

Geert Litjens Department of Pathology Radboud University Medical Center

specialists

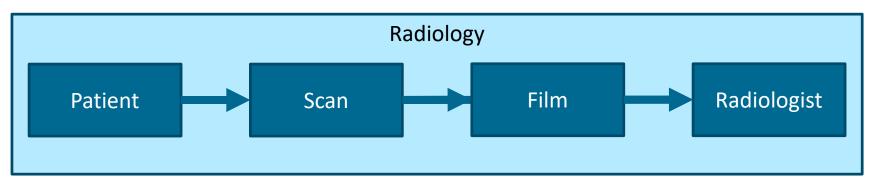
support for multi-disciplinary tea

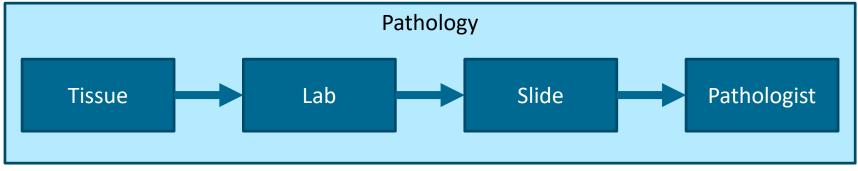
Collaboration with other

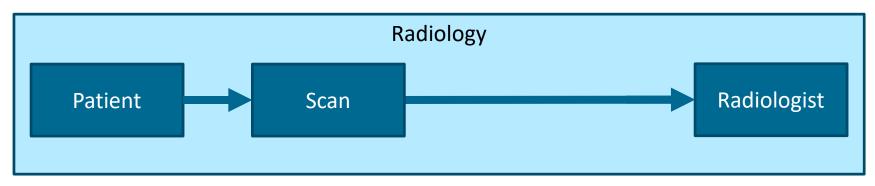
department boundaries.

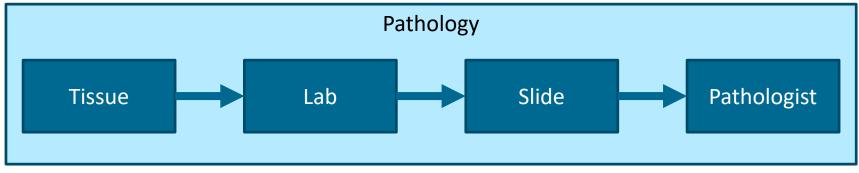
5 Key criteria for evaluating Digital Pathology

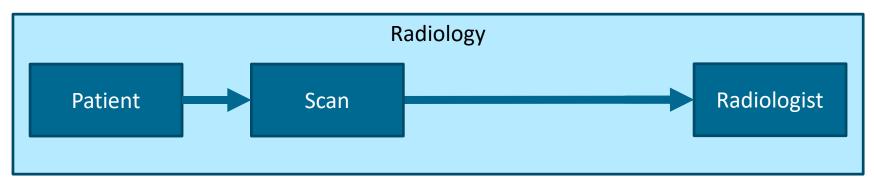
The adoption of digital pathology is evolving and offers functionality that goes far beyond the microaccept. These new opportunities significantly increase workflow efficiency. They move brene-consuming tasks to the computer and allow the pathologist to spend more time on reviewing cases. Here are five key criterie when evaluation a solution for digital pathology.

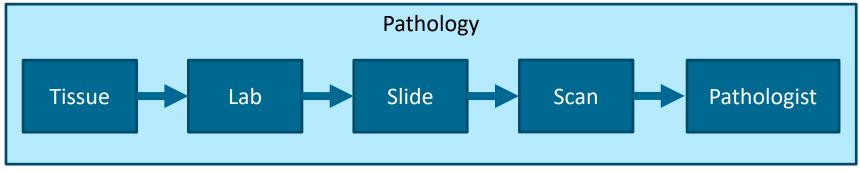








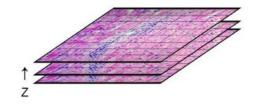


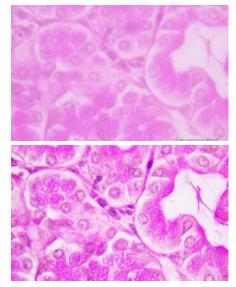


Scanners

Storage

Computers

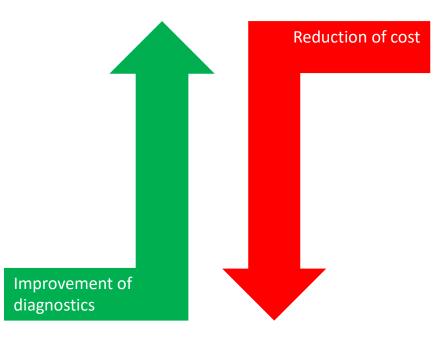


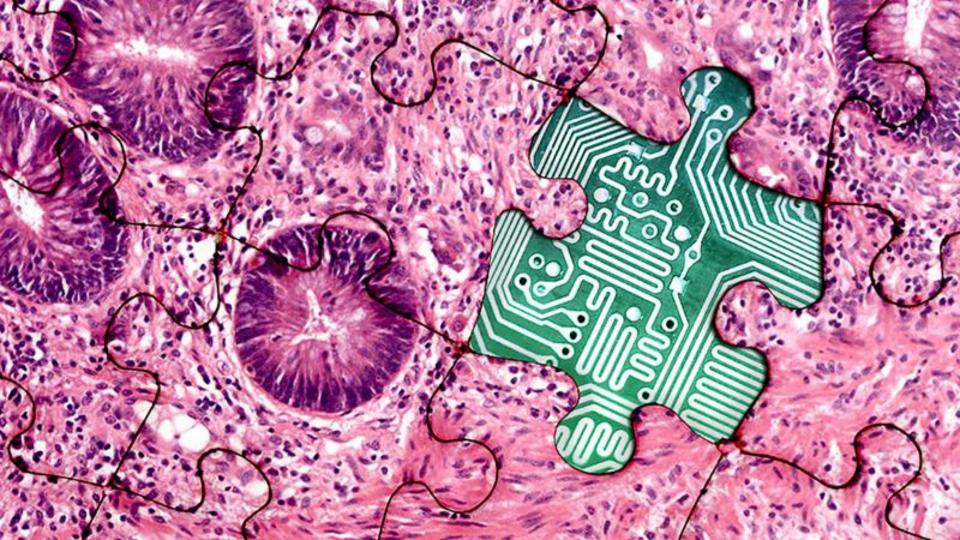


Multiple focal points

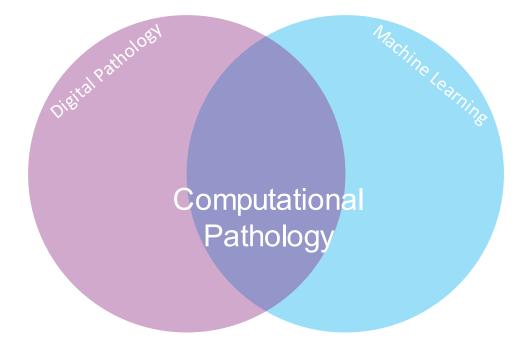
Large slides

Oil immersion





Computational Pathology



Machine learning



ML: a bit of history

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

At last – a computer program that can beat a champion Go player PAGE 484

ALL SYSTEMS GO

CONSERVATION

SONGBIRDS A LA CARTE Illegal harvest of millions of Mediterranean birds ME 452 SAFEGUARD TRANSPARENCY Don't let openness hackfire on individuals MGE 459

RESEARCH ETHICS

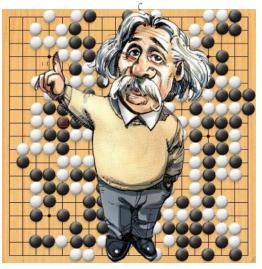
WHEN GENES GOT 'SELFISH' Dawkins's calling card forty years on PME452

PDPULAR SCIENCE

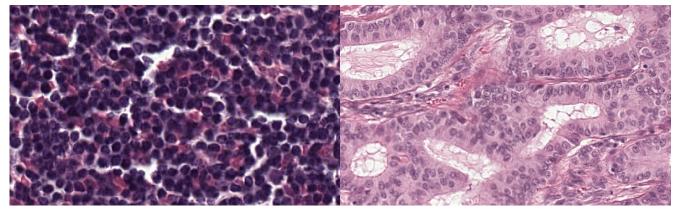
D NATURE.COM/NATURE 26 January 2016 (£10) Vol. 529, Nol. 7587

ML: a bit of history

30 possible moves per turn 40 turns per game

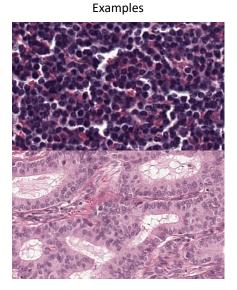


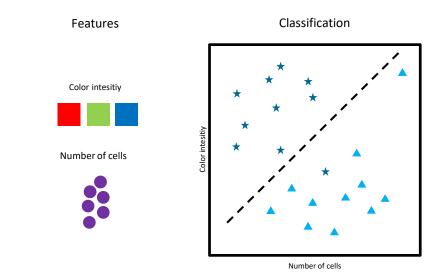
250 possible moves per turn 150 turns per game

