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The promise of digital pathology?

Scanners Storage Computers
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The promise of digital pathology?

Multiple focal points Large slides Oil immersion
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The promise of digital pathology?

Reduction of cost

Improvement of
diagnostics

Radboudumc






Computational Pathology

Computational
Pathology

Radboudumc



Machine learning
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ML: a bit of history
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How to build an ML system?

Normal lymph node Breast cancer metastasis
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Examples

Features

Color intesitiy

Number of cells

How to build an ML system?

Classification

Color intesitiy

Number of cells
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How to build an ML system?
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How to build an ML system?
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Practical applications of computation pathology

Detection of . o
Automatic mitotic

counts

metastases in lymph
nodes
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Detection of metastases in lymph nodes
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Detection of metastases in lymph nodes
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Breast cancer metastasis detection
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Data

CWZ (Nijmegen) 200
LabPON (Hengelo) 200
Rijnstate (Arnhem) 200
Radboudumc (Nijmegen) 439
UMCU (Utrecht) 350
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Why challenges?

Great way to collect and compare solutions for a problem
Fair comparison of algorithms

e Same evaluation metric
e Same ground truth definition
e Same training and test datasets

Radboudumc



S

Harvard Medical School (BIDMC) and Massachusetts Institute of Technology (CSAIL), USA 0.9250 2@
02 ExB Research and Development co., Germany 0.9173 @ 20
03 Independent participant, Germany 0.8680 LI2g
04 Health Sciences Middle East Technical University, Turkey 0.8669 2@
05 NLP LOGIX co., USA 0.8332 L2g
06 University of Toronto, Electrical and Computer Engineering, Canada 0.8181 LJ2g
07 The Warwick-QU Team, United Kingdom 0.7999 L2g
08 Radboud University Medical Center, Diagnostic Image Analysis Group, Netherlands 0.7828 LI2g
09 HTW-BERLIN, Germany 0.7717 A2

10 University of Toronto, Electrical and Computer Engineering, Canada 0.7666 2@



Comparing to pathologists

107 - —_— 107
] 0.91
0.8 - ;
l 0.81
> 0.6 : >
2 | s
'g | —— HMS & MIT (Il 2 0.71
@ 044 m— HMS & MGH (111) w
HMS & MGH (1) 0.6
= CULab (Ill)
0.2 1 HMS & MIT (1) -
. 0.51
¢  Pathologist WTC
@  Pathologist
0.0 - 0.4-
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0 27 2 2% 24 23 22
False positive rate

Ehteshami et al. JAMA. 2017
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Implemented in clinical practice

1680 | 10 1ano | oo

1 micrometastasis misclassified as ITC
5 ITCs missed (only visible on IHC in retrospect)

1 micrometastasis missed
65% less time needed

Microscope

Bult et al. In preparation Radboudumc



Practical applications of computation pathology

Detection of . o
Automatic mitotic

counts

metastases in lymph
nodes
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Automatic mitotic counts
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Automatic mitotic counts

D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber.
“Mitosis detection in breast cancer histology images with deep neural
networks,” in International Conference on Medical Image Computing

. and Computer-assisted Intervention.  Springer, 2013, pp. 411-418.

Assessment of Mitosis Detection Algorithms 2013
AMIDAL | MICCAT Grand Challenge M. Veta, P. J. van Diest. M. Jiwa, S. Al-Janabi, and J. P. Pluim,
“Mitosis counting in breast cancer: Object-level interobserver agreement
and comparison to an automatic method,” PloS one, vol. 11, no. 8, p.
e0161286, 2016.

E. Zerhouni, D. Lanyi, M. Viana, and M. Gabrani, “Wide residual
networks for mitosis detection,” in Biomedical Imaging (ISBI 2017),

2017 IEEE 14th International Sy i . IEEE, 2017, pp. 924—
Tumor Proliferation Assessment Challenge 2016 028 riternationat symposium on ’ P9
TUPACHS | MICGAT Grand Chaliemge .

