical specialties are being established, and the inference

(causal and counterfactual) and probability (prediction) output
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of machines are married with the high-level decision-making

and reasoning of humans at an increasing frequency.

Yet we need to be cautious of the hype surrounding all

things AI. In its June 2020 edition, the Technology Quarterly

of the journal The Economist4 states that we should be taking a

“Reality Check” and consider that there are very real limita-

tions to AI, naive and fallible. Is AI harder to implement than

expected? Is the AI promise still greater than the science? Are

the costs and IT resources prohibitive to many? We have expe-

rienced the so-called “AI Winters” (a period of reduced fund-

ing and interest in AI research), The Economist asks is an “AI

Autumn” now coming? We also acknowledge, as did the

authors of the Special Interest Group publication in 2019, that

strong/general AI aiming at mimicking human capabilities

remains a distant but very important philosophical idea, and

that in 2021, we are still creating artificial “idiot savants”—

narrow AI applications that can excel at well-bounded tasks,

but make serious mistakes if faced with unexpected input.

Computers do not exhibit true intelligence since they are incap-

able of thought; however, they can “learn” from data and

improve their performance through training on relevant exam-

ples provided by experts, such as toxicologic pathologists.

Based on the authors’ experiences of developing and apply-

ing ML solutions to digital histopathology data, as was the case

for ML-based image analysis and stereology solutions, we feel

that general adoption of ML is achievable and the potential

return on investment favorable. However, ML is not a panacea

and, like all scientific methods, should be applied when its use

adds clear scientific or operational value. We currently see

several application areas and opportunities for ML growth in

digital toxicologic pathology: (1) abnormality detection, (2)

decision support, (3) tissue lesion screening, (4) diagnostic

scoring simplification, (5) counting automation, and (6) object

quantification. Examples of these are shown in Figure 1 and

described in the following paragraphs.

1. Abnormality detection. Toxicologic pathologists evalu-

ate as many as 40 tissues per animal in a toxicology

study, and a majority of these tissues are normal or

display common spontaneous lesions. Using ML algo-

rithms could help pathologists efficiently identify

potential target organs and the dose response within a

study. The ML algorithms have been shown to accu-

rately and quickly detect morphologic changes in the

layers of the retina,8 for example.

2. Decision support. Toxicologic pathologists determine

the diagnostic terminology, thresholds, and scoring

paradigm for every histological finding noted in a

study. Maintaining consistency within and across stud-

ies can be difficult. The ML algorithms have the poten-

tial to assist a pathologist in diagnostic criteria,

thresholds, and scoring criteria. Examples include sper-

matogenic staging,9 evaluating the number and pheno-

type of cells in bone marrow histology5 (Figure 1B),

and quantification of immunohistochemical markers.10

The ML applications could also support the technical

staff creating the digital whole-slide images (WSI). As

is the case for glass slides, the quality control of WSI

is an important best practice but is time-consuming

and manual. The ML-based methods are being devel-

oped to automate digital slide quality control review

and could increase the efficiency of this workflow

dramatically.11,12

3. Lesion screening. ML algorithms can support the tar-

geted evaluation of specific diagnostic end points such

as hepatocellular hypertrophy,13 TgRasH2 model pro-

liferative lesions6 (Figure 1C), and rat cardiomyopa-

thy.14 These types of ML algorithms could benefit

both early discovery (ie, lead optimization) and screen-

ing toxicology efforts and later stage evaluations, the

latter when a specific finding is expected. For screening

and lead optimization studies, scientists are iterating on

a series of potential compounds where data speed and

consistency are paramount. Microscopic end points are

usually rate limiting in these studies and accompany

other safety and efficacy biomarkers. The ML algo-

rithms that are tuned to a specific finding have the

potential to facilitate the pathologist’s evaluation of

these studies. As test agents progress in development,

a pattern of microscopic findings often emerges, and

ML algorithms could be developed that screen for these

expected changes and provide a pathologist a rapid pic-

ture of the presence, dose response, and progression of

the expected microscopic change.

4. Scoring simplification. Efficacy models scored by

pathologists often have complicated scoring systems

that are based on combining several qualitative or semi-

quantitative scores into a summary score. The ML algo-

rithms could be used to both simplify and improve

quantification of the scoring in these types of models

and were used for colitis in a mouse model7 (Figure

1D). Scoring simplification also has possible applica-

tions in general toxicology studies. Certain tissue

responses can be complicated (eg, cardiomyopathy,

nephropathy, nasal cavity, testicular and injection site

changes in multiple species), requiring a pathologist to

record and score several diagnoses.14 Designing ML

algorithms that provide support to the pathologist to

simplify these evaluations could be beneficial.