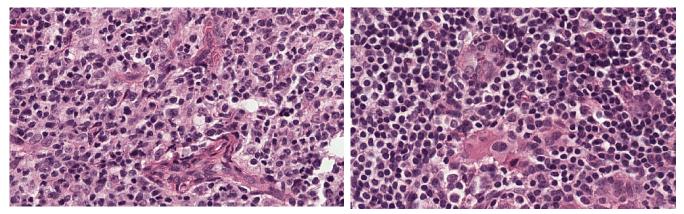


Normal lymph node

Breast cancer metastasis







Normal lymph node

Breast cancer metastasis

JAGON TANZ IDEAS 05.17.16 06:50 AM

SOON WE WON'T PROGRAM COMPUTERS. WE'LL TRAIN THEM LIKE DOGS

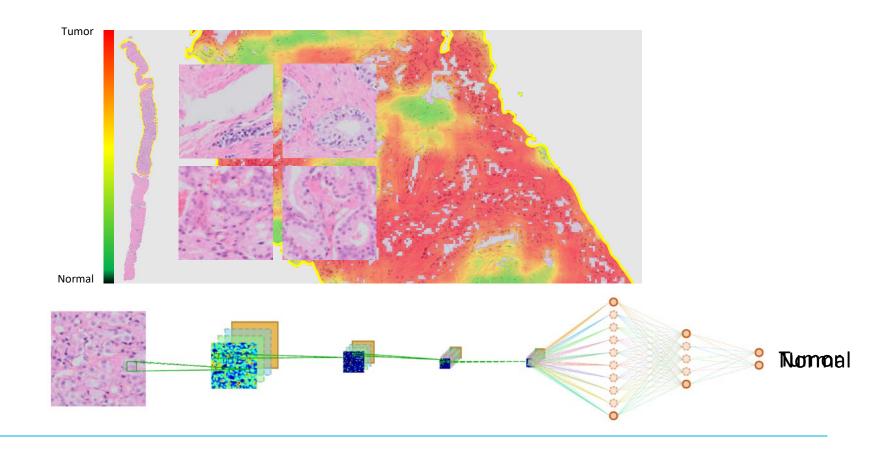
🕒 EDWARD C. MONAGHAN

BEFORE THE INVENTION of the computer, most experimental psychologists thought the brain was an unknowable black box. You could analyze a subject's behavior—*ring bell, dog salivates*—but thoughts, memories, emotions? That stuff was obscure and inscrutable, beyond the reach of science. So these behaviorists, as they called themselves, confined their work to the study of stimulus and response, feedback and reinforcement balls and saliva. They gave up trains to

MOST POPULAR

TRANSPORTATION

SOON WE WON'T PROGRAM COMPUTERS. WE'LL TRAIN THEM LIKE DOGS



Radboudumc

Litjens et al. Sci Rep. 2016

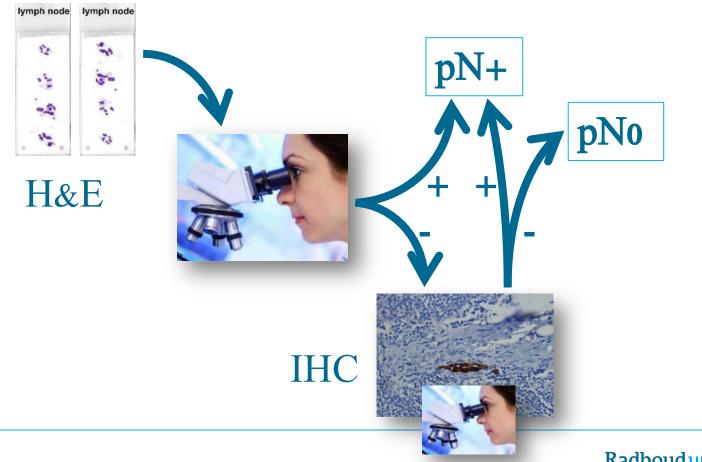
Practical applications of computation pathology

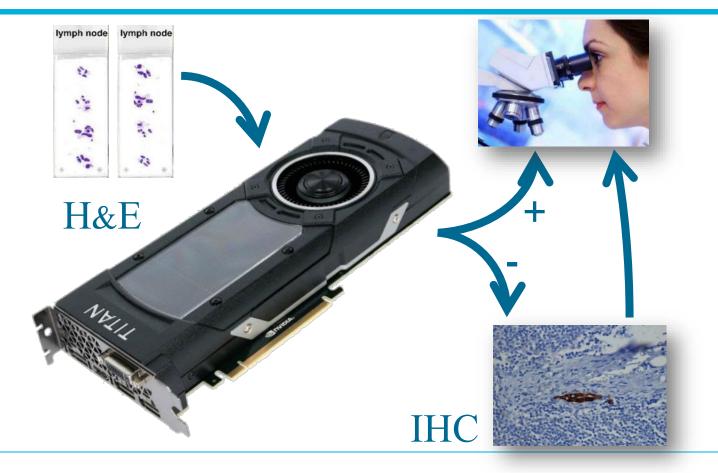
Detection of metastases in lymph nodes

Automatic mitotic counts

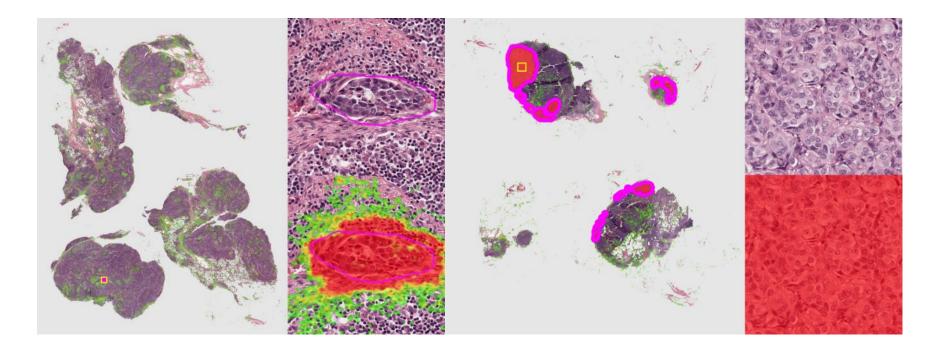
Tumor qua

Detection of metastases in lymph nodes





Detection of metastases in lymph nodes



Breast cancer metastasis detection

Data

Centrum	Number of slides
CWZ (Nijmegen)	200
LabPON (Hengelo)	200
Rijnstate (Arnhem)	200
Radboudumc (Nijmegen)	439
UMCU (Utrecht)	350
Total	1399

Why challenges?

Great way to collect and compare solutions for a problem

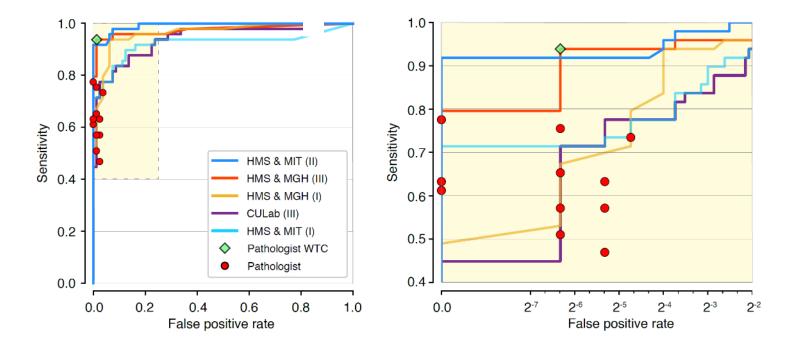
Radboudumc

Fair comparison of algorithms

- Same evaluation metric
- Same ground truth definition
- Same training and test datasets

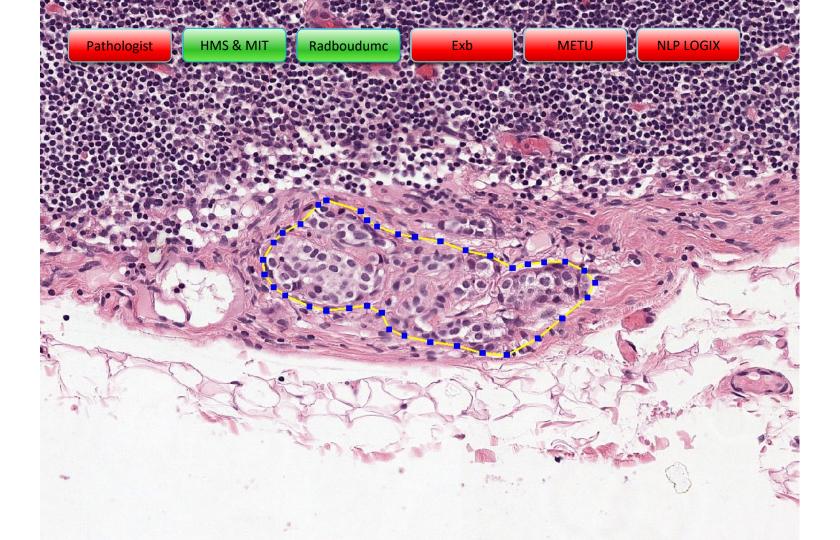
Rank 🔺	Team 🗘	AUC 💠	Description 💸
01	Harvard Medical School (BIDMC) and Massachusetts Institute of Technology (CSAIL), USA	0.9250	🔁 📄 😰
02	ExB Research and Development co., Germany	0.9173	🔁 📄 😰
03	Independent participant, Germany	0.8680	🔁 📄 😰
04	Health Sciences Middle East Technical University, Turkey	0.8669	🔁 📄 😰
05	NLP LOGIX co., USA	0.8332	🔁 📄 😰
06	University of Toronto, Electrical and Computer Engineering, Canada	0.8181	🔁 📄 😰
07	The Warwick-QU Team, United Kingdom	0.7999	🔁 📄 😰
08	Radboud University Medical Center, Diagnostic Image Analysis Group, Netherlands	0.7828	🔁 📄 😰
09	HTW-BERLIN, Germany	0.7717	
10	University of Toronto, Electrical and Computer Engineering, Canada	0.7666	🔁 📄 😰