K. Paeng. S. Hwang. S. Park. M. Kim. and S. Kim. “A unified framework
for tumor proliferation score prediction in breast histopathology,” arXiv
preprint arXiv:1612.07180, 2016.
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Challenge 1: Reference standard
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Inference
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ground truth mitotic figures
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Challenge 2: staining differences

TNBC dataset
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Solution 2: Data augmentation

Color Elastic - _
Transform Deformation  Scaling  Enhancement Blurming Noise Combination

llh;hh.
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Tellez et al. IEEE Transactions on Medical Imaging. (2018) Radboudumc



Mitotic detections Mitosis density




Direct visibility of hotspots







Challenge 2: staining differences

TNBC dataset
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‘Traditional’ stain normalization

® Only modifies color information
® \ery time-consuming algorithm
e Dependent on presence of nuclei

e Parameter tweaking for new datasets

Bejnordi et al. IEEE Trans Med Imag (2016) Radboudumc



Stain normalization using cycleGANs

Dx Dy |z Y I~ & Y~ A X (]

i .,-'"' i . {ij‘clE—DPanbtm‘.lL‘}"
¢ cycle-consistency | _> C \r"- e
E loss ) O | ___‘,«.

de Bel et al. MIDL (2019) Radboudumc



Stain normalization using cycleGANs
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Stain normalization using cycleGANs

no conversion no conversion conversion conversion nd truth
no augmentation augmentation no augmentation augmentation g

i d

&

Experiment | Dice coefficient AMC

Augmentations  Stain transformed | Mean Std Min Max

X 0.36 0.21 0.09 0.65
0.85 0.06 0.69 0.91
0.78 0.08 0.65 0.87
0.85 0.05 0.72 0.91

AN N

X
v
v
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Practical applications of computation pathology

Detection of o .
Automatic mitotic Tumor/stroma ratio

counts quantification

metastases in lymph
nodes
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Tumor/stroma ratio quantification

Annals of Oncology

Annals of Oncology 24: 179-185, 2013
doi:10.1093/annonc/mds246
Published online 2 August 2012

The proportion of tumor-stroma as a strong
prognosticator for stage Il and lll colon cancer patients:
validation in the VICTOR trial

A. Huijbers', R. A. E. M. Tollenaar’, G. W. v Pelt!, E. C. M. Zeestraten', S. Dutton3,
C. C. McConkey®, E. Domingo’, V. T. H. B. M. Smit2, R. Midgley*, B. F. Warren8, E. C. Johnstone?,
D. J. Kerr® & W. E. Mesker'™

Departments of Surgery; “Pathology, Leiden University Medical Center (LUMC), Leiden, The Netherlands; *Centre for Statistics in Medicine, University of Oxford, Oxford;
Departments of *Oncology; *Clinical Pharmacology, University of Oxford, Oxford; SClinical Trials Unit, University of Warwick, Coventry; “Molecular and Population
Genetics, Wellcome Trust Center for Human Genetics, Oxford,; BDeparImenr of Pathology, John Radclifie Hospital, Headlington, Oxford, UK

Received 28 February 2012; revised 15 June 2012; accepted 18 June 2012
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Tumor/stroma ratio quantification

125 patients with rectal carcinoma
* Stage I-lll
e At least five year follow-up
No neo-adjuvant therapy

Radboudumc



Tumor/stroma ratio quantification

TSR, = 30, TSR, = 20

i

TSR, = 50, TSR, = 40

TSR, = 40, TSR, = 40 TSR, = 70, TSR, = 50
'Y 74

= Other tissue*
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Tumor/stroma ratio quantification

Crosstab: Observer 1 versus Observer 2
Observer 2
K=0.548
Stroma-low Stroma-high Total
Stroma-low 75 3 83
Observer1l | Stroma-high 16 26 42
Total 91 34 125
Crosstab: TSR-Visual (consensus) versus TSR-auto
TSR-auto
Kk=0.518
Stroma-low Stroma-high Total
Stroma-low 60 27 87
TSR-visual [ e high 3 35 38
(consensus)
Total 63 62 125

Radboudumc



Tumor/stroma ratio quantification

‘_;’ 1.0 Overall pooled DSS ‘_;‘E 1.0 Overall pooled DSS
= TSR-visual . TSR-auto
S 3
w — —
o 08 S 0.8
IS S Stroma-low (n=63)
L 0.6- Stroma-low (n=87) L 0.6
@] @
8 o 2
§ a S 0'4_ Stroma-high (n=62)
2 Stroma-high (n=38) 2
© 0.2 © 0.2
s P =0.025 5
=0. P =0.003
O g.0- O 0.0-
> r r> r 1 rTr Tt > r r> r 1 rTr Tt
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Years after surgery Years after surgery
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Tumor/stroma ratio quantification