5. Counting automation. Toxicologic pathologists will

often engage in manual, counting activities as part of

either discovery or toxicology studies. Example where

ML algorithms have been used to automate these pro-

cesses based on our own experience as well as pub-

lished reports include counting mitoses,15 ovarian

corpora lutea or follicles,16 apoptotic figures, AAV cap-

sids, and specific inflammatory cell infiltrates (numbers

of specific types of leukocytes). Specifically for using

ML algorithms to identify and count ovarian follicles

(Figure 1E) and mast cells and leukocytes (unpublished

data), we have found both reproducibility and speed to

be improved considerably using ML.
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Figure 1. (A-F) Potential machine learning applications in toxicologic pathology. A, Abnormality detection—Colored masks highlight abnormal
regions (red) of the rat anterior nasal cavity (Courtesy of Sam Neal). B, Decision support—Bone marrow masks mark hematopoietic cells in
cynomolgus monkey bone marrow, allowing for enumeration in support of qualitative scoring.5 C, Lesion screening—Machine learning (ML) masks
identify proliferative lesions in TgRasH2 mice (blue¼ hyperplasia; red¼ adenoma).6 D, Scoring simplification—ML segments mucosa (red and orange)
and muscle/serosa (green) and measures mucosal inflammation area (red) and unaltered mucosa (orange) in murine efficacy model.7 E, Counting
automation—An ML-based object counter quantifying different types of ovarian follicles (pink¼ antral; purple¼ primary) (Courtesy of Lauren Prince).
F, Object quantification—ML-based segmentation of myelin for calculations of axonal-G ratio analysis (Courtesy of Michael Staup).
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6. Object measurements and quantification. As was the

case for counting, certain discovery and toxicology

study designs require quantitative measurements that

are difficult and/or time-consuming to complete manu-

ally by the pathologist. The ML algorithms that can

standardize and automate these quantitative changes

would be beneficial to the pathology workflow. Exam-

ples include those described in this digital pathology

special issue such as mammary gland epithelial prolif-

eration,10 hepatocellular hypertrophy,13 and, in our own

experience, an automated method for measuring nerve

fiber axonal-G ratio (Figure 1F).

The emergence of the Clinical Laboratory Improvement

Amendments qualified and validated AI applications in medi-

cal imaging and clinical diagnostic pathology has been moti-

vated by the need to improve timelines and efficiency in

clinical care.17,18 Although our previous experience as well

as the abovementioned examples suggest potential advantages

for ML in driving efficiency and reproducibility in the digital

toxicologic pathology workflow, we need to be careful and

deliberate when considering ML. The ML needs to address

well-defined, focused end points such as identification and

characterization of specific changes in animal efficacy and

safety models.6 In our experience, the ML algorithms that

appear most helpful in the workflow for a toxicological

pathologic study evaluation are those that provide an

automatic discrimination of normal and abnormal tissues

(“abnormality detection”). Nonclinical safety studies present

the pathologist with complex, multidomain data that drive

the pathologist to make considerations on the safety of the

investigated compound. Understanding and systematizing this

complex series of mental queries and using it as a basis for

training a computer to complete specific tasks, in an iterative

manner, may bring us closer to developing ML tools for

abnormality detection. This could significantly accelerate the

pathologist’s review of normal and abnormal tissues and

increase the transparency of the process based on the

algorithm’s output.

The development of ML algorithm requires considerable

effort and quality control and qualification procedures. Once

the intended use for the algorithm has been clearly defined, the

appropriate training data must be collected and collated in

order to build the algorithm. Each tissue from the different

species will require a well-curated and heterogenous collection

of WSI. Pathologists are best suited to guide the data set selec-

tion in that their review of the WSI has much greater depth than

key term searches of databases. Separate data sets should be

used to teach, test, qualify, and validate an algorithm. The

European Innovative Medicines Initiative “Big Picture” proj-

ect19 is poised to be a novel source of large data sets and may be

a resource for the validation of algorithms, allowing their use in

the nonclinical environment when tied to appropriate regula-

tory frameworks.

Although we believe the ML examples described earlier

have great potential to impact our field, there are some inherent

challenges in applying ML to digital histopathology. Three in

particular include (1) classification across magnifications: For

many classification tasks, the context needed by the computer

to accurately identify a specific class is limited by training at a

single magnification6; (2) grading uncertainty: The classes of

some microscopic changes (eg, lung hyperplasia vs adenoma)