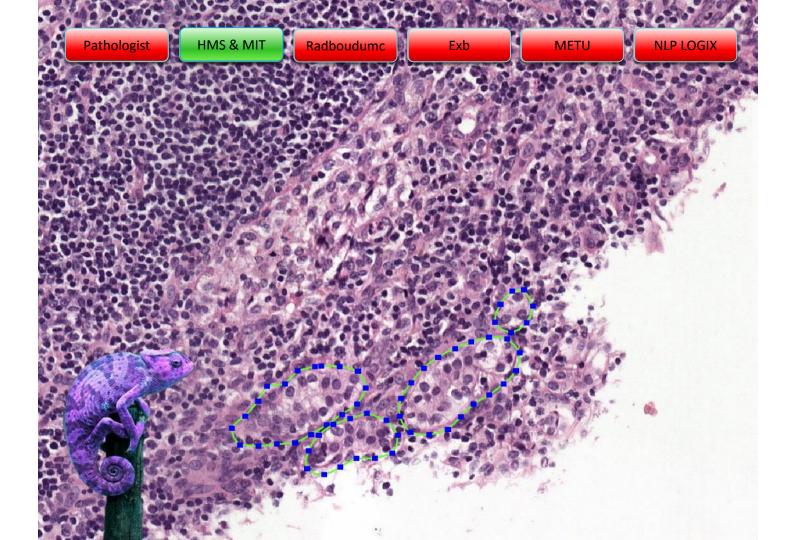
Comparing to pathologists

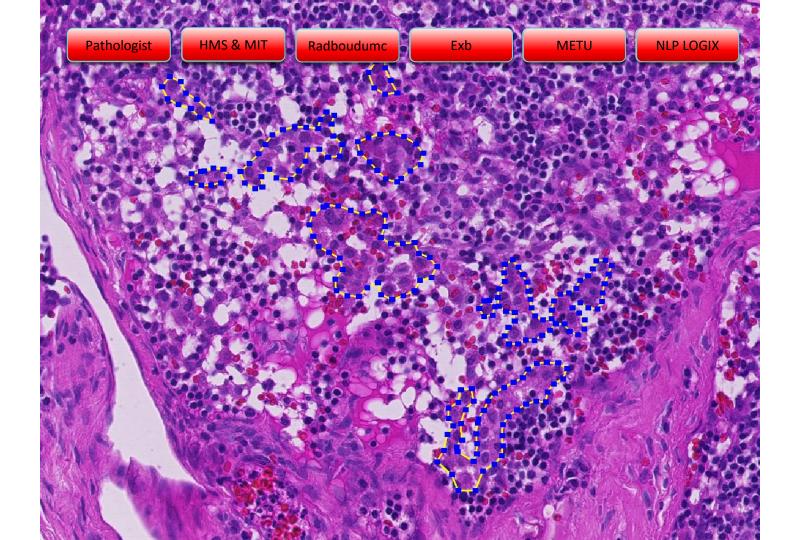


Radboudumc

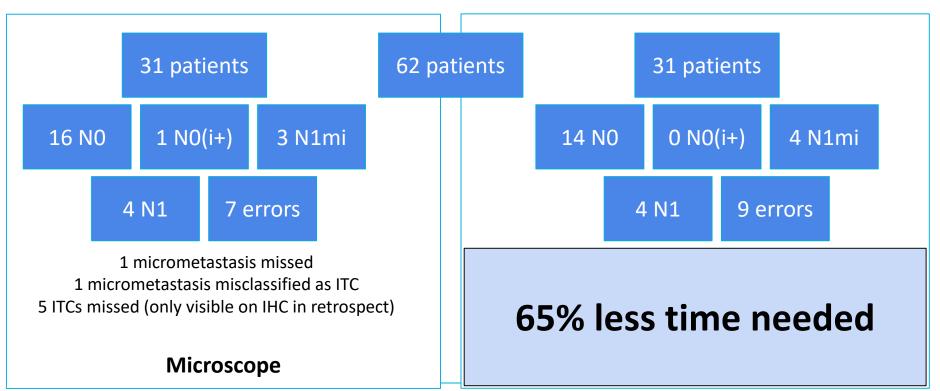
Ehteshami et al. JAMA. 2017







Implemented in clinical practice



Radboudumc

Bult et al. In preparation

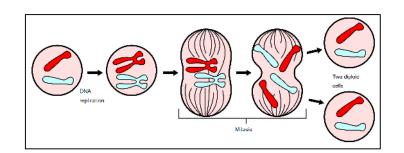
Practical applications of computation pathology