Table 5. Uni- and multivariate Cox regression analysis for disease-specific survival.
Univariate analysis

Multivariate analysis

Visual Auto

HR (95% Cl) P-val. HR (95% Cl) P-val. HR (95% Cl) P-val.
Age 1.01 (0.98-1.04) 0.376
Gender 0.85 (0.45-1.60) 0.604
T-stage 2.42 (1.47-3.99) 0.001 1.97 (1.16-3.34) 0.012 2.05 (1.24-3.38) 0.005
N-stage 2.16 (1.49-3.14) 0.0001 2.06 (1.13-3.75) 0.018 2.12 (1.17-3.84) 0.014
Surgical procedure 1.48 (0.94-2.31) 0.090
Tumour grade 2.96 (1.42-6.17) 0.004 2.40 (1.05-5.48) 0.038 2.23 (0.99-5.00) 0.052
Adj. chemoth. 1.17 (0.28-4.82) 0.831
Adj. radioth. 2.56 (1.41-4.63) 0.002 0.72(0.27-1.88) 0.496 0.68 (0.27-1.72) 0.417
TSR-visual 1.96 (1.08-3.58) 0.027 2.07 (1.09-3.93) 0.026
TSR-auto 2.57 (1.36-4.86) 0.004 2.75(1.44-5.27) 0.002 |

Radboudumc

Geessink et al. Cellular Oncology (2019).
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Practical applications of computation pathology

Automatic mitotic Tumor/stroma ratio Identification of tumor

counts quantification associated stroma
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Prognosis of in-situ lesions

S :
¢ P, C/

Normal duct Ductal Atypical DCIS Invasive ductal
hyperplasia hyperplasia carcinoma
Basement membrane Myoepithelium Ductal epithelium © RnCeus.com

Diagnosis Entire dataset Training dataset Testing dataset

# Patient # WSI % # Patient # WSI % # Patient # WSI %

Benign 321 675 36.4 209 437 379 112 238 339
Proliferative 312 937 354 209 608 379 103 329 323
Proliferative with atypia 57 212 6.5 42 171 76 15 41 4.5

Ductal carcinoma in-situ 58 222 6.6 - - - 58 222 17.6
Lobular carcinoma in-situ 10 29 .7 21 1.2 3 8 0.9

Invasive breast cancer 124 312 14.0 85 222 154 39 90 11.8
Total 882 2387 100 552 1459 100 330 928 100

Radboudumc



Tumor stroma identification pipeline

Tumor-associated stroma

input patch

featurs maps

input WSI

CNN | - tissue component classifier

W epithelium
O stroma
0O fat

i ="y
| Tt

-

" feature maps

input patch

feature maps

classification map

CNN II - stroma classifier

probability map for
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Tumor-associated stroma

1.0

° o o
» o o

Patient-level average tumor-
stroma probabilities
o
o

== Slide with only DCIS

Ehteshami et al. Modern Pathology (2018)

0.0 1 2 3
grade
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Practical applications of computation pathology

Tumor/stroma ratio Identification of tumor Prediction of gene

quantification associated stroma expression

Radboudumc



Prediction of gene expression

Mean RNA expression 11
proliferation-associated genes

Score: 0.567

Radboudumc



Neural compression

it g Encoder
v b -

g N
Gigapixel image Patch Embedding Compressed image

[MxNx3] [PxPx3] [1x1xC] T [M/SxN/SxC]

Tellez et al. In rebuttal Radboudumc



Prediction of gene expression

Lunit (mitosis counting) 0.617
Radboud (neural compression) 0.557
Radboud (regular CNN) 0.516
ContextVision 0.503

Radboudumc



Explainability of ML systems

Supervised Reference

3 v 9

®

Radboudumc



Practical applications of computation pathology

|dentification of tumor Prediction of gene Gleason grading of

associated stroma expression prostate cancer

Radboudumc



Tumor Training set
150 slides
83 normal
67 cancer
Test set
75 slides
30 normal
Normal 45 cancer
Results
AUC of 0.99...