differ much more subtly than other classes, causing annotation

and classification uncertainty6; and (3) rare event measure-

ments in toxicologic pathology; some classes may be rare, such

that obtaining adequate amounts of training data for such

classes is challenging.6

To address the first challenge (classification across magni-

fications): Multimagnification analysis methods that resemble

how pathologists analyze histologic slides using microscopes

have already been developed and implemented in breast cancer

diagnostics20 and are being developed in the nonclinical

space.21 This multimaginfication approach combines the

patch-level information with the information gathered from the

context of larger fields of view at lower magnification and have

shown improved performance in comparison to single-

magnification classifiers.21 In the TgRasH2 mouse model

work, stomach papillomas and hyperplasia were not well dif-

ferentiated at the�10 magnification, and when a lower training

magnification was employed (�2.5), the additional context

resulted in high performance (F1 scores).6

For the second challenge (grading uncertainty), ML algo-

rithms could help standardize our individual grading and

thresholds across a variety of studies or even across pathology

groups and laboratories. The guidance an ML algorithm pro-

vides on grading or thresholds is based on probability, and

although the algorithm may indicate a strong likelihood for a

certain class (a specific grade or diagnosis), this prediction can

still be highly uncertain, mislead the pathologist, and result in

false-positive or false-negative predictions. As pathologists, we

will not see the numbers behind the prediction, and this lack of

transparency is often referred to as the “black box” nature of

deep neural networks. Although beyond the scope of this mini-

review, techniques are starting to be adopted in computational

pathology that will help the pathologist understand the source

and amount of uncertainty related to a class prediction.22

The last challenge (rare events) is especially relevant for a

toxicologic pathologist. Is it possible to design a computer

algorithm that could assist a pathologist in identifying a rare

novel or subtle lesion? The so-called “out-of-distribution-

detection” methodology is being developed that produces an

ML model that has an internal distribution of normal and back-

ground lesions (ie, a “reference range”), both which account for

most of what is observed by a toxicologic pathologist. Using

this ML-based model built-in tissue-reference range, the algo-

rithm could find the changes that have a low likelihood of

belonging to the distribution (ie, “outliers”); hence, they are

presented to the pathologist as potential important changes.

Several recent publications have described the application of

these methods to WSI, for example, allowing a breast cancer

metastasis detection system to flag lymphomas, even though it

was not originally trained to recognize them.23 We think this is
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a field that will grow in importance as we are able to classify

common disease patterns more reliably, but keep struggling

with rare entities due to limited data sets.

Another area that is impacting the “Last Mile” of toxicolo-

gic pathology digitalization is the rapid evolution of both

supervised and unsupervised ML deep learning (DL) tech-

niques (part of a broader family of ML methods based on

artificial neural networks with representation learning, which

can be supervised, semisupervised, or unsupervised) in digital

tissue image analysis.24 Due to the nature of toxicologic pathol-

ogy, we believe that DL applications optimized for sensitivity

are critical so as to not miss any of the affected samples. How-

ever, the specificity of these tools cannot be neglected, as iden-

tification of too many “false alarms” decreases the toxicologic

pathologist’s work efficiency and potentially defeats the pur-

pose of using the tool itself. In the unsupervised DL

approaches, data points with similar features are grouped (clas-

sified) together without any supervision (examples) provided

by the experts. The danger associated with this approach in ML

is that classes identified may not correspond to classes contain-

ing relevant pathological or biological information. There is

also a risk of identifying classes based on uninterpretable arti-

facts. This is why interpretation and later labeling of the result-

ing data classes by pathologists and life scientists is crucial. A

discipline which addresses this problem is explainable AI

(XAI). Explainable AI produces a summary to the pathologist

of the AI-based criteria for classification without sacrificing AI

performance.25,26 In addition to predicting the class for the

pathologist, the computer provides the list of attributes (eg,

color, size) that support the prediction. The XAI approaches

are important when the decisions produced by AI models are

applied to disciplines such as precision medicine or in identi-

fication of adverse health effects in the drug development and

safety assessment process. Recent European regulations

require this type of AI transparency be included in the global

data protection regulations.27

Since the publication of the 2019 Special Interest Group

manuscript,3 we still perceive that qualification and GLP vali-

dation continues as a barrier in ML implementation for digital

toxicologic pathology even though ML approaches supporting

image analysis and stereology have been a part of our workflow

for several years. In January 2020, the Food and Drug Admin-

istration published a white paper entitled “Artificial intelli-

gence and machine learning in software as a medical

device.”28 Although focused on clinical applications, the white

paper has links to several important guidances, a regulatory

framework discussion paper, and public workshop minutes that

demonstrate the strong interest our regulatory partners have in

this area. We need not fear the qualification and validation

process. There is a systematic approach that we can take as

an industry that insures these technologies are implemented

responsibly and effectively. The IMI BigPicture19 repository

may be a greater resource of images for qualification and vali-

dation, which could significantly accelerate these processes.

In conclusion, although the “Last Mile” challenge of ML

application in digital toxicologic pathology is real and should

not be underestimated, the authors believe that ML algorithms

have several applications and can be implemented safely in our

regulated environment. Although perceptions of low/dubious

return on investment still linger and limit some from taking a

first step toward digital toxicologic pathology, more and more

affordable tools are becoming available, and we feel that the

potential benefits justify the initial investments. Good science

should always demand a level of skepticism regarding large

claims and rapid changes. Although we should move with

appropriate caution, it is our opinion that we should not hesi-

tate. Building ever stronger relationships within the computa-

tional pathology community and with the health authorities

will help usher in an exciting new dawn for quantitative, min-

able, and predictive histopathology data for toxicologic

pathology.
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