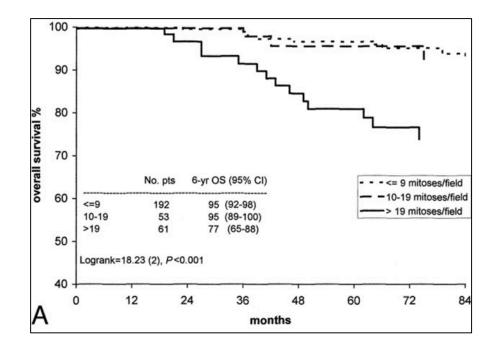
Detection of metastases in lymph nodes

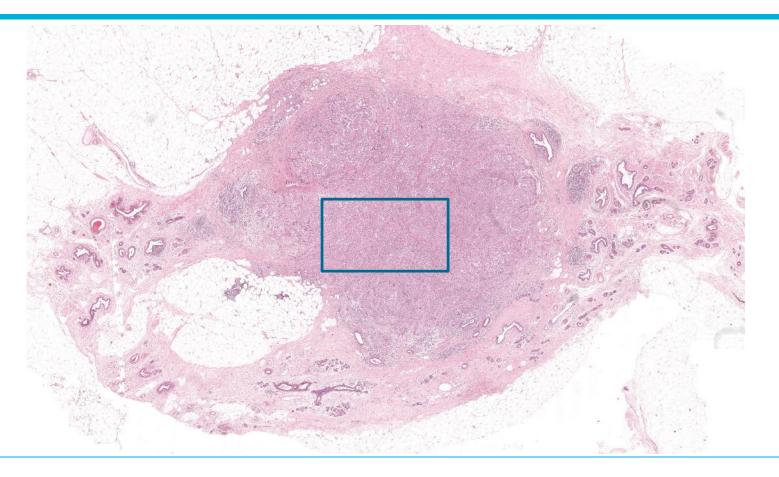
Automatic mitotic counts

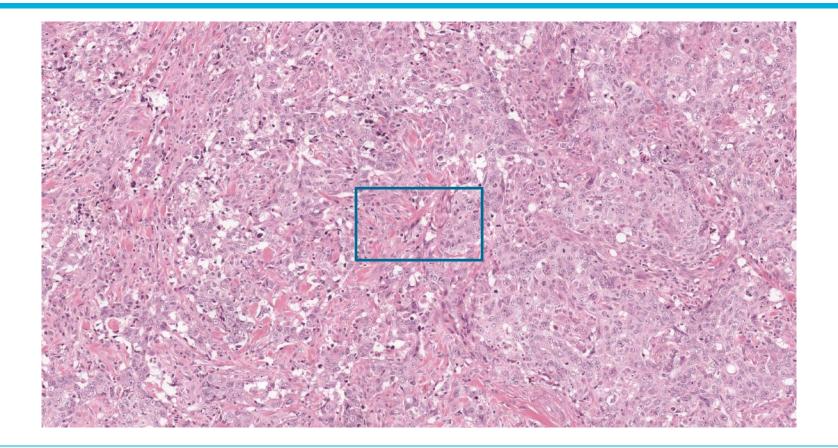
Tumor qua

Automatic mitotic counts

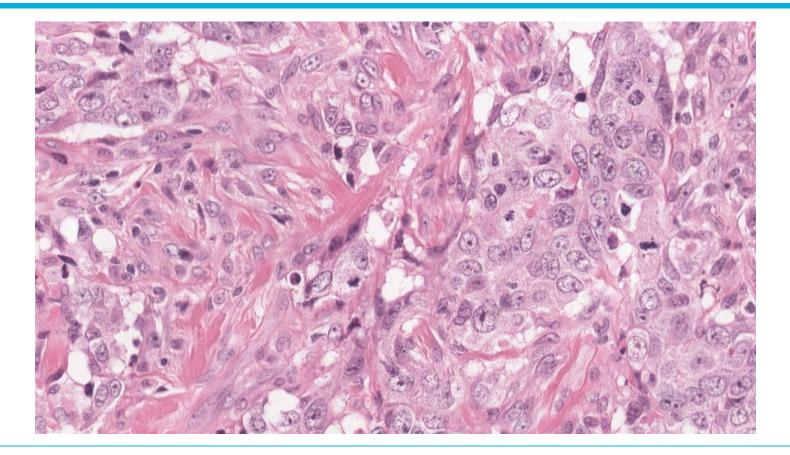




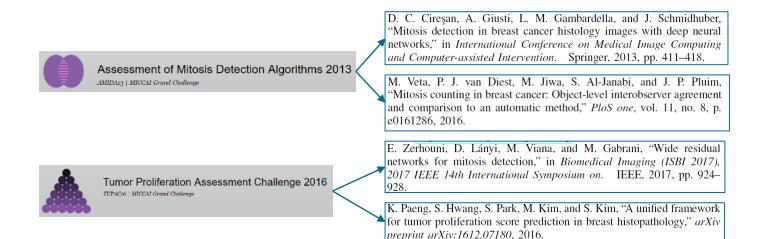




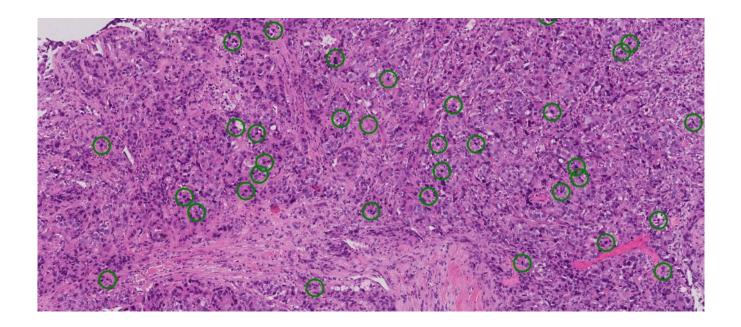
Kadboudumc



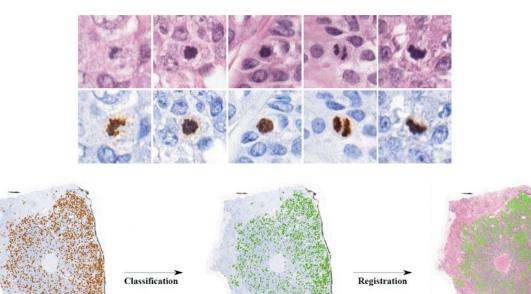
Automatic mitotic counts

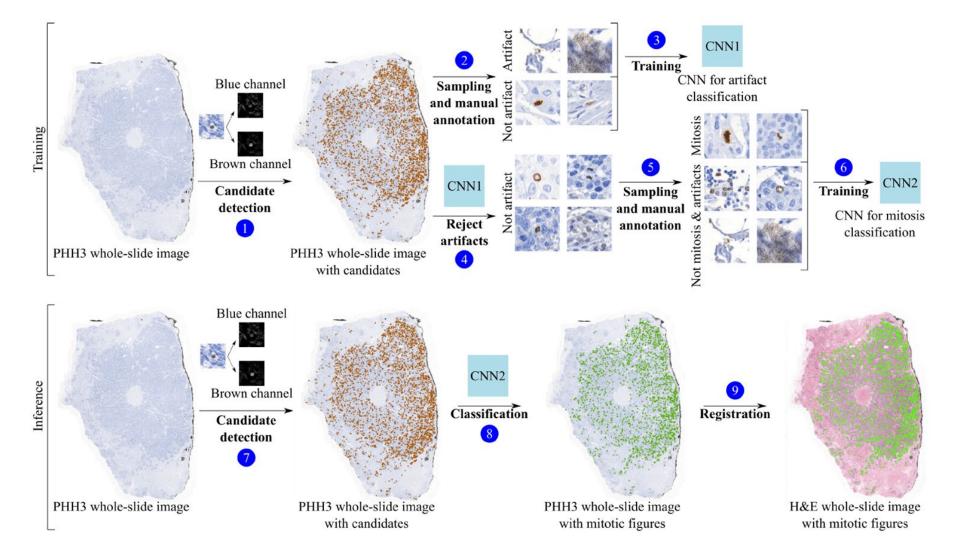


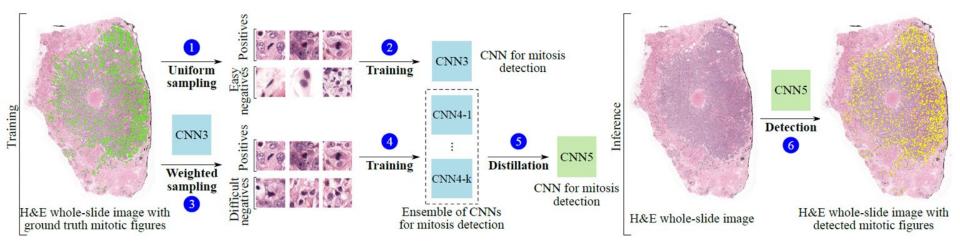
Challenge 1: Reference standard



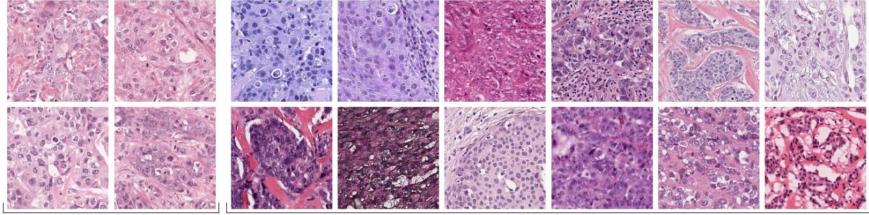
IHC offers a solution







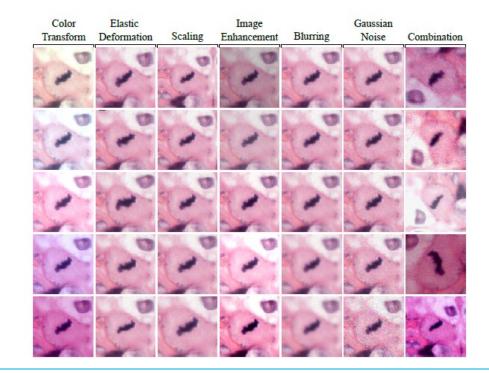
Challenge 2: staining differences

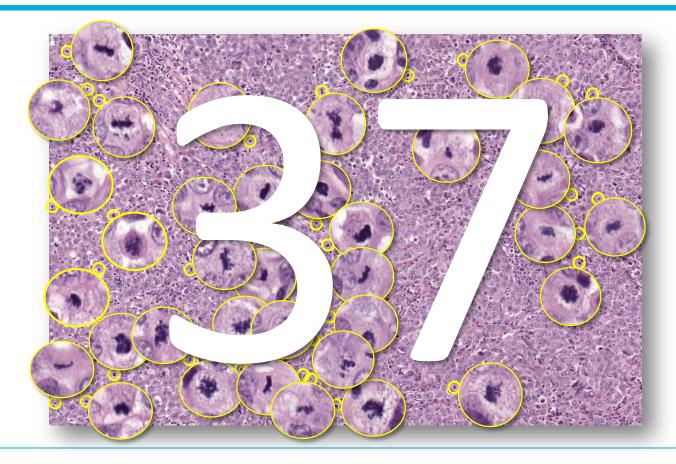


TNBC dataset

TUPAC dataset

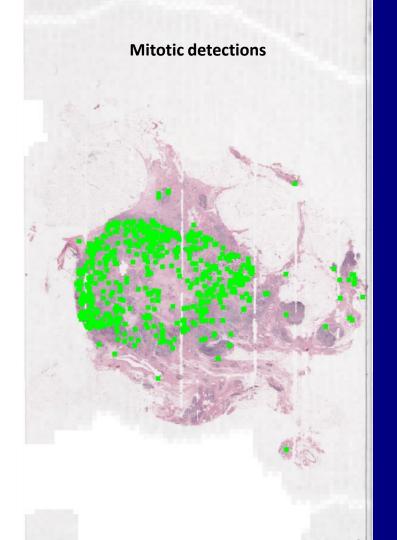
Solution 2: Data augmentation



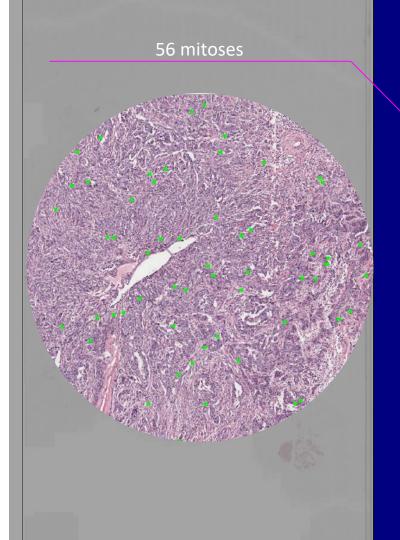


Radboudumc

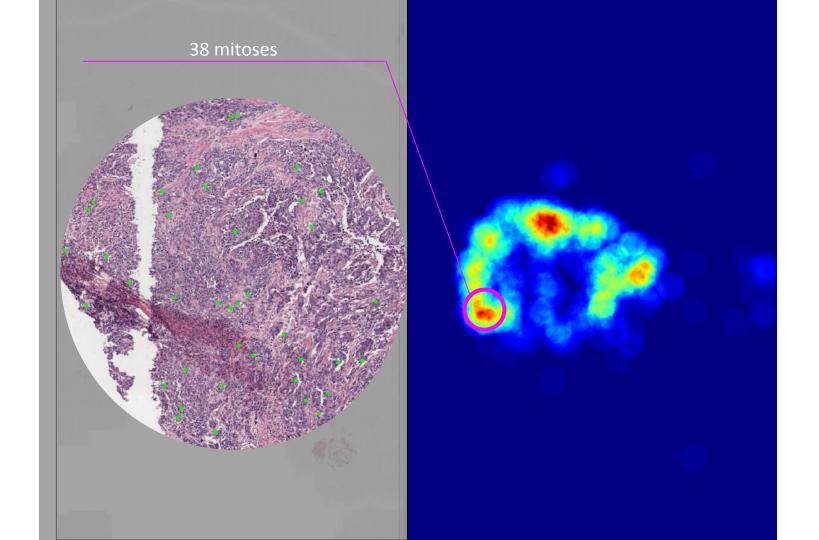
Tellez et al. IEEE Transactions on Medical Imaging. (2018)



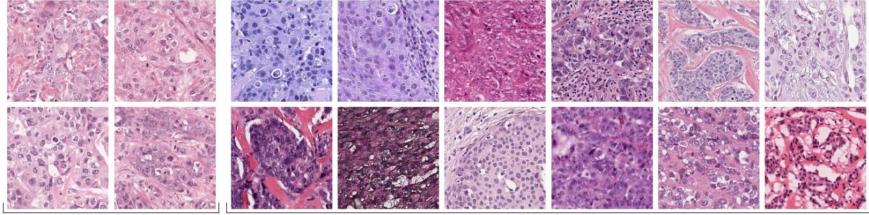
Mitosis density



Direct visibility of hotspots



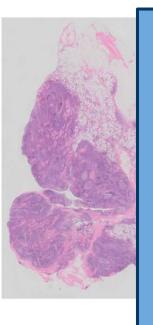
Challenge 2: staining differences



TNBC dataset

TUPAC dataset

'Traditional' stain normalization



• Only modifies color information

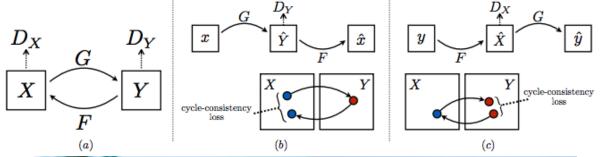
• Very time-consuming algorithm

• Dependent on presence of nuclei

• Parameter tweaking for new datasets

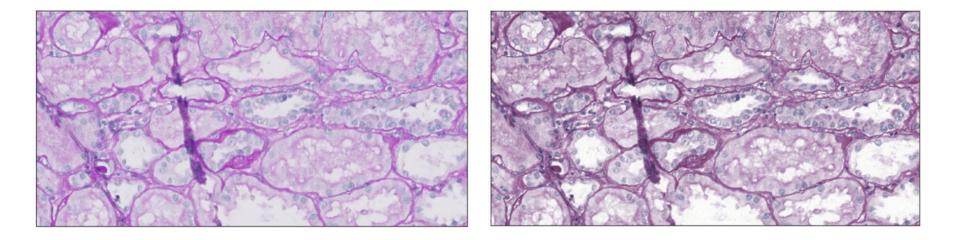


Stain normalization using cycleGANs

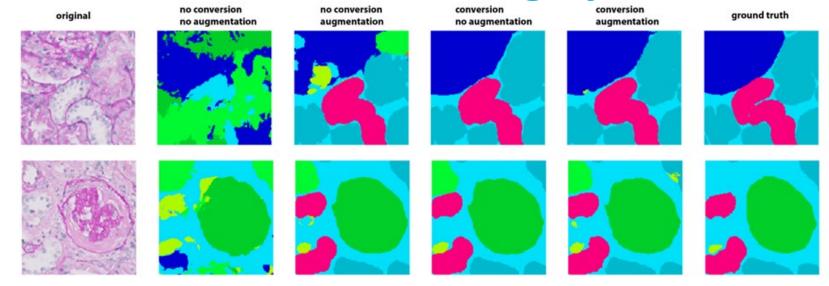


de Bel et al. MIDL (2019)