Litjens et al. Scientific Reports (2016) Radboudumc



Prostate cancer: epithelium segmentation

Bulten et al. Scientific Reports (2019) Radboudumc



1) Training of IHC network

53 I
Specimens are stained with  Color deconvolution is Artifacts are introduced Autifacts are removed A 5-layer deep U-Net is The IHC network produces
CK8/18 and P63 to mark applied to each slide. Only due to imperfections in the manually in selected trained on the corrected precise segme;ntation
epithelial tissue and basal ~ the channel representing staining and color regions. Training data is IHC regions. Areas with masks given an HC slide,
cell layer. the epithelial tissue isused, ~ deconvolution method sampled from these artifacts are sampled more.  independent of the color
Input data: 25 IHC WSIs the rest is discarded. (Example: top left corner). regions. deconvolutior}-
(20 training, 5 validation) i o o Y B B R W W W W

2) Training of H&E network

Network training

[
S | R |
‘ : ! ""')-? Slide pairs are registered on The trained IHC netwerk is applied to each II-_iC slide. A 6-layer deep U-Net is The trained H&?:E network
4% LA cell-level due to the use of restained The network output is used as the training mask for trained on H&E and the segments epithelial tissue
slides and non-linear patch based the H&E network. No additional post processing or masks generated by the [HC ~ on HE&E. H
registration. manual annotations are used. : network. :

Input data: 62 restained and registered
IHC/HE&E pairs (50 training, 12 validation)



Prostate cancer: eplthellum

All regions 160 0.89340.05 (0.661, 0.959) 0.940 0.811 Gertych et al.®

Cross-validation — — 0.595+0.15
Liet al.!? Cross-validation — — 0.737%
Our method Hold-out validation 0.866 +0.07 0.8354+0.13 0.7354+0.16
Bulten et al. Scientific Reports (2019) nauuuvuuuriic



Prostate cancer: Gleason Grading

> Radboudumc



Prostate cancer: Gleason Grading

Collected prostate biopsies from 1271 patients

Grade Training Set Validation Set Test Set
No cancer 777 200 271
3 1508 139 120
4 2102 138 134
5 329 42 100
Totals 4716 519 625

Radboudumc



Tumor 'Epithelium Patient
detection detection report

Input to system




20% benign
15% Gleason 4
65% Gleason 5

Gleason 5+4

Radboudumc




Gleason Grading

M:uscapfiltered, Primary Gleason pattern M:uscapfiltered, Gleason Grade Group
Normalized confusion matrix Normalized confusion matrix
negative
negative 08 08
= o7 = 1 o7
8 8
E 0a E 0a
- 3 -
= = 2
£ 05 £ 05
o o
(=N (=N
£ 04 e . 04
g s g
— 03 - 03
[+ 4] [+ 4]
o | 4
- 02 - 02
3 o1 - o1
0o 0o
Fredicied labeal Fredicied labeal

Performance of model on GGG: acc 0.84, k 0.83

Radboudumc



Observer experiment

8 2 9 7 5 Expert 2
L ] [ ] L ] [ N ] L ] L 1 N » L ] L ]
t } + t & iy N
1 6 4 3 10 Eyperti  Expert3
0.0 02 04 06 08 10

Kappa scores for pathologists on Gleason Grade Group

Algorithm

Radboudumc



The people who do all the work...

Scientific staff

£ £ £

Caner Mercan David Tellez Elke Loskamp-
Postdoctoral PhD student Huntink
researcher Study manager
Mart van Maschenka Meyke Hermsen
Rijthoven Balkenhol PhD student
PhD student Pathology resident

and PhD student

’
Wouter Bulten Yiping Jiao Zaneta
PhD student PhD student SWIdersk.a-
Chadaj
Postdoctoral
researcher