Stain normalization using cycleGANs



Stain normalization using cycleGANs



Experiment		Dice coefficient AMC				
Augmentations	Stain transformed x	Mean	Std	Min	Max	
х	X	0.36	0.21	0.09	0.65	
х	\checkmark	0.85	0.06	$\begin{array}{c} 0.69 \\ 0.65 \end{array}$	0.91	
. √	Х	0.78	0.08	0.65	0.87	
\checkmark	\checkmark	0.85	0.05	0.72	0.91	

Practical applications of computation pathology

Detection of metastases in lymph nodes

Automatic mitotic counts

Tumor/stroma ratio quantification

Identific assoc

Annals of Oncology

original articles

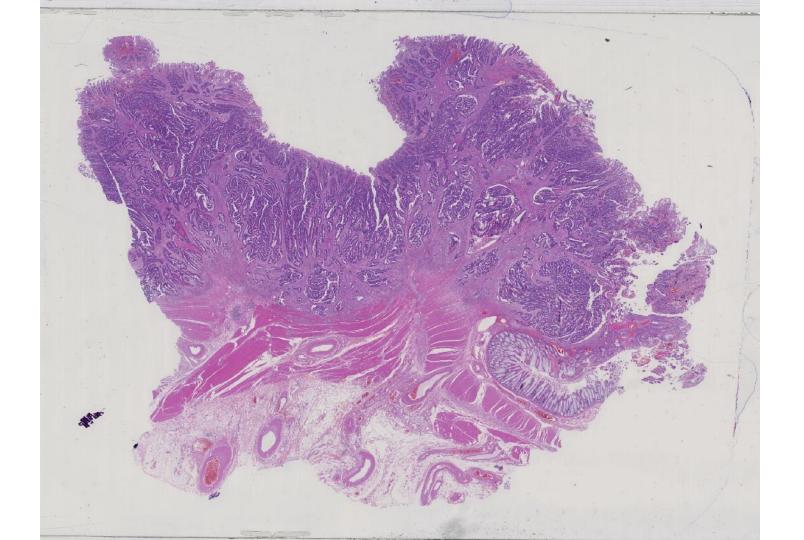
Annals of Oncology 24: 179–185, 2013 doi:10.1093/annonc/mds246 Published online 2 August 2012

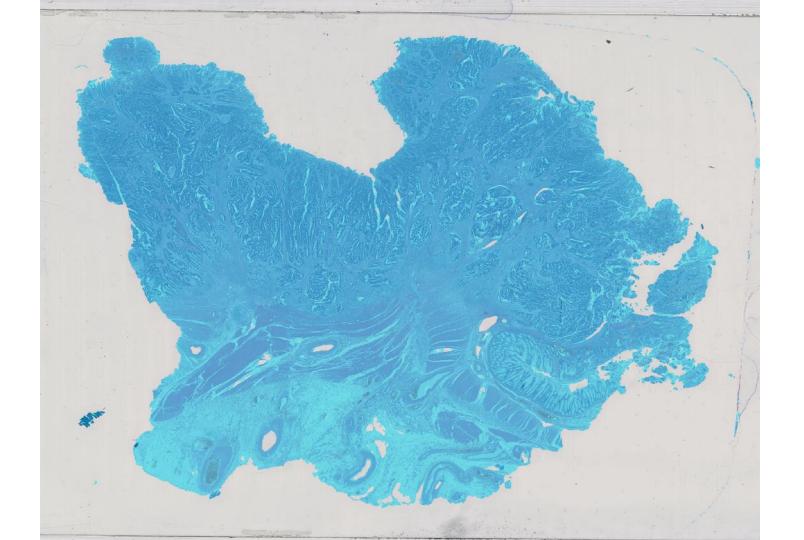
The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: validation in the VICTOR trial

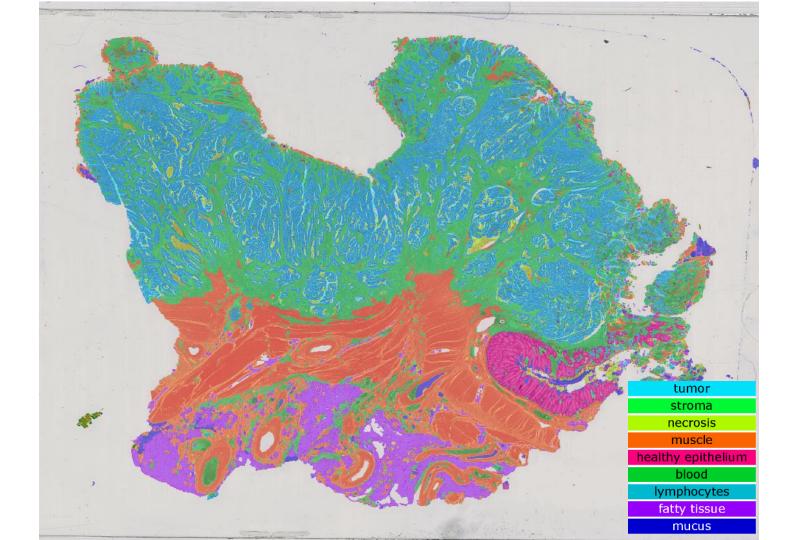
A. Huijbers¹, R. A. E. M. Tollenaar¹, G. W. v Pelt¹, E. C. M. Zeestraten¹, S. Dutton³,
C. C. McConkey⁶, E. Domingo⁷, V. T. H. B. M. Smit², R. Midgley⁴, B. F. Warren⁸, E. C. Johnstone⁴,
D. J. Kerr⁵ & W. E. Mesker^{1*}

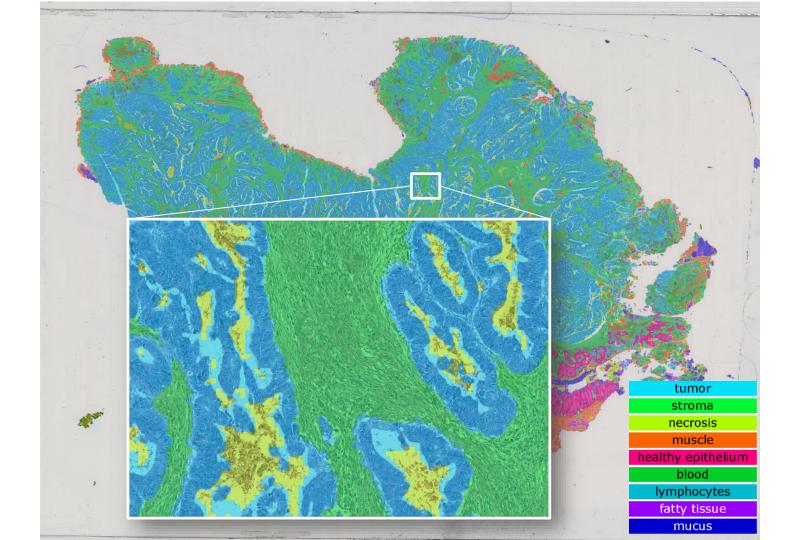
Departments of ¹Surgery; ²Pathology, Leiden University Medical Center (LUMC), Leiden, The Netherlands; ³Centre for Statistics in Medicine, University of Oxford, Oxford; Departments of ⁴Oncology; ⁵Clinical Pharmacology, University of Oxford, Oxford; ⁶Clinical Trials Unit, University of Warwick, Coventry; ⁷Molecular and Population Genetics, Wellcome Trust Center for Human Genetics, Oxford; ⁸Department of Pathology, John Radcliffe Hospital, Headington, Oxford, UK

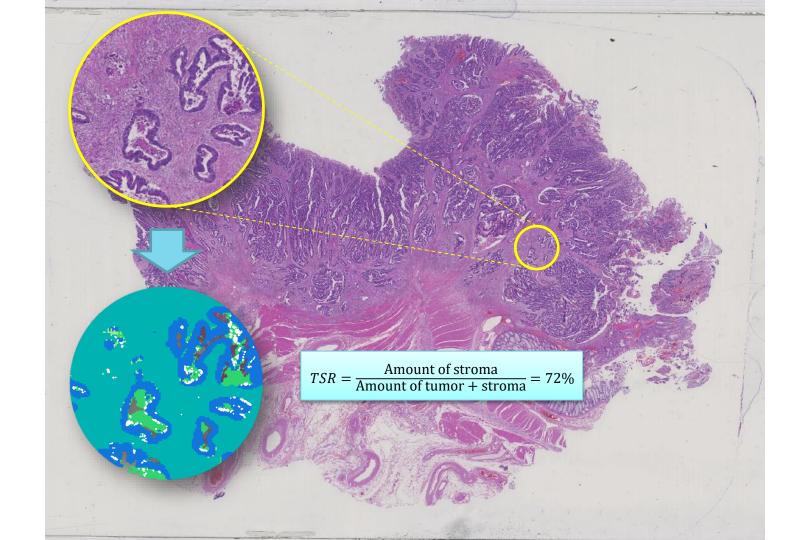
Received 28 February 2012; revised 15 June 2012; accepted 18 June 2012





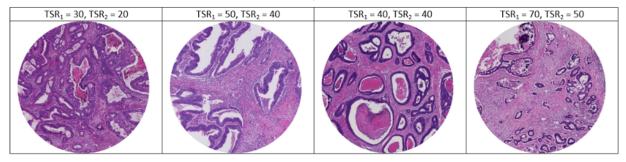


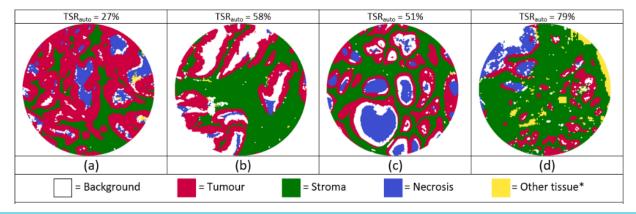




125 patients with rectal carcinoma

- Stage I-III
- At least five year follow-up
- No neo-adjuvant therapy





Crosstab: Observer 1 versus Observer 2					
κ = 0.548		Obs			
		Stroma-low	Stroma-high	Total	
Observer 1	Stroma-low	75	8	83	
	Stroma-high	16	26	42	
	Total	91	34	125	

Crosstab: TSR-Visual (consensus) versus TSR-auto					
κ = 0.518		TSF			
		Stroma-low	Stroma-high	Total	
	Stroma-low	60	27	87	
TSR-visual (consensus)	Stroma-high	3	35	38	
	Total	63	62	125	

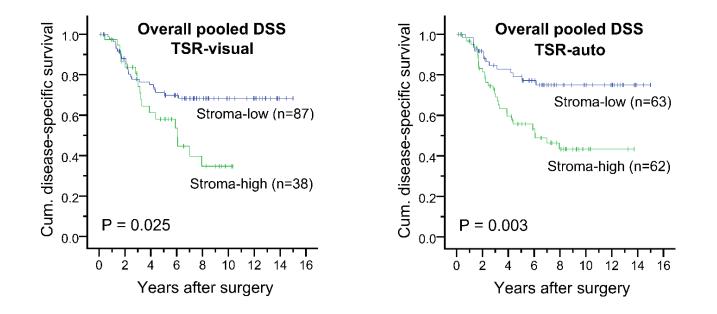
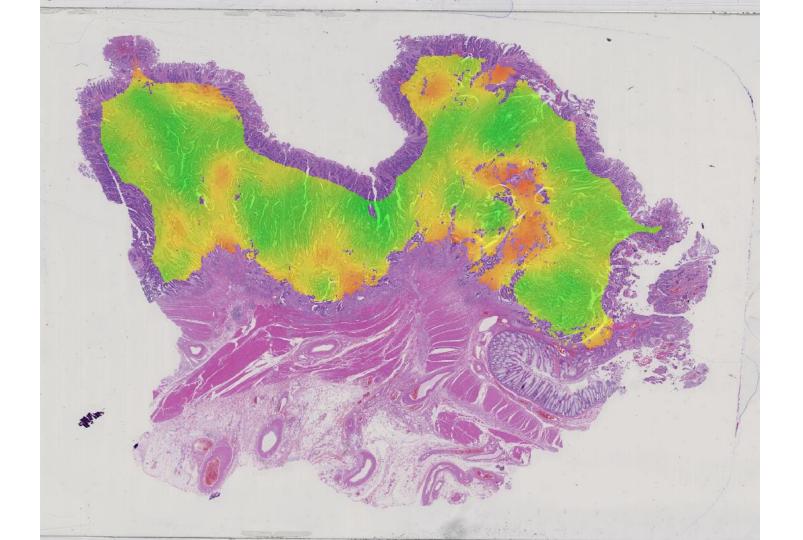


Table 5. Uni- and mul	ltivariate Cox regressio	on analysis fo	r disease-specific surv	ival.		
	Univariate analysis		Multivariate analysis			
			Visual		Auto	
	HR (95% CI)	P-val.	HR (95% CI)	P-val.	HR (95% CI)	P-val.
Age	1.01 (0.98-1.04)	0.376				
Gender	0.85 (0.45-1.60)	0.604				
T-stage	2.42 (1.47-3.99)	0.001	1.97 (1.16-3.34)	0.012	2.05 (1.24-3.38)	0.005
N-stage	2.16 (1.49-3.14)	0.0001	2.06 (1.13-3.75)	0.018	2.12 (1.17-3.84)	0.014
Surgical procedure	1.48 (0.94-2.31)	0.090				
Tumour grade	2.96 (1.42-6.17)	0.004	2.40 (1.05-5.48)	0.038	2.23 (0.99-5.00)	0.052
Adj. <u>chemoth</u> .	1.17 (0.28-4.82)	0.831				
Adj. <u>radioth</u> .	2.56 (1.41-4.63)	0.002	0.72 (0.27-1.88)	0.496	0.68 (0.27-1.72)	0.417
TSR-visual	1.96 (1.08-3.58)	0.027	2.07 (1.09-3.93)	0.026		
TSR-auto	2.57 (1.36-4.86)	0.004			2.75 (1.44-5.27)	0.002

Geessink et al. Cellular Oncology (2019).

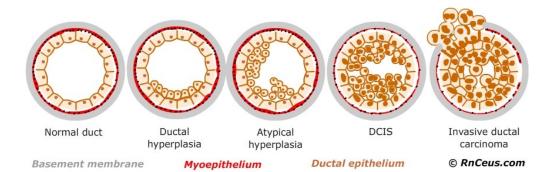


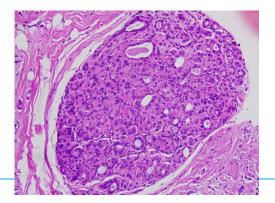
Practical applications of computation pathology

Automatic mitotic counts

Tumor/stroma ratio quantification Identification of tumor associated stroma Prec ex

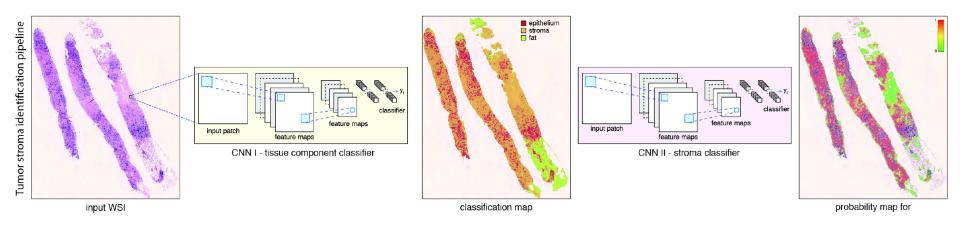
Prognosis of in-situ lesions

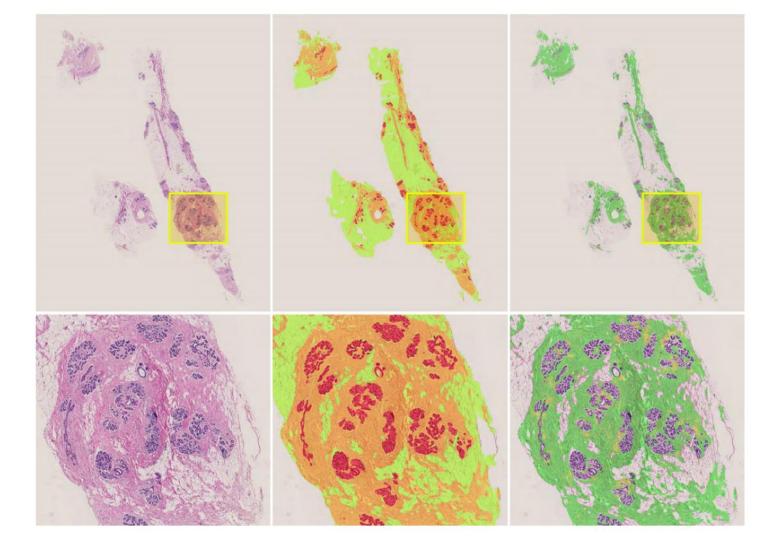


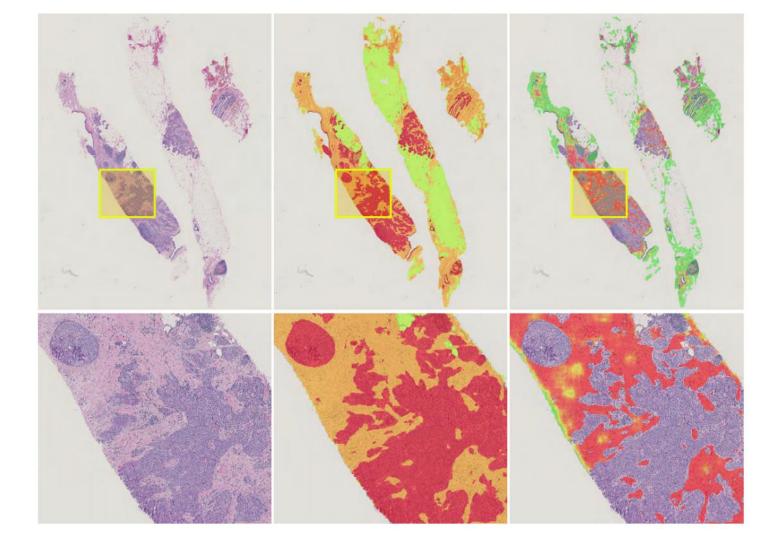


Diagnosis	Entire dataset		Training dataset		Testing dataset				
	# Patient	# WSI	%	# Patient	# WSI	%	# Patient	# WSI	%
Benign	321	675	36.4	209	437	37.9	112	238	33.9
Proliferative	312	937	35.4	209	608	37.9	103	329	32.3
Proliferative with atypia	57	212	6.5	42	171	7.6	15	41	4.5
Ductal carcinoma in-situ	58	222	6.6	_	_	_	58	222	17.6
Lobular carcinoma in-situ	10	29	1.1	7	21	1.2	3	8	0.9
Invasive breast cancer	124	312	14.0	85	222	15.4	39	90	11.8
Total	882	2387	100	552	1459	100	330	928	100

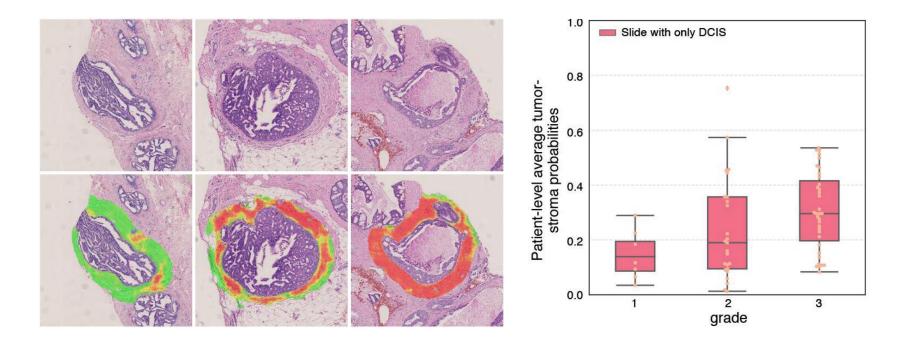
Tumor-associated stroma







Tumor-associated stroma



Radboudumc

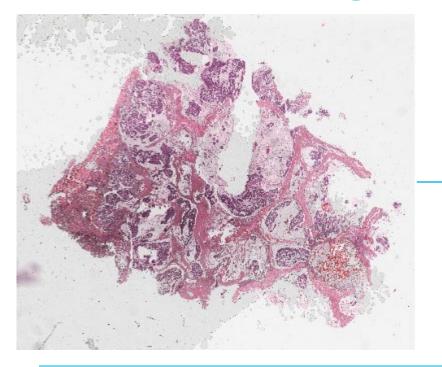
Ehteshami et al. Modern Pathology (2018)

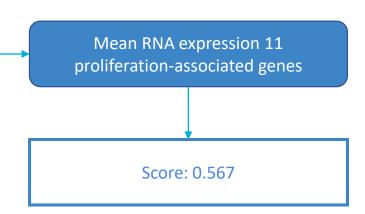
Practical applications of computation pathology

Tumor/stroma ratio quantification Identification of tumor associated stroma Prediction of gene expression

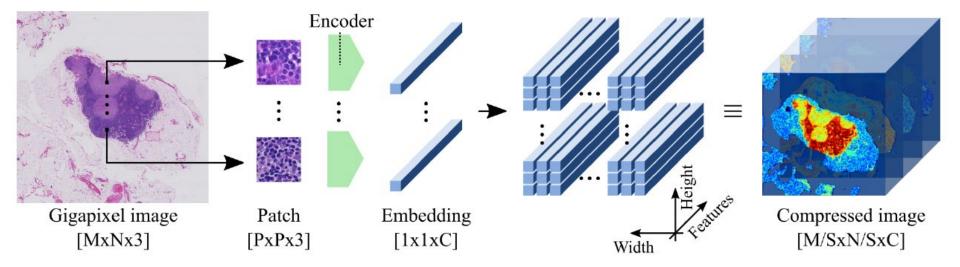
Gleas pros

Prediction of gene expression





Neural compression



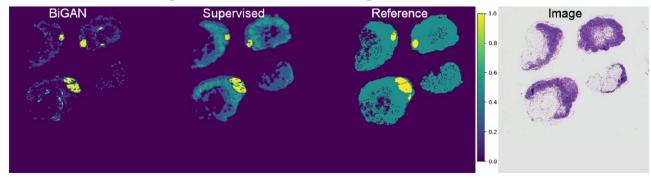
Radboudumc

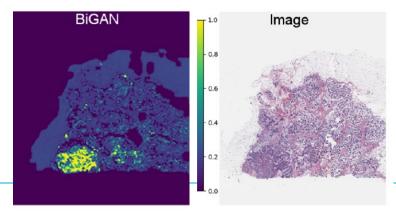
Tellez et al. In rebuttal

Prediction of gene expression

Team	Spearman's ρ
Lunit (mitosis counting)	0.617
Radboud (neural compression)	0.557
Radboud (regular CNN)	0.516
ContextVision	0.503

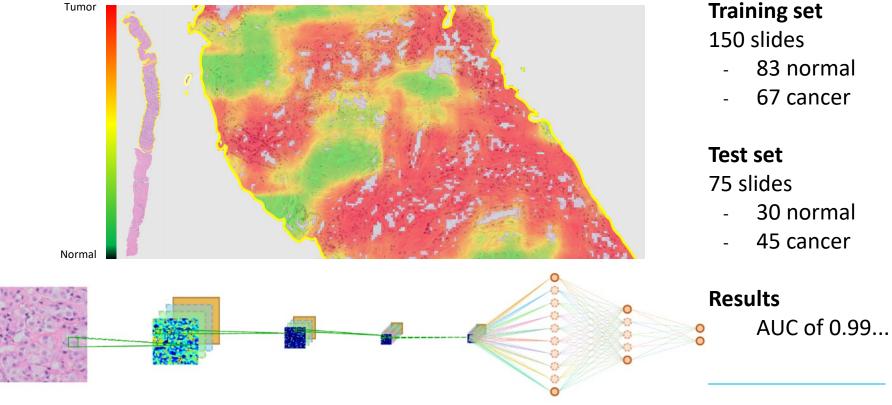
Explainability of ML systems





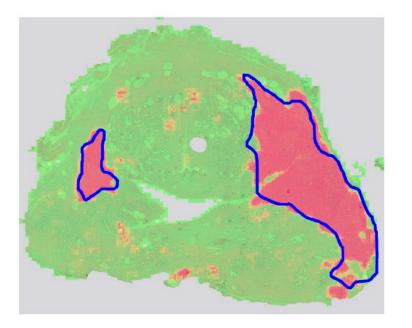
Practical applications of computation pathology

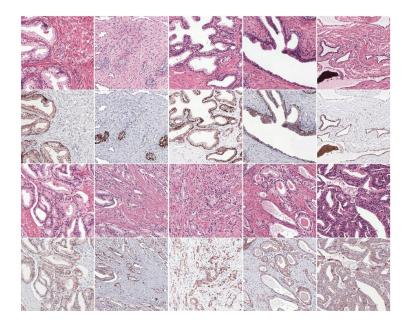
Prostate cancer segmentation



Litjens et al. Scientific Reports (2016)

Prostate cancer: epithelium segmentation





Radboudumc

Bulten et al. Scientific Reports (2019)

1) Training of IHC network

(20 training, 5 validation)

Specimens are stained with Color deconvolution is CK8/18 and P63 to mark applied to each slide. Only epithelial tissue and basal the channel representing the epithelial tissue is used, cell layer. the rest is discarded.

Artifacts are introduced due to imperfections in the staining and color deconvolution method (Example: top left corner).

Artifacts are removed manually in selected regions. Training data is sampled from these regions.

A 5-layer deep U-Net is trained on the corrected IHC regions. Areas with artifacts are sampled more.

Network training

The IHC network produces precise segmentation masks given an IHC slide, independent of the color deconvolution.

2) Training of H&E network Network training The trained H&E network Slide pairs are registered on The trained IHC netwerk is applied to each IHC slide. A 6-layer deep U-Net is cell-level due to the use of restained The network output is used as the training mask for trained on H&E and the segments epithelial tissue slides and non-linear patch based the H&E network. No additional post processing or on H&E. masks generated by the IHC manual annotations are used. registration. network. Input data: 62 restained and registered

IHC/H&E pairs (50 training, 12 validation)

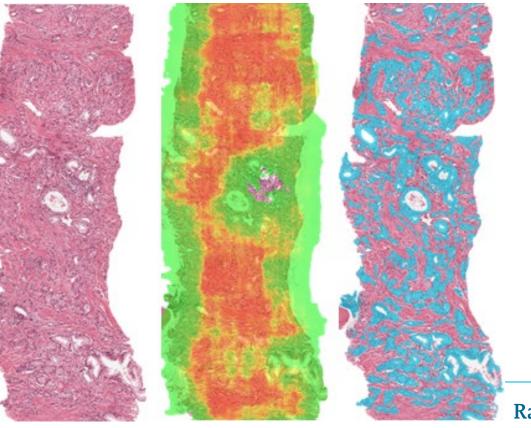
Prostate cancer: epithelium

Regions	Ν	F1 score mean (min, max)	Accuracy	Jaccard	Network	Evaluation	Accuracy	F1	Jaccard
All regions	160	0.893±0.05 (0.661, 0.959)	0.940	0.811	Gertych <i>et al.</i> ⁸	Cross-validation	—	—	0.595 ± 0.15
		•			Li et al. ¹²	Cross-validation	—	—	0.737*
					Our method	Hold-out validation	0.866 ± 0.07	0.835 ± 0.13	0.735 ± 0.16
Bulton et al Scientific Reports (2010)						Nau	UUUUUIIL		

Buiten et al. Scientific Reports (2019)

lauoouu

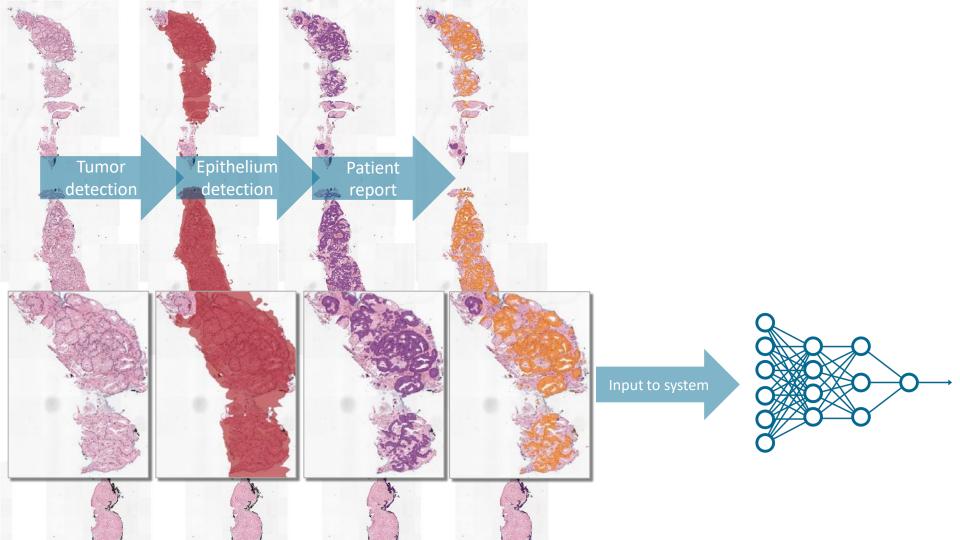
Prostate cancer: Gleason Grading

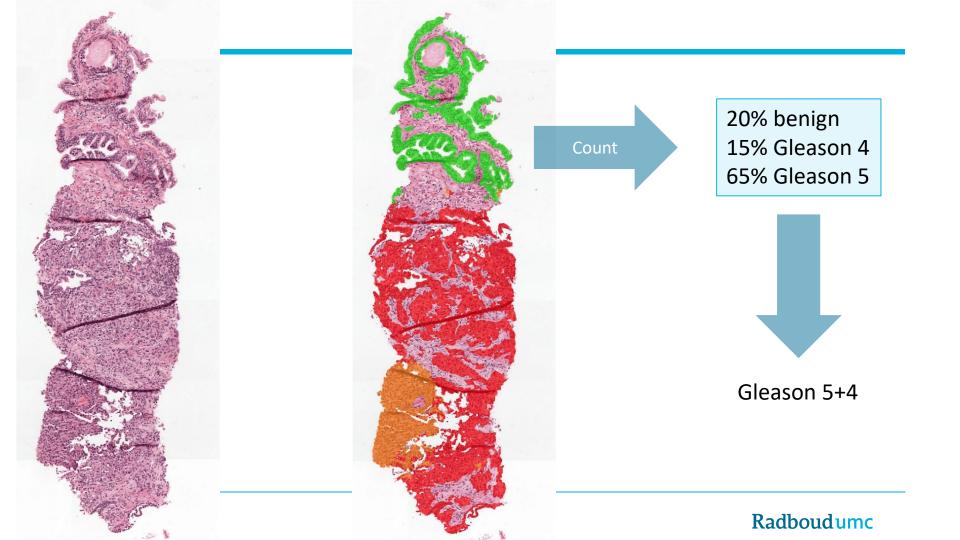


Prostate cancer: Gleason Grading

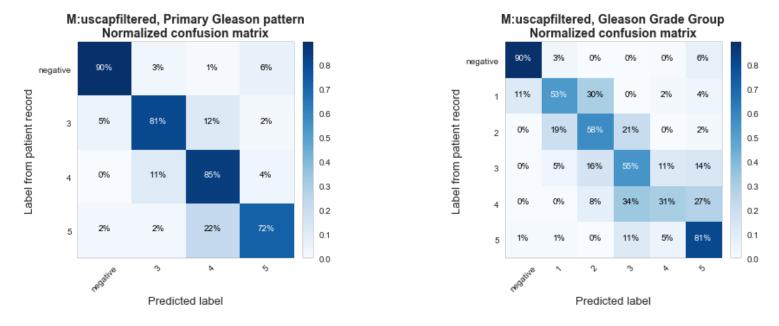
Collected prostate biopsies from 1271 patients

Grade	Training Set	Validation Set	Test Set
No cancer	777	200	271
3	1508	139	120
4	2102	138	134
5	329	42	100
Totals	4716	519	625



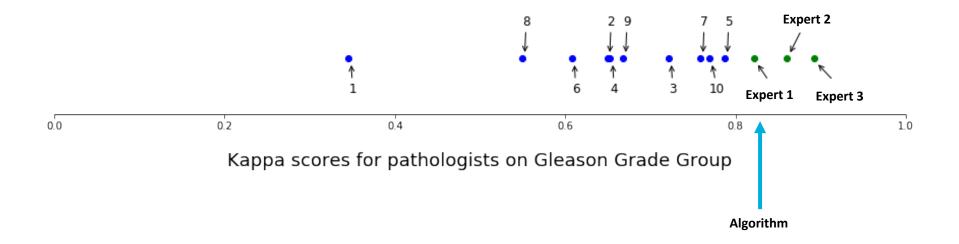


Gleason Grading



Performance of model on GGG: acc 0.84, k 0.83

Observer experiment



The people who do all the work...

Scientific staff

Caner Mercan

Postdoctoral

researcher

Mart van

Rijthoven

PhD student

Maschenka

Balkenhol

Pathology resident and PhD student

David Tellez PhD student Study manager

Hans Pinckaers PhD student

John-Melle

Bokhorst PhD student

Technical staff

Maud Wekking Merijn van Erp Research technician Scientific

Visiting researchers

Wouter Bulten PhD student

Yiping Jiao PhD student

Meyke Hermsen

PhD student

Zaneta Swiderska-Chadaj

Postdoctoral researcher

Péter Bándi

PhD student

Oscar Geessink

PhD student

Thomas de Bel PhD student

Koen Dercksen

Leander van Eekelen Master student

Patrick Sonsma Master student

Associate

professor/Group leader

Laak Assistant professor

Francesco

Assistant Professor

Faculty

Emiel Stoelinga Master student Master student

Jeroen van der

Geert Litjens

Computational Pathology Group

Computational Pathology Group

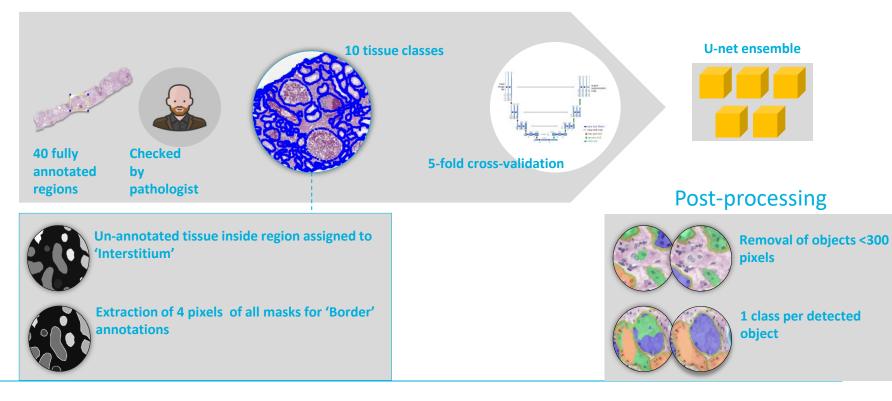
The Computational Pathology Group develops, validates and deploys novel medical image analysis methods based on deep learning technology and focusing on computer-aided diagnosis. Application areas include diagnostics and prognostics of breast, prostate and colon cancer. We have rapidly expanded over the last few years, counting over 15 people today. Our group is among the international front runners in the field, witnessed for instance by our highly successful CAMELYON challenges. We have a strong translational focus, facilitated by our close collaboration with clinicians and industry.

Automated tumor detection

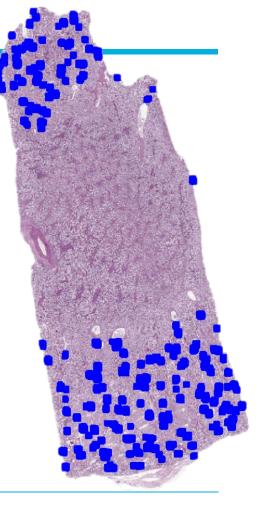
computationalpathology.eu

- Glomerular counting
- ct score vs % Atrophic tubuli

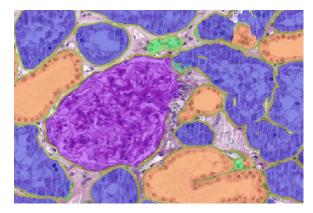
Qua	Quantitative criteria for tubular atrophy: ct score					
ct0	No tubular atrophy					
ct1	Tubular atrophy involving up to 25% of the area of cortical tubules (mild tubular atrophy)					
ct2	Tubular atrophy involving up to 26-50% of the area of cortical tubules (moderate tubular atrophy)					
ct3	Tubular atrophy involving in >50% of the area of cortical tubules (severe tubular atrophy)					

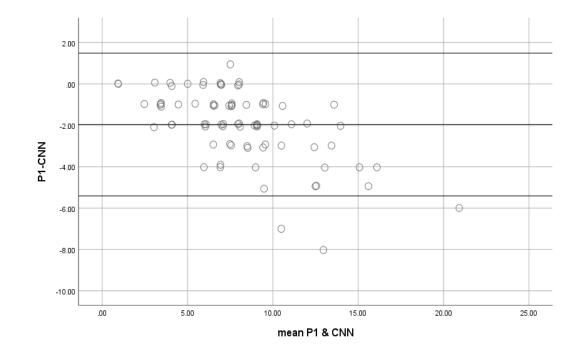


- Applied to 15 WSIs of large tumor nephrectomies
- All glomeruli annotated
 - 1747 Glomeruli and 72 Sclerotic glomeruli



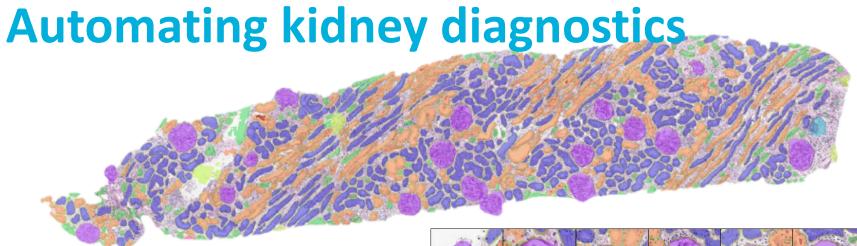
	ТР	FP	FN
Glomeruli (n=1747)	93.4% (1632)	8.4 % (149)	6.6 % (115)
Sclerotic glomeruli (n=76)	76.4 % (55)	45.5 % (46)	23.6 % (17)
Total (n=1819)	92.7 % (1687)	10.4 % (192)	7.3 % (132)



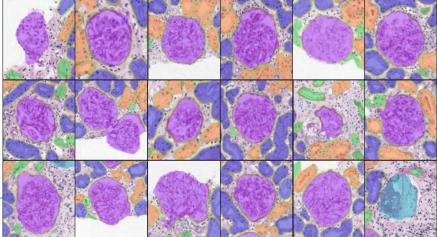


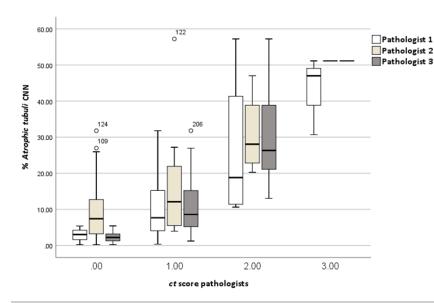
Inter-class correlation coefficient

	P1	P2	P3	CNN
P1		0.94	0.95	0.78
P2			0.95	0.85
P3				0.85
CNN				



	No.	
Pathologist 1	13	
Pathologist 2	13	
Pathologist 3	14	
CNN Glomeruli	17	
CNN Sclerotic glomeruli	1	





Bonferroni	analysis
------------	----------

	0	1	2	3			
0		0.24	<0.001	<0,001			
1			<0.001	<0.001			
2				<0.01			
3							
Weigh	Weighted kappa						
	P1		P2	P3			
P1			0.13	0.34			
P2				0.20			
P3							

Quantitative criteria for tubular atrophy: ct score

- ct0 No tubular atrophy
- ct1 Tubular atrophy involving up to 25% of the area of cortical tubules (mild tubular atrophy)
- ct2 Tubular atrophy involving up to 26-50% of the area of cortical tubules (moderate tubular atrophy)
- ct3 Tubular atrophy involving in >50% of the area of cortical tubules (severe tubular atrophy)