Hans Pinckaers
PhD student

p
Oscar Geessink
PhD student

N
Jasper Linmans John-Melle

PhD student Bokhorst

PhD student

13
Péter Bandi Thomas de Bel
PhD student PhD student

Technical staff

e 4

Karel Gerbrands Maud Wekking

Research Software Research technician
Engineer

Visiting researchers

¢ £

Emiel Stoelinga Koen Dercksen

Master student Master student

Faculty

N\
N
Jeroen van der Geert Litjens
Laak Assistant professor
Associate
professor/Group

leader

N-
Merijn van Erp

Scientific
programmer

£

Leander van
Eekelen

Master student

Francesco
Ciompi

Assistant Professor

£

Michel Kok Patrick Sonsma

Master student Master student
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Radboudumc | Diagnostic Image Analysis Group

- & ) ,
Computational PathologyGroup Highlights §® Members &, Projects(3  Software[d B & [ &

Computational Pathology Group

The Computational Pathology Group develops, validates and
deploys novel medical image analysis methods based on
deep learning technology and focusing on computer-aided
diagnosis. Application areas include diagnostics and
prognostics of breast, prostate and colon cancer. We have
rapidly expanded over the last few years, counting over 15
people today. Our group is among the international front
runners in the field, witnessed for instance by our highly
successful CAMELYON challenges. We have a strong
translational focus, facilitated by our close collaboration with

clinicians and industry. Automated tumor detection

Radboudumc



Automating kidney diagnostics

Glomerular counting
ct score vs % Atrophic tubuli

Quantitative criteria for tubular atrophy: ct score

ct0
ctl

ct2

ct3

No tubular atrophy
Tubular atrophy involving up to 25% of the area of cortical tubules

(mild tubular atrophy)
Tubular atrophy involving up to 26-50% of the area of cortical tubules

(moderate tubular atrophy)
Tubular atrophy involving in >50% of the area of cortical tubules
(severe tubular atrophy)

82 transplantation
biopsies

One biopsy
selected on
glass slide and
WSI for analysis

Glass WSI

slides

sat %

Hermsen et al. In rebuttal (2019)

Radboudumc



Automating kidney diagnostics

10 tissue classes

o =
40 full Checked '
oy seke 5-fold cross-validation
annotated by

regions pathologist i

Un-annotated tissue inside region assigned to
‘Interstitium’

Extraction of 4 pixels of all masks for ‘Border’
annotations

U-net ensemble

Post-processing

object

Radboudumc



Automating kidney diagnostics

* Applied to 15 WSiIs of large tumor nephrectomies

e All glomeruli annotated
e 1747 Glomeruli and 72 Sclerotic glomeruli

Radboudumc



Automating kidney diagnostics

TP FP FN
Glomeruli (n=1747) 93.4% (1632) 8.4% (149) 6.6 % (115)
Sclerotic glomeruli (n=76) 76.4 % (55) 455% (46) 23.6% (17)

Radboudumc



Automating kidney diagnostics

P1-CNN

2,00

oo

-2.00

-4.00

-6.00

-10.00

Inter-class correlation

CNN

0
o 506866
0g o0 OdO @O0 o}
o< 888 o -o=C O
0 0p @&|lO o O
—o—8 O © ©
O s} O
o)

] 5.00 10.00 15.00

mean P1 & CNN

20,00

2500

coefficient
PL P2 P3
P1 0.94 0.95
P2 0.95
P3
CNN
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Automating kidney '

Pathologist 1
Pathologist 2
Pathologist 3
CNN Glomeruli

CNN Sclerotic glomeruli

13
13
14
17

ia

- 4;-.'11




Automating kidney diagnostics

60.00

5000

40.00

3000

% Atrophic tubuli CNN

2000

10,00

00

° " daprots Bonferroni analysis
——  [Prathologist 3 0 1 2 3
0 0.24 <0.001 <0,001
1 <0.001 <0.001
o 2 <0.01
o 3
— Weighted kappa
= P1 P2 P3
% ; P1 0.13 0.34
P2 0.20
00 1.00 200 3.00 P3

ct score pathologists

Quantitative criteria for tubular atrophy: ct score

ct0
ctl

ct2
ct3

No tubular atrophy
Tubular atrophy involving up to 25% of the area of cortical tubules (mild tubular atrophy)

Tubular atrophy involving up to 26-50% of the area of cortical tubules (moderate tubular atrophy)

Tubular atrophy involving in >50% of the area of cortical tubules (severe tubular atrophy)

Radboudumc